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DEVELOPMENT OF NEURAL NETWORK MODELS FOR A
CRUDE OIL DISTILLATION COLUMN

KHAIRIYAH MOHD. YUSOF 1, FAKHRI KARRAY2 & PETER L. DOUGLAS3

Abstract. This paper discusses the development of artificial neural network (ANN) models for a
crude oil distillation column. Since the models were developed for real time optimisation (RTO)
applications, they are steady-state, multivariable models. Training and testing data used to develop the
models were generated from a reconciled steady-state model simulated in a process simulator. The
radial basis function networks (RBFN), a type of feedforward ANN model, were able to model the
crude tower very well, with the root mean square error for the prediction of each variable less than 1%.
Grouping related output variables in a network model was found to give better predictions than
lumping all the variables in a single model; this also allowed the overall complex, multivariable model
to be simplified into smaller models that are more manageable. In addition, the RBFN models were
also able to satisfactorily perform range and dimensional extrapolation, which is necessary for models
that are used in RTO.

1.0 INTRODUCTION

1.1 Background

Mathematical models are important in chemical engineering, both in the design and
operation of chemical plants. In plant operation, models are required for analysis,
control (particularly advanced control), and optimisation. Real time optimisation
(RTO), which is the continuous evaluation and adjustment of process operating con-
ditions to optimise the economic productivity subject to constraints, requires rigorous
steady-state plant models.

Good process models are critical for a successful implementation of RTO. Cur-
rently, most RTO implementation uses rigorous first principles (FP) mathematical
models, which are not only complex and costly to develop, but also cumbersome and
difficult to maintain because of skill and time requirements [1]. The high computation
time required in solving the models is also a major problem for on-line applications.
In fact, developing reliable models for a chemical process is a major obstacle in imple-
menting advanced control and optimisation because of the complexity and cost in-
volved [2]. This leads to the quest for finding other types of suitable models, such as
artificial neural network (ANN).
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ANN had generated much interest in the chemical engineering community since
the late eighties as an alternate approach to model a process. Many industrial applica-
tions have been reported [3, 4, 5, 6, 7]. ANN, a connectionist-based (black box) model,
consists of layers of nodes with non-linear basis functions and weighted connections
that link the nodes. Using the nodes and weights, the inputs are mapped to the outputs
after being trained with a set of training or learning data. Multilayer feedforward ANN
were mathematically proven to be a universal approximator [8]. However, since ANN
is data driven, the resulting model can only be as good as the data provided to the
network.

Recently, there are several studies that report a preference using ANN models
eventhough rigorous FP models for the processes are available [9, 10, 11]. The FP
models were used to generate data for developing ANN models. ANN models are
suitable for on-line applications because of the short computation time to solve the
ANN model and its ability to accurately represent the model. In optimisation, this is
especially advantageous since the model must be accessed by the optimiser and com-
puted repeatedly. For example, Nascimento et al. [9] successfully optimised the oper-
ating conditions of a nylon-6,6 polymerisation process. The pure ANN model for the
process was developed using data generated from a rigorous semi-mechanistic model
that had been fitted to the plant data. Optimisation was performed off-line by map-
ping all the possible solutions within the region of interest using the ANN model and
locating the optimum using a grid-search method.

ANN models developed for RTO are different from those developed for process
control or other off-line applications. RTO requires steady-state models that can yield
all output variables required by the optimiser. For large, multivariable processes, there
can be more than 100 input and output variables. In addition, since the application is
on-line, the models must also have short computation times.

A desirable feature of ANN models developed for RTO is to have the ability to
extrapolate slightly beyond the training range, especially for applications in optimisation
because logical estimates are essential for optimisation algorithms that utilize the in-
feasible path approach to search for the optimum value. Although ANNs are usually
poor extrapolators, there were studies on the development of ANN models that could
satisfactorily perform range and dimensional extrapolation. Range extrapolation takes
place when one of the input variables to a model is applied outside the range that it
was trained for. Dimensional extrapolation takes place when a variable that was not
part of the input variable during identification (because it was constant during the
training phase) varies during the use of the model [12]. The ability to extrapolate slight
beyond the training range is important, especially for applications in optimisation
because feasible answers are essential when optimisation algorithms that violate con-
straints slightly in an effort to reach the optimum value are used.

