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^Äëíê~ÅíK Dynamic properties are the functions of physical properties. Over the past 20 years, 
considerable efforts have been made in investigating the relationship between structural damage 
and modal parameters. Many methods have been introduced ranging from direct methods to 
application of optimization algorithms. Most of the authors concluded that the dynamic 
properties are feasible as damage indicators. However, most of the works are validated through 
analytical models instead of experimental verification. Thus, this study aims to investigate the 
efficiency of modal curvature and natural frequencies in damage detection through an 
experimental example of a rectangular hollow section steel beam. Seven damage scenarios are 
simulated on the specimen using grinder cuts for different damage location and severity. 
Sensitivity study on the damage index of modal curvature is performed and issues related to the 
application using modal data are discussed. The results show that natural frequency is a sensitive 
damage existence indicator. While, the reliability of modal curvature is quite limited and very 
much depending on the accuracy and precision of measurements. 
 

hÉóïçêÇë: Structural health monitoring; modal testing; modal data 
 

^Äëíê~âK Sifat dinamik adalah fungsi bagi ciri-ciri fizikal. Sejak 20 tahun yang lalu, banyak 
usaha telah dibuat dalam menyiasat hubungan antara kerosakan struktur dan parameter modal. 
Banyak kaedah telah diperkenalkan dari kaedah langsung hingga penggunaan algoritma 
optimuman. Kebanyakan penulis membuat kesimpulan bahawa sifat-sifat dinamik boleh 
digunakan sebagai penunjuk kerosakan. Walau bagaimanapun, kebanyakan kerja tersebut telah 
disahkan melalui model simulasi dan bukannya pengesahan uji kaji. Oleh itu, kajian ini bertujuan 
untuk menyiasat kecekapan kelengkungan mod dan frekuensi tabii dalam pengesanan kerosakan 
melalui contoh uji kaji rasuk keluli keratan segi empat berongga. Tujuh senario kerosakan 
disimulasikan pada spesimen dengan menggunakan potongan giling bagi lokasi kerosakan dan 
keterukan yang berbeza. Kajian kepekaan kepada indeks kerosakan kelengkungan modal  
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dilakukan dan isu-isu yang berkaitan dengan penggunaan data modal dibincangkan. Keputusan 
menunjukkan bahawa frekuensi tabii adalah penunjuk kewujudan kerosakan yang sensitif. 
Sementara, kebolehpercayaan kelengkungan modal pula adalah agak terhad dan amat bergantung 
kepada ketepatan pengukuran. 
 

h~í~=âìåÅá: Pemantauan kesihatan struktur; ujian modal; data modal 
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Structural health monitoring (SHM) has emerged as an efficient tool to improve 
structure’s safety and integrity. It can be classified into two categories namely local 
and global. Local methods exam structure components in precise detail. But these 
methods require a priori assumption of damage location because they have limited 
assessment rate. For global methods, structure is monitored as one unit whereby 
measurements at several locations are sufficient to assess the whole structure.   
  Damage detection technology such as ultrasonic wave, radiography, eddy-
current, magnetic field and thermal field are all considered as local methods. For 
large scale structure, the local methods seem impractical in term of time and cost. 
Therefore, the needs of quantitative global damage detection methods that can be 
applied to large scale structures have led to the research and development of 
vibration-based damage detection.   
  The fundamental idea of vibration-based damage detection is by utilizing 
changes of modal parameters such as natural frequency, mode shape and damping 
ratio to monitor the physical changes of the structure. It is well proven that 
structural damage will cause detectable changes in modal parameters. This is 
because dynamic properties are the functions of physical properties [1]. 
  Vibration-based damage detection technique was initially developed in 1970s 
by oil and gas industry as the safety strategy for offshore structures. The 
methodology used was simulation of damage scenarios, examine the changes in 
natural frequencies and correlate those changes with site measurements. 
Aerospace community began to apply this technology on space shuttle orbiter 
body during the late 1970s. As a result, shuttle modal inspection system (SMIS) 
was introduced to identify fatigue damage in components such as control surfaces, 
fuselage panels and lifting surfaces [2].   
  Civil engineering community started to develop these techniques during the 
early 1980s. Basic dynamic properties such as natural frequency, damping ratio 
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and mode shape are the primary parameters used in the investigations. Gradually, 
method based on changes in modal derivatives such as mode shape curvature, 
change in flexibilities, change in stiffness, and damage index are used in concrete 
and steel bridges. Nowadays, damage detection methods integrated with 
optimization algorithm under consideration of uncertainty are the major fashion.   
  However, modal curvature is a direct method which emphasized on changes in 
mode shape values to detect damage. [3] and [4] had compared several of these 
methods including modal strain energy method, mode shape curvature method, 
change in flexibilities method and change in stiffness method. Based on both 
numerical and experimental models, the authors showed that modal curvature is 
comparatively sensitive and reliable in detecting damages. 
  Mode shape second partial derivative also known as modal curvature was first 
introduced by [5]. Through analytical beam models, the authors found that modal 
curvature is more sensitive compared to modal slope and Modal Assurance 
Criterion (MAC) & Coordinate MAC. [6] applied the same method to detect 
damages in pre-stressed concrete bridge. In the study, the authors introduced a 
term called curvature damage factor (CDF) to sum up the average changes of 
modal curvature over the entire modes. The authors also concluded that modal 
curvature of the lower modes is more accurate than those of the higher ones. 
  Similarly, recent study by [7] had also confirmed the reliability of modal 
curvature through a numerical slab model. The authors also commented that 
mode shape of higher order is not accurate to indicate damaged region. Despite of 
many authors concluded that mode shape curvature method is quite reliable in 
detecting damages, but most of the studies are verified through numerical 
example. Hence, an experimental demonstration of vibration-based damage 
detection is shown in this paper to investigate the efficiency of modal data in 
damage detection. 
 
