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Graphical abstract 
 

 

Abstract 
 

The primary aim of this study had been to investigate the effects of water-filled flow on the 

transient response of a simply supported pipe subjected to dynamically applied loading. 

The importance of this study is manifested in numerous applications, such as oil and gas 

transportations, where dynamic loading can be the result of an accident. The classical 

Bernoulli-Euler beam theory was adopted to describe the dynamic behavior of an elastic 

pipe and a new governing equation of a long pipe transporting gas or liquid was derived. 

This governing equation incorporated the effects of inertia, centrifugal, and Coriolis forces 

due to the flowing water. This equation can be normalized to demonstrate that only two 

non-dimensional parameters governed the static and the dynamic responses of the 

system incorporating a pipe and flowing water. The transient response of this system was 

investigated based on a standard perturbation approach. Moreover, it had been 

demonstrated that the previous dynamic models, which largely ignored the internal flow 

effects and interactions between the flow and the structure, normally produced a large 

error and are inapplicable to the analysis of many practical situations. One interesting 

effect identified was that at certain flow ratio, the system became dynamically unstable 

and any, even very small, external perturbation led to a growing unstable dynamic 

behavior. Such behavior, which is called pipe whip, is well-known to everyone who waters 

a garden using a flexible long hose. 

 

Keywords: Flowing water; pipe whip; simply supported pipe; transporting gas or liquid 

 

Abstrak 

 
Tujuan utama kajian ini adalah untuk menyiasat kesan respons transien terhadap aliran air 

di dalam paip sokongan mudah yang dikenakan beban secara dinamik. Kepentingan 

kajian ini dapat dilihat dalam pelbagai applikasi seperti pengangkutan minyak dan gas di 

mana pembebanan dinamik boleh menyebabkan terjadinya kemalangan. Teori klasik 

Euler-Bernoulli digunakan untuk menggambarkan tingkah laku dinamik paip elastik dan 

persamaan baru diterbitkan untuk paip panjang yang mengalirkan gas atau cecair. 

Persamaan yang diterbitkan ini menggabungkan daya inersia, daya empar, dan daya 

Coriolis untuk cecair di dalam paip yang mengalir. Persamaan ini dipermudahkan dengan 

menggunakan hanya dua parameter tanpa dimensi yang mengawal respon statik dan 

dinamik sistem yang menggabungkan paip dan air yang mengalir. Satu kesan menarik 

yang dikenal pasti dalam kajian ini adalah bahawa pada nisbah aliran tertentu, sistem 

menjadi tidak stabil secara dinamik dan walaupun nilai ini sangat kecil, pada nisbah yang 

besar, gangguan luaran ini membawa kepada perubahan tingkah laku dinamik dan 

mempengaruhi kestabilan sistem. Tingkah laku ini, yang dikenali sebagai pipe whip, 

adalah fenomena biasa yang sering terjadi dan keadaan ini paling dapat dilihat apabila 

menyiram air di taman bunga dengan menggunakan hos panjang yang fleksibel. 

 

Kata Kunci: Aliran air; cambuk paip; paip sokongan mudah; gas atau cecair pengangkut 
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1.0 INTRODUCTION 
 

Long flexible pipes are widely used across many 

industries, such as power generation, oil and gas, as 

well as petrochemical industries to transport liquids 

and gas, or their mixtures.  In the offshore industry, 

pipelines are a crucial part for the distribution of oil 

and gas. The failure in a pipeline for transporting liquid 

or gas could have very great economic and 

environmental consequences [1,2]. In the case of an 

accident, these pipes are subjected to dynamic or 

impulse loading. Besides, pipe impact problems have 

been studied with a lot of different approaches. 

Micro-pipes carrying liquid or gas have been gaining 

popularity in various sensor technologies, which 

involve some dynamic measurements [2,3]. Therefore, 

there is now a growing interest in studying the transient 

response of pipes with flowing media caused by 

dynamic loading [4-6].  