This paper presents the development of ANN models for an industrial crude oil
distillation column that is suitable for an RTO application. The crude tower is a prac-
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tical candidate due to variations in operating conditions and its complex, multivari-
able nature. The ANN models developed are steady-state, multivariable models for
the complete process. Thus, they are different from ANN models for process control,
which are dynamic models used to predict one or two variables that are usually pub-
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Figure 1 Schematic diagram of the crude oil distillation tower
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lished in the literature. In addition, the ANN models developed were tested for range
and dimensional extrapolation.

1.2 The Crude Oil Distillation Column

The crude oil distillation tower used in this study is an actual operating column. The
tower (Figure 1) was designed to process sweet crude oil (crude oil with low sulfur
content) and condensate. This process faced problems brought about by the varying
composition and fractions of the crude oil and condensate feed.

The column has four pumparounds (p/a), four side strippers, and six product streams,
which are the distillate, heavy naphtha, kerosene, diesel, atmospheric gas oil (AGO),
and low sulphur waxy residue (LSWR) streams. In actual operation, the product draw-
off flowrates are adjusted to ensure on-specification products and to achieve the tar-
geted production rate. The feed flow rate is adjusted according to the production
target. The feed entering the column consists of a mixture of two feed streams, namely
the condensate stream, of which the light components were flashed off, and the crude
oil stream. The feed composition depends on the mixture of the oil and condensate
being fed to the column.

Products from the side draws must meet certain specifications. Operators obtain
these specifications from the production planning section and adjust the tower operat-
ing conditions to ensure on-specification products. The quality specifications are
checked, off-line, once during each shift - twice a day - at 06:00 and 18:00, and are thus
called “cold” properties. Table 1 lists the specifications and the corresponding prod-
ucts and manipulated variables. It is important to take note of the cold properties
because these are the variables that would be predicted in the model output.

Table 1 Product specifications and manipulated variables of the crude tower

Specifications/Properties Manipulated Variables

Heavy Naphtha IBP Top temperature or Q
FBP HN draw

Kerosene Flash Point/IBP HN draw
SS

Freeze Point/FBP Kerosene draw
Diesel Pour Point/Colour IBP Diesel draw

FBP Kerosene draw
Diesel draw

AGO Pour Point/Colour AGO draw
IBP Diesel draw
FBP AGO draw

LSWR Pour Point AGO draw

Note: IBP is initial boiling point
FBP is final boiling point
Q is reboiler duty
SS is stripping steam rate
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2.0 METHODOLOGY

2.1 Data Generation

To develop the ANN model, data were first generated for the purpose of training and
testing. A reconciled steady-state simulation of the crude tower was developed in
Aspen Plus using the PETROFRAC model, a rigorous tray by tray equilibrium based
distillation column model designed specifically for petroleum applications. The main
column, side strippers, pumparounds, and condenser were all modelled as part of the
column with PETROFRAC.

To obtain an accurate feed composition for the simulation, the products of the
crude tower section were back-mixed and analysed in the plant. The feed assay infor-
mation provided to Aspen Plus included the true boiling point (TBP) curve, light
ends analysis, stream specific gravity, and average molecular weight. All these infor-
mation were obtained from the laboratory analyses conducted in the plant. In Aspen
Plus, the feed stream compositions were approximated with seven conventional com-
ponents ranging from C2 to C5, and about 50 pseudo-components. The Peng-Robinson
equation of state, which is recommended for refinery applications [13], was used to
calculate all thermodynamic properties.

Table 2 Input and output variables for each section of the crude distillation column

Crude tower Input variables Output variables
section

Top of main Bintolt, Htfeed, HNdraw, Ttop, Ovhd, RR, Qcond, PAT
column Kerodraw, Qreb

HN stripper Bintolt, Htfeed, HNdraw, TtopH, TbotH, PAH, IBPH,
Kerodraw, Qreb FBPH, RhoH

Kerosene stripper Bintolt, Htfeed, HNdraw, TtopK, TbotK, FPKero, IBPK, FBPK
Kerodraw, Diesdraw, SSK