 
OKM= l_gb`qfsb=
=
This study investigates the sensitivity of mode shape curvature for the detection of 
damage location and severity in a laboratory tested rectangular hollow section 
(RHS) beam. Unlike numerically simulated damage data, where it is noise free, 
the measured vibration data from real structures inevitability contain noises. 
Therefore the reliability of modal curvature method in detecting real damage 
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damage case. Various damage severities are also designed by varying the depth of 
cuts. Scenario 1 and 2 represent the single damage cases with different damage 
severities. Both damages are at segment 10 with 5mm and 15mm depths 
respectively. Scenario 3 represents the unsymmetrical damage condition with 
15mm cut at segments 4 and 10. Damages are applied at more locations in 
Scenario 4 at segments 4, 7, 10, 13 and 16 with 15mm depth respectively. In 
Scenario 5, the damage severity only at segment 10 is increased to 25mm depth 
while for Scenarios 6 and 7 the severities of the damage at the five segments are 
increased to 25mm and 40mm respectively. In this study, four target modes are 
used for damage assessment. The seven damage scenarios are illustrated in Figure 
2. 
 

 
 

cáÖìêÉ=O= a~ã~ÖÉ=ëÅÉå~êáçë=

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Case 0:  No damage

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Case 1: 5mm damage at segment 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Case 2: 15mm damage at segment 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Case 3: 15mm damage at segment 4 & 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Case 4: 15mm damaged at segment 4, 7, 10, 13 & 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Case 5: 15mm damaged at segment 4, 7, 13 & 16

25mm damaged at segment 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Case 6: 25mm damage at segment 4, 7, 10, 13 & 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Case 7: 40mm damage at segment 4, 7, 10, 13 & 16
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In order to validate the experimental data, the RHS beam is simulated in 
structural analysis software. The beam model is constructed as tube section and its 
properties are selected from British Steel (BS) table. Two pinned supports and 1.0 
factor of self-weight are assigned to the model. Modal calculation is requested in 
order to obtain the required modal frequencies. Table 1 illustrates a comparison 
between numerical and experimental natural frequencies for undamaged beam. 
  Comparing both of the data, it is observed that for mode 1 to mode 4, the 
variations are relatively small which are 7.6%, 23.9%, 11.0% and 1.5% respectively. 
The overall difference is about 7.8% only. This indicates that the experimental 
results are quite reliable. The differences between numerical and experimental 
data are normally expected due to material nonlinearity for experimental 
specimen. Moreover, the boundary conditions for both models are not exactly the 
same. Experimental supports are slightly moveable, while in numerical model the 
supports are totally fixed. Nevertheless, these differences will not have any effects 
on the performance of damage detection as long as the system remains unchanged 
for every damage case. This is because the basis of this damage detection method 
is based upon relativity between intact and damaged data. 
 

q~ÄäÉ=N Natural frequencies comparison 
 

jçÇÉ= kìãÉêáÅ~ä= bñéÉêáãÉåí~ä= aáÑÑÉêÉåÅÉ=

EeòF= EeòF= EeòF= EBF=

1 96.225 103.5 7.3 7.6 
2 375.218 464.8 89.6 23.9 
3 811.368 900.4 89.0 11.0 
4 1370.208 1390.3 20.1 1.5 

Σ 2653.019 2860.3 207.3 7.8 

 
 
QKM= jla^i=`ros^qrob=jbqela=
=
Damaged cases mode shapes are mass-normalised with respect to undamaged case 
by multiplying them with modal scale factor which is given by, 
 