The nature of internal flow associated with pipe 

interactions is extremely complex [7,8]. The flowing 

medium can produce substantial forces on the pipe 

wall and affect the dynamic response of the structure, 

and, at the same time, the pipe dynamics can 

change the flow characteristics in a very complicated 

manner. Due to these highly complicated 

mechanisms, it is not surprising that in many previous 

theoretical works, investigating impact loading of 

pipes and internal flow effects, were just ignored or 

only partially incorporated into the structural response 

using some oversimplified theoretical assumptions 

[9,10]. Moreover, some studies focused on the impact 

against fully clamped pipes [11,12] and with the 

internal pressure to the pipe during impact [13,14]. The 

major finding was a difference in deformation 

between empty and pressurized pipes after impact 

[15]. In a number of experimental and theoretical 

papers, it was demonstrated that the structure-filled-

medium interactions significantly influenced the 

dynamic behavior [16-19].  

The flowing medium can lead to principally new 

phenomena, such as pipe instability in the absence of 

the applied axial loading or pipe whip behavior. The 

latter has the same origin as the chaos of an 

unrestrained garden hose with water running through 

it. In the case of a full-bore failure of high-pressure 

above ground pipeline, the pipe whip phenomenon 

has potential for considerable damage to any 

property in the vicinity and could also potentially 

destroy a substantial length of pipeline [7-11]. Most of 

the previously published works dealt with the situation 

when the filled medium is stationary and not many 

studies have addressed the pipe-flowing-medium 

interactions. Moreover, only a number of studies have 

been examining the impact against liquid-filled pipes. 

Furthermore, it had been found that pipe perforation 

occurred when water was present in the pipe during 

impact [20], and in the present study, an analytical 

model for an impulse load against a pipe with a 

flowing medium was proposed [21].  

Another approach for estimating loads against 

pipelines due to trawl gear interaction [22] presented 

impact tests against pipes made from X65 grade 

offshore steel, and numerical simulations. The effect of 

adding content (water) to the pipe was examined 

[23], with both open and closed ends. The results of 

the experiments were generally well-reproduced [24] 

and the key phenomena were captured via 

computer simulations. Therefore, the primary purpose 

of this work was to develop analytical and numerical 

tools needed to facilitate the study of pipe dynamic 

behavior.  

On top of that, this paper focused on the 

investigation of the transient response of a simply 

supported pipe with flowing medium to an impulse 

loading. Due to the approximate nature of the 

mathematical modelling, a number of assumptions 

and simplifications were introduced. To model the 

transient response, the classic Bernoulli-Euler beam 

theory was applied and this theory was extended to 

incorporate the flowing medium effects: inertia of the 

flow, centrifugal force due to the pipe curvature, as 

well as the Coriolis force due to the flow rotation. The 

derived governing equation represents a fourth order 

non-homogeneous partial differential equation (PDE). 

A dimensionless form of the governing equation 

contains only two dimensionless parameters 

controlling the system mechanical behavior. In the 

case of a small influence of the flowing medium on the 

mechanical behavior, the governing equation was 

solved using an approach based on the standard 

perturbation method. 

The equations and the approaches were extended 

to other types of pipe constraints, as well as dynamic 

loading conditions. One interesting observation was 

the existence of critical values of the governing 

parameters at which any small disturbance led to 

growing unbound deflections of the pipe. Such 

behavior had been linked to the dynamic instability of 

pipes with flowing water, the behavior which is familiar 

to everyone who has experienced the chaos caused 

by an unrestrained hose when watering the garden.  

This paper is organized as follows: the theoretical 

modelling for the actual beam model incorporating 

the flowing water as specified in Section 2. Pipe whip 

phenomenon is discussed in Section 3. Section 4 

discusses the results of the effect of the flowing water. 

This is followed by brief conclusions in Section 5. 

 

 

2.0  GOVERNING EQUATION 
 

In this section, the simplified governing dynamic 

equation of a simply supported pipe with flowing gas 
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or liquid had been formulated [11,12]. A pipe element 

of length 𝑑𝑥̅ was considered, as shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1:  Dynamic equation of the system pipe-flowing liquid. 

 

Let 𝜆𝑓 and 𝜆𝑝 be the medium and the pipe mass per 

unit length. In the case of the pipeline’s transverse 

motion, the element will be subjected to the inertia 

force of intensity as: 

−
𝜕2𝑊̅

𝜕𝑡̅2 (𝜆𝑓 + 𝜆𝑝)    

       (1) 

Because the flow rotates with angular speed,  
𝜕2𝑊̅

𝜕𝑥̅𝜕𝑡̅
, 

the Coriolis force acting on the element t 𝑑𝑥̅ will be 

given by:  