Diesel stripper Bintolt, Htfeed, Kerodraw, TtopD, TbotD, IBPD, FBPD,
Diesdraw, AGOdraw, SSD PourD, PAD

AGO stripper Bintolt, Htfeed, Diesdraw, TtopA, TbotA, IBPA, FBPA,
AGOdraw, SSA PourA, PAA

LSWR (Bottom Bintolt, Htfeed, AGOdraw, SSM TBot, PourL
of main column)

The sensitivity analysis feature in Aspen Plus was used to generate training and
testing data for the crude tower. Input variables for the ANN models include the feed
flow rates for the two feed streams, and the specified variables of a particular section
for the tower operation. The output variables are the dependant variables that were

JT38F[6B].pmd 02/16/2007, 21:3957



KHAIRIYAH MOHD. YUSOF, FAKHRI KARRAY & PETER L. DOUGLAS58

needed by the optimiser and were calculated due to changes in the input variables.
Ranges for the variables were within the operating region of the column. Within this
region, the variables in each section of the column have negligible influence on other
sections in the column, except the sections that are immediately above and below it.
This allowed data to be generated one section at a time. However, any section of the
column that had more than five independent variables was simulated one at a time for
each value of the sixth independent variables because the sensitivity analysis feature of
Aspen Plus only allows a maximum of five independent variables.

Table 2 lists the input and output variables of the network models for each section
of the crude distillation column. Only variables associated with the particular section
were included in the network model.

2.2 ANN Model Development

In this work, all ANN models were developed in MATLAB environment. Radial
basis function networks (RBFN) were chosen to model the crude tower because of
the short training times. RBFNs are multilayer feedforward networks. The networks
have an input layer, a hidden layer, and an output layer. The RBF network has a single
hidden layer of nodes with Gaussian density function. MATLAB uses the orthogonal
least squares (OLS) algorithm by Chen et al. [14] to solve for the RBF centers and
weights for the connections between the nodes in the hidden and output layers.

To develop the RBFN models, other than specifying an error goal, the spread constant,
σ, which determines the width of the receptive fields must also be specified. σ should be
large enough for the receptive fields to overlap one another for ample coverage of the
whole input range. Nevertheless, it should not be too large that there is no distinction
between the output of different nodes in the same area of the input space. The values of s
for the models were found through systematic trial and error. Since the spread of data for
each section of the crude tower was approximately equal, the suitable value of σ, between
0.15 and 0.20,  was found to be almost equivalent for all the models.

Once the error goal for training and σ had been specified, the RBFN model was
trained using the set of training data for the section. The OLS algorithm used by
MATLAB added one node at a time to the model until the error goal was satisfied.
The model was then verified with a set of training data for the particular section.

Evaluations of the models are based on root mean squared (RMS) error from each
model prediction. Error is defined as the difference between desired (or actual value
provided by the testing data) output value and the predicted output value. Training
time was also taken into consideration, mainly because of the convenience in develop-
ing models with short training times. Nevertheless, this was not as important as RMS
error because once trained, the execution of the model was very fast. The training
time was only a major concern if the model was periodically updated on-line. For all
the models, the results presented in this paper were the best ones obtained after nu-
merous trials of different training error tolerance and spread constant.
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The crude tower model was not developed as a single lumped system. Changes
within the operating range for a section in the crude distillation tower affected only the
sections that were immediately above and below the section. Therefore, it allowed the
crude tower model to be divided into sections where the related variables were grouped
together, and thus made the model more manageable.

The ANN model for the crude tower was divided into the following sections:

1.  top (T),
2. heavy naphta stripper (HN),
3. kerosene stripper (K),
4. diesel stripper (D),
5. AGO stripper (A), and
6. bottom (B).

Input and output variables of the network models for each module of the crude
distillation column are listed in Table 2. Each section had 300 training data and 150
testing data.

3.0 RESULTS AND DISCUSSION

3.1 Prediction of Variables

Several techniques may be used to predict all the output variables. One way would be
to predict all the variables in the crude tower using a single RBFN model, which
would result in a single, large model. On the other hand, the variables may also be
predicted individually such as one at a time, which would result in many RBFN
models, each with a single output. The variables may also be grouped either ran-
domly or according to the respective sections.