ܨ   ൌ ሾ஺ሿ೅ሾ஻ሿ
ሾ஻ሿ೅ሾ஻ሿ

       (1) 
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 where,  F = Modal scale factor 
   A = Mode shape matrix for damaged case 
   B = Mode shape matrix for undamaged case 
 

(i) Modal curvature (MC) of every node is estimated by central difference 
approximation which is given by, 

 

 MC, φ୬,୫
" ൌ

φ౤శభ,ౣିଶφ౤,ౣାφ౤షభ,ౣ
ୢమ

    (2) 

 
where,  n = Number of node 

    m = Number of mode 
d = Distance between two nodes 
 

  Change in modal curvature (MC) of every node is calculated by the differences 
in mode shape curvatures (CMC) between intact and damaged case, 
 

  CMC, ∆φ୬,୫
" ൌ φ୬,୫

" െ φ୬,୫
"      (3) 

 

  where,  φ" = Modal curvature for undamaged case 

    φ" = Modal Curvature for damaged case 
 
  Simple formulae for damage index are introduced to summarise the changes in 
mode shape curvature values. Partial damage index (PDI) of a segment is 
calculated by averaging the summation of change in modal curvatures (MC) at 
particular mode to the number of node (N) in the segment, 
  

  PDI ൌ ଵ
N
∑ ∆φ୧,୨

"N
୬ୀଵ       (4) 

 
  where,  N = Total number of node 
 
  To standardise all the partial damage index, modal curvature index (MCI) of a 
segment is calculated by summation of ratio of partial damage index (PDI) to its 
total value,  
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  MCI ൌ ∑ PDI
∑ PDIS
౩సభ

M
୫ୀଵ       (5) 

 
where,  S = Total number of segment 
  M = Total number of mode 
 

  The summation of modal curvature index of a damage case will be equal to the 
total number of vibration mode that considered in the analysis. 
 
 
RKM= bumbofjbkq^i=obpriq=
 
RKN= k~íìê~ä=cêÉèìÉåÅó=`Ü~åÖÉë=
 
Table 2 shows the natural frequencies of undamaged and damaged cases, while 
Figure 3 plots the trend of the frequencies drops for Case 0 to Case 7. The level of 
damage intensity is increased for each case. For Case 1, the average frequency 
change is -0.2% and this is followed by -5.0%, -8.1%, -10.9% and -13.2% for Case 
2, Case 3, Case 4, and Case 5 respectively. Next, as the damage intensity increased 
to 25mm at five particular segments, the average change in frequency drops 
steadily for Case 7 to -9.3%. Lastly, for Case 8, the average change in frequency 
decreased to -31.7%.   
  Based on the results, it is observed that the natural frequencies of undamaged 
case are the highest and their values are gradually decreases as the damage level 
increases from the least severe Case 1 to the most severe Case 7. This indicates 
that the natural frequency decreases as the damage severity increases. The 
frequency reduction trend illustrated in Figure 3 shows that the maximum changes 
of frequency occurred at mode 4 as compared to the lower modes. This indicates 
that the higher natural frequency modes are more sensitive to damage compared 
to lower modes. 
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than modal curvature for the same data measurement. Major concern is regarding 
the measurement errors which include imprecise placement and orientation of 
sensors and errors that are resulted from signal processing and the identification 
approach. Random error which is part of measurement errors such as corrosion of 
specimen, temperature difference, air moisture, sound waves and other 
environmental factors would be normally expected in any vibration test. Besides 
that, frequency response functions (FRF) are relatively sensitive and easily 
contaminated due to support free vibration. 
  Although the experiment is carried out in precise manner, the original 
placement of sensors and specimen are still subjected to change due to the 
vibration of cutting process and steps of roving the sensors. The difficulties to 
detect real damage are also noticed by [6] for the bridge assessment. The authors 
concluded that techniques for improving the quality of the measured mode shapes 
are highly recommended. Since the modal curvature method depends on mode 
shape curvature values, the existence of noises may easily change the mode shape 
slope and their curvature hence resulting in false damage identification. 
 
 
SKM= `lk`irpflk=

This study verified the efficiencies of natural frequency and modal curvature for 
damage identification through an experimental beam. The Modal Curvature 
formulations and procedure of mode shape normalizations are also summarized 
in detail. Based on the experimental verification, the following conclusions are 
drawn. Natural frequency can fairly indicate the damage existence and severity but 
not the location. Modal curvature did not show the promising result compared to 
numerical simulations. In fact, the efficiency of modal curvature is relatively 
sensitive to noise and very much depending on the precision of measurements.  
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