−2
𝜕2𝑊̅

𝜕𝑥̅𝜕𝑡̅
𝜆𝑓𝑉𝑑𝑥̅                                                                               

      (2) 

where V is the velocity of the medium. With the same 

sign, one can write the centrifugal force acting on the 

element due to the curvature of the gas flow as: 

 −
𝜕2𝑊̅

𝜕𝑥̅2
𝜆𝑓𝑉2𝑑𝑥̅                                    

       (3) 

It is assumed for simplicity that the dynamics of the 

pipe do not affect significantly the flow 

characteristics, such as velocity and density. Thus, the 

structural and the fluid mechanics components of the 

problem were decoupled. Taking also into account 

had been the elastic response of the pipe element 

𝑑𝑥̅, whereby the governing dynamic equation can 

be written in the following form: 

𝐸𝐼
𝜕4𝑊̅

𝜕𝑥̅4 +
𝜕2𝑊̅

𝜕𝑡̅2 (𝜆𝑓 + 𝜆𝑝) + 2
𝜕2𝑊̅

𝜕𝑥̅𝜕𝑡̅
𝜆𝑓𝑉 +

𝜕2𝑊̅

𝜕𝑥̅2
𝜆𝑓𝑉2 = 𝐹̅(𝑥,̅ 𝑡)̅                   

      (4) 

where 𝐸 represents Young’s modulus, 𝐼 is the second 

moment of inertia of the pipe. The right-hand side term  

𝐹̅(𝑥,̅ 𝑡̅) represents a driving force per unit length. 

Besides, it was assumed that 0 ≤ 𝑥̅ ≤ 𝐿 and 𝑡̅ ≥ 0. 

It is always advantageous (and often necessary) to 

rewrite a governing equation in a dimensionless form. 

To do so, the following scaling transformations were 

introduced: 

𝑥 =
𝑥̅

𝐿
,                    𝑡 =

𝑡̅

𝜏
,                           𝑊(𝑥, 𝑡) =

𝑊̅(𝑥,𝑡)

𝐿
  

         (5) 

where 𝜏 is a parameter, which will be defined later in 

this paper. Then,  

 
𝐸𝐼

𝐿3

𝜕4𝑊

𝜕𝑥4 +
(𝜆𝑓+𝜆𝑝)𝐿

𝜏2

𝜕2𝑊

𝜕𝑡2 + 2
𝑉𝜆𝑓

𝜏

𝜕2𝑊

𝜕𝑥𝜕𝑡
+

𝑉2𝜆𝑓

𝐿

𝜕2𝑊

𝜕𝑥2 = 𝐹̅(𝑥, 𝑡)           

      (6) 

It is straightforward to show the dimensional 

consistency of the equation. To proceed with the 

solution of the governing equation, it is convenient to 

recast this equation into a more compact form. 

Dividing both sides by 𝐸𝐼 𝐿3⁄ , one would obtain: 

 
 𝜕4𝑊

𝜕𝑥4
+

(𝜆𝑓+𝜆𝑝)𝐿4

𝐸𝐼𝜏2

𝜕2𝑊

𝜕𝑡2
+ 2

𝑉𝜆𝑓𝐿3

𝐸𝐼𝜏

𝜕2𝑊

𝜕𝑥𝜕𝑡
+

𝑉2𝜆𝑓𝐿2

𝐸𝐼

𝜕2𝑊

𝜕𝑥2
= 𝐹(𝑥, 𝑡)    

                     (7) 

Now, one could define: 

𝜏 = 𝐿2√
𝜆𝑝+𝜆𝑓

𝐸𝐼
       

                                (8a) 

 𝜀 =
𝑉𝐿𝜆𝑓

√𝐸𝐼(𝜆𝑝+𝜆𝑓)
      

                                 (8b) 

and 

𝛽 = 𝑉𝐿√
𝜆𝑝+𝜆𝑓

𝐸𝐼
                           

                    (8c) 

𝐹(𝑥, 𝑡) =
𝐿3

𝐸𝐼
𝐹̅(𝑥, 𝑡)            

                                 (8d) 

Then, Eq (6) becomes 

𝑊,𝑥𝑥𝑥𝑥 + 𝑊,𝑡𝑡 + 𝜀(2𝑊,𝑥𝑡 + 𝛽𝑊,𝑥𝑥) = 𝐹(𝑥, 𝑡)
                            (9) 

 

In Eq (10), introduced the following notations for 

derivative 𝜕𝑊 𝜕𝑥 ≡ 𝑊,𝑥⁄  had been introduced. A 

similar rule was applied to the variable t, as well as for 

 

 


p 
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higher-order derivatives. Observe also that following 

the scaling transformation in (8) and (9), the space 

variable x varied between 0 and 1.  