To determine if the grouping of output variables had a strong influence on the
prediction, the variables in the first two sections at the top of the column were pre-
dicted individually and in different groups. The results are shown in Table 3, where
the first 11 output variables (from Ttop to RhoH) were predicted individually. This
means that each output variable had a RBFN model where the input variables com-
prised of the input variables of the corresponding section. For example, the model for
predicting Ttop, which was an output variable in the top section of the crude tower,
had Bintolt, Htfeed, HNdraw, Kerodraw, and Qreb as the input variables. Table 2
listed the input and output variables for each section of the tower.

From Table 3, it can be seen that for almost all the variables, the RMS errors are
smaller when the variables are grouped together in a suitable combination. For ex-
ample, the RMS errors for variables at the top of the column, Ttop, Ovhd, RR, Qcond
and PAT are 0.0048, 0.0029, 0.0046, 0.0033, and 0.0140 respectively when predicted
individually, compared to 0.0014, 0.0015, 0.0025, 0.0017, and 0.0075 respectively when
predicted together. This is also true with the variables in the HN section.
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Table 3 RMS errors of variables of top and HN sections of the crude tower

Outputs Overall RMS Individual RMS Error
Error

Ttop 0.0048
PAT 0.0140
RR 0.0046
Ovhd 0.0029
Qcond 0.0033
TtopH 0.0039
TbotH 0.0039
PAH 0.0099
IBPH 0.0046
FBPH 0.0046
RhoH 0.0076
IBPH, RR, Qcond 0.0134 0.0051, 0.0042, 0.0041
Ttop, RR, Qcond 0.0067 0.0023, 0.0035, 0.0009
Ttop, Ovhd, RR, Qcond, PAT 0.0146 0.0014, 0.0015, 0.0025, 0.0017, 0.0075
TtopH, TbotH, PAH, IBPH, 0.0292 0.0021, 0.0028, 0.0121, 0.0029,
FBPH, RhoH 0.0019, 0.0074

The results also show that it is not advisable to combine unrelated variables. For
example, comparing the two variable combinations that are highlighted in bold let-
ters in Table 3, the combination with IBPH, which is in a different section than RR
and Qcond, the RMS error for RR and Qcond are higher than when the variables
were combined with Ttop.

3.2 Overall Prediction

The RMS errors for all output variables of the crude tower are given in Table 4. Out-
put variables in the same section were grouped and predicted together. The results, as
seen in the table, are very good. All the RMS errors are in the order of 10–3, and some
are even smaller. This is because the model is continuous within the operating range.
The results also show that RBFN is suitable for predicting the output variables of the
crude tower.
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3.3 Range and Dimensional Extrapolation

The ability to extrapolate slightly beyond the training range is essential, especially for
applications in optimisation because logical predictions are essential when infeasible
path optimisation algorithms are used. Range extrapolation is defined as having one
of the input variables to a model being applied outside the range that it was trained
for, while dimensional extrapolation is defined as having a variable that was not part
of the input variable during identification varying during the use of the model [12]. A
well-known weakness of some types of ANN models, like the commonly-used multi-
layer perceptrons, is the inability to extrapolate outside the training range. Therefore,
to ensure that the RBFN model can perform satisfactorily in both range and dimen-
sional extrapolation, the kerosene section of the column was tested. A model for the
kerosene section was developed with five input variables instead of six, leaving out
the kerosene stripping steam in the input to test for dimensional extrapolation. The
stripping steam rate was fixed at the normal operating point. A test data set was devel-
oped with the stripping steam at the maximum and minimum operating range.

To test for range extrapolation, a test data set was developed with the stripping
steam at 10% above the maximum and 10% below the minimum steam rate. Although
this condition is avoided in practice, developing a model that would be feasible just
outside its range is important because certain optimisation algorithms crosses over

Table 4 Overall result for all sections in the crude distillation tower

Outputs (y1,y2,y3,y4,y5,y6) Total RMS Individual RMS Error
Error

Top column section
Ttop, Ovhd, RR, Qcond, PAT 0.0146 0.0014, 0.0015, 0.0025, 0.0017, 0.0075

HN stripper section
TtopH, TbotH, PAH, IBPH, 0.0292 0.0021, 0.0028, 0.0121, 0.0029, 0.0019,
FBPH, RhoH 0.0074