In the derivation of the governing equation (9), the 

effect of axial forces on the transverse movements 

was omitted, which could develop in the pipe as a 

result of the viscosity of the flow or reactions of 

supports. Such forces can also contribute to the 

dynamic response at large values of pipe deflections 

or slopes of the deflection curve. However, in the 

following analysis, the deflections were assumed as 

small and the effect of the axial forces (due to flow 

viscosity and support reactions) on the transverse 

movements were negligible in comparison with other 

forces. Besides, it is important to stress that within the 

developed model, only two parameters, 𝜀 and 𝛽 fully 

controlled the transient response of the system. 

Therefore, the derived governing equation (9) can be 

utilized to investigate various dynamic phenomena 

using reduced size or scale physical models. Such 

scale models would be adequate if the values of the 

governing parameters 𝜀 and 𝛽are kept the same for 

the scale model and the reference system. This can 

potentially result in substantial benefits if the 

experimental approach is adopted for the 

investigation of the problem under consideration. 

Finally, note that for this analysis, the initial and the 

boundary conditions were imposed to correspond to 

a simply supported pipe, which can be written as:      

𝑊(0, 𝑡) = 𝑊,𝑥𝑥(0, 𝑡) = 𝑊(1, 𝑡) = 𝑊,𝑥𝑥(1, 𝑡) =

0                    (10) 

Next, a solution of (9) is explained for an external force 

𝐹̅(𝑥, 𝑡), which is subsequently specialized to a short-

duration temporal impulse. 

 

2.1   Non-Homogenous Classical Beam Equation 

 

The transient analysis was begun with the classical 

non-homogeneous beam equation subjected to the 

boundary conditions (10) at 𝑥 = 0 and 𝑥 = 1:  

𝑊,𝑥𝑥𝑥𝑥 + 𝑊,𝑡𝑡 = 𝐹(𝑥, 𝑡)                

       (11) 

The driving load distribution was also assumed as 

𝐹̅(𝑥, 𝑡) = 0 at  𝑡 < 0. Several solution techniques 

can be applied to analyse the beam’s transient 

response to an impulse perturbation, including 

Laplace-Laplace transforms, the method of 

undetermined coefficients, variation of parameters, 

and the Joint transform scheme [12,13]. An analytical 

solution of Eq (11) with boundary conditions (10) had 

been obtained by the separation of variables 

technique, while the Laplace transform [12] can be 

written as: 

𝑊(𝑥, 𝑡) =

∑ 𝑌𝑘(𝑥) ∫ 𝑌𝑘(𝑢) ∫ 𝐹(𝑢, 𝜏)
𝑡

0

1

0
∞
𝑘=1

sin(𝜔𝑘(𝑡−𝜏))

𝜔𝑘
𝑑𝜏𝑑𝑢

       (12) 

where 𝑌𝑘 are the set of normalized eigenfunctions 

corresponding to the solution of the homogeneous 

equation 𝑊,𝑥𝑥𝑥𝑥 + 𝑊,𝑡𝑡 = 0, subjected to the 

specified boundary conditions: 

𝑌𝑘(𝑥) = √2 𝑠𝑖𝑛 𝜆𝑘𝑥,          𝜆𝑘 = 𝑘𝜋      
                     (13) 

and  

𝜔𝑘 = 𝜆2
𝑘 = (𝑘𝜋)2

                              

      (14) 

 

The coefficient √2 in eigenfunctions, Eq (13), is a 

normalization constant that ensures that the 

eigenfunctions are not only orthogonal, but also 

orthonormal. Eq (12) provides the general analytical 

expression for the transient spatio-temporal dynamics 

of a simply supported beam driven by arbitrary load 

distribution 𝐹(𝑥, 𝑡). As an example, consider a spatio-

temporal impulse driving force at time 𝑡 = 0 with a 

magnitude 𝑓𝑎  (in scaled variables). Hence, Dirac’s 

time-and-space delta function was used to model this 

impulse. Then, 𝐹(𝑥, 𝑡) takes the form 

 

 𝐹(𝑥, 𝑡) = 𝑓𝑎 ∙ 𝛿(𝑥∗)𝛿(𝑡)                                    

       (15)    

 

where 𝑥∗
 represents the position along the pipe at 

which the driving impulse is applied. 

Carrying out the space and time integrations, as well 

as invoking the basic properties of Dirac’s delta 

function, one could obtain: 

𝑊(𝑥, 𝑡) =

2𝑓𝑎 ∑ sin(𝜆𝑘𝑥) sin(𝜆𝑘𝑥∗)∞
𝑘=1

sin(𝜔𝑘(𝑡−𝜏))

𝜔𝑘
                       

      (16) 

 

The above equation is well-known and describes the 

mechanical response of a simply supported beam 

subjected to a spatio-temporal impulse and this 

equation represents the exact analytical solution to 

problem [10]. 

 

2.2  Perturbation Method 

 

Next is the case of a simply supported pipe with 

flowing water. In this case, the simplified governing 

equation was derived in the previous section and can 

be written as:  

 

𝑊,𝑥𝑥𝑥𝑥 + 𝑊,𝑡𝑡 + 𝜀(2𝑊,𝑥𝑡 + 𝛽𝑊,𝑥𝑥) = 𝐹(𝑥, 𝑡)
                                 (9) 

 

where two parameters, 𝜀 and 𝛽 fully control the 

transient response of the system. As a result, the 

derived governing equation (9) was used to 

investigate various dynamic phenomena using a 

reduced size physical model. Such scale modelling is 

appropriate if the values of 𝜀 and 𝛽 are kept the same 



147                                    Roslina et al. / Jurnal Teknologi (Sciences & Engineering) 75:11 (2015) 143–150 

 

 

for the scale model and reference conditions. This can 

potentially result into substantial benefits if an 

experimental approach is adopted for the 

investigation.  

At fixed 𝛽,
 

Eq (9) was reduced to the classic 

Bernoulli-Euler equation when both products 𝜀 and 𝛽 

were limited to zero. Furthermore, the smallness of this 

parameter was exploited in the following perturbation 

analysis. In contrast to the previously considered case, 

an attempt at a standard separation of variables 

approach to determine the dynamic response failed 

because it was impossible to satisfy the boundary 

conditions with a non-trivial solution. However, the 

problem can be solved as a regular perturbation 

problem with   as a small parameter, that is, the 

solution has the form 

 

𝑊 = 𝑊0 + 𝜀𝑊1 + 𝜀2𝑊2 + ⋯ 𝜀𝑚𝑊𝑚 + ⋯      

       (17) 

 

If the expansions (17) are substituted into Eq (9) and 

like powers of   are equated, then the following 

expressions for the deflection W , correct up to order 

𝜀𝑚
, are obtained, 

                 𝑊0 ,𝑥𝑥𝑥𝑥 + 𝑊0 ,𝑡𝑡 = 𝐹(𝑥, 𝑡) 

𝑊1 ,𝑥𝑥𝑥𝑥 + 𝑊1 ,𝑡𝑡 = 𝐹0(𝑥, 𝑡) 

 𝐹0(𝑥, 𝑡) = −2𝑊0 ,𝑥𝑡 − 𝛽𝑊0 ,𝑥𝑥 

   

𝑊2 ,𝑥𝑥𝑥𝑥 + 𝑊2 ,𝑡𝑡 = 𝐹1(𝑥, 𝑡) 

 𝐹1(𝑥, 𝑡) = −2𝑊1 ,𝑥𝑡 − 𝛽𝑊1 ,𝑥𝑥 

       

      

… 

𝑊𝑚 ,𝑥𝑥𝑥𝑥 + 𝑊𝑚 ,𝑡𝑡 = 𝐹𝑚−1(𝑥, 𝑡)

 𝐹𝑚−1(𝑥, 𝑡) = −2𝑊𝑚−1 ,𝑥𝑡 − 𝛽𝑊𝑚−1 ,𝑥𝑥 

 

 

     (18) 

These equations are subjected to the specified 

boundary conditions (10). The above equations can 

be considered as a recurrent system that can be 

solved through a step-by-step integration using the 

general solution for the simply supported beam 

subjected to arbitrary load distribution (12), which can 

be written as: 

   
𝑊𝑚(𝑥, 𝑡) =

2 ∑ sin(𝜆𝑘𝑥) ∫ sin(𝜆𝑛𝑢) ∫ 𝐹𝑚−1(𝑢, 𝜏)
𝑡

0

1

0
∞
𝑘=1

sin(𝜔𝑘(𝑡−𝜏))

𝜔𝑘
𝑑𝜏𝑑𝑢     

      (19) 

The above recurrent equation (18) and the general 

solution for non-homogeneous beam, equation (19), 

provide an analytical tool for the analysis of the effect 

of the flowing media on the transient response of 

pipes.  