Kerosene stripper section
TtopK, TbotK, FPKero, IBPK, 0.0174 0.0018, 0.0017, 0.0021, 0.0021, 0.0097
FBPK

Diesel stripper section
TtopD, TbotD, IBPD, FBPD, 0.0210 0.0037, 0.0036, 0.0052, 0.0054, 0.0030,
PourD, PAD 0.0001

AGO stripper section
TtopA, TbotA, IBPA, FBPA, 0.0133 0.0005, 0.0007, 0.0021, 0.0050, 0.0012,
PourA, PAA 0.0038

LSWR section (Bottom of
main column)TBOT, PourL 0.0098 0.0038, 0.0060
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constraints slightly in an effort to find a path to reach the optimum value.
Table 5 shows the results for both range and dimensional extrapolations. The re-

sults obtained for range extrapolation was close to the original results. There is less
than 15% increase in the total RMS error. Thus it shows that the RBFN model is able
to provide a reasonable prediction should the optimiser crosses over a constraint slightly.
There was, however, a nearly three-fold increase in total RMS error for the dimen-
sional extrapolation case. Nevertheless, the predictions are still satisfactory and can be
accepted for use because all the individual RMS errors are around 1% or less. There-
fore, the RBFN model is suitable for modelling the crude tower for RTO.

Table 5 RMS errors for range and dimensional extrapolation

Outputs (y1,y2,y3,y4,y5) Total RMS Individual RMS Error
Error

Original result
TtopK, TbotK, FPKero, IBPK, FBPK 0.0174 0.0018, 0.0017, 0.0021, 0.0021, 0.0097

Dimensional extrapolation
TtopK, TbotK, FPKero, IBPK, FBPK 0.0515 0.0110,0.0242,0.0024,0.0034,0.0105,

Range extrapolation
TtopK, TbotK, FPKero, IBPK, FBPK 0.0200 0.0028,0.0026,0.0027,0.0029,0.0090

4.0 CONCLUSIONS

The results obtained from this study showed that RBFN is suitable for modelling the
crude oil distillation column. In addition, the RBFN model for the crude tower was
able to satisfactorily perform range and dimensional extrapolation, which are essen-
tial for RTO applications.

It can also be concluded that to develop ANN models for large, multivariable
systems, output variables that are related should be grouped together, as this would
lead to better predictions. Decomposing multivariable systems into smaller modules
is also necessary, so that the developed models are more manageable. In addition,
grouping unrelated variables together degenerates the model, and as such is not ad-
visable.
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NOMENCLATURE

• Bintolt is the condensate feed from the storage tank.
• Htfeed is the crude oil feed from the storage tank.
• HNdraw, Kerodraw, Diesdraw and AGOdraw are heavy naphta (HN), kero-

sene, diesel, and AGO product draw off, respectively.
• Qreb is the reboiler duty of the HN side stripper.
• SSK, SSD, and SSA are the stripping steam rates for the kerosene, diesel, and

AGO side strippers respectively, and SSM is the main column strping steam
rate.

The following lists the nomenclature of the output variables used in Table 2:
• TtopH, TtopK, TtopD, and TtopA are the top temperatures of the HN, kero-

sene, diesel, and AGO strippers, and Ttop is the top temperature of the main
column.

• TbotH, TbotK, TbotD, and TbotA are the bottom temperatures of the HN,
kerosene, diesel, and AGO strippers, and Tbot is the bottom temperature of the
main column.

• PAT, PAH, PAD, and PAA are the p/a at the top of the main column, and the
HN, diesel, and AGO strippers respectively.

• Ovhd is the overhead draw off rate.
• RR is the reflux ratio.
• Qcond is the condenser duty of the main column.
• IBPH, IBPK, IBPD, and IBPA are the initial boiling point of HN, kerosene,
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diesel, and AGO produced respectively.
• FBPH, FBPK, FBPD, and FBPA are the final boiling point of HN, kerosene,

diesel, and AGO produced respectively.
• RhoH is the density of HN.
• FPKero is the flash point of kerosene.
• PourD, PourA, and PourL are the pour points of diesel, AGO, and LSWR pro-

duced respectively.
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