 

 

 

3.0  PIPE WHIP PHENOMENON 
 

In this section, the conditions corresponding to the 

initiation of the dynamic instability of the pipe had 

been investigated. For the convenience of the reader, 

the homogeneous governing equation of a pipe had 

been rewritten below with the flowing medium: 

 

𝑊,𝑥𝑥𝑥𝑥 + 𝑊,𝑡𝑡 + 𝜀(2𝑊,𝑥𝑡 + 𝛽𝑊,𝑥𝑥) = 0  

      (9) 

Furthermore, assuming the solution in the form  

𝑊(𝑥, 𝑡) = 𝑤(𝑥)𝑒(𝜂+𝑖𝜔)𝑡   

      

      (20) 

then the governing equation (9) can be rewritten as:  

𝑤,𝑥𝑥𝑥𝑥 + (𝜂 + 𝑖𝜔)2𝑤 + 𝜀(2(𝜂 + 𝑖𝜔)𝑤,𝑥 +

𝛽𝑤,𝑥𝑥) = 0     

 (21) 

 

Mathematically, the dynamic instability takes place 

when the real part of exponent index 𝜂 + 𝑖𝜔 of the 

assumed solution (21) takes positive values. In this 

case, theoretically, the amplitude of oscillations can 

grow unbound with time. However, in practice, the 

amplitude of oscillations is limited and controlled by 

the damping properties of the pipeline structure, 

which always exist in real conditions. Neglecting the 

damping, thus, the problem is reduced to 

determination of the domain of parameters  and  

variation, at which  > 0. Thus, at fixed   and  = 0, 

one would need to determine minimum which 

satisfies Equation (22) with an additional condition 

𝜕 𝜂 𝛽 > 0⁄  that corresponds to the transition from 

stable conditions to dynamic instability characterised 

by the growing amplitude of oscillations with time.  

Following [12, 13], the solution in the interval 0 ≤ 𝑥 ≤
1 is represented in the following form: 

𝑤(𝑥) = ∑ 𝐶𝑛𝑥𝑛

∞

𝑛=0

 

      

      (22) 

The boundary conditions at the left end (fixed end) 

follows that 𝐶0 = 𝐶1 = 0. The remaining boundary 

conditions (free end) take the form: 

∑ 𝐶𝑛𝑛(𝑛 − 1) = 0

∞

𝑛=0

 

      

                (23a) 

∑ 𝐶𝑛𝑛(𝑛 − 1)(𝑛 − 2) = 0

∞

𝑛=0

 

      

                            (23b) 

Now, the complex form of Equation (23) was 

transformed to the real-valued one; representing 

solution 𝑤 as 
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𝑤 = 𝑤1 + 𝑖𝑤2     

          (24) 

and complex coefficients 

𝐶𝑛 = 𝐴𝑛 + 𝑖𝐵𝑛      

      (25) 

such that 

 

𝑤1 = ∑ 𝐴𝑛𝑥𝑛∞
𝑛=0           

      

                (26a) 

𝑤2 = ∑ 𝐵𝑛𝑥𝑛

∞

𝑛=0

 

      

                            (27b) 

 

where 𝐴𝑛 and 𝐵𝑛 are real constants, which can be 

obtained by substituting Equations (24) - (28) into 

Equation (31), producing the following recurrent 

equations for the coefficients 𝐴𝑛 and 𝐵𝑛   

 

𝐴𝑛 =
1

𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)
{−𝜀𝛽𝐴𝑛−2(𝑛 − 2)(𝑛

− 3) 

−2𝜀𝜂𝐴𝑛−3(𝑛 − 3) + (𝜔2 − 𝜂2)𝐴𝑛−4 

+2𝜀𝜔𝐵𝑛−3(𝑛 − 3) + 2𝜂𝜔𝐵𝑛−4} 

      

                            (28a) 

 

𝐵𝑛 =
1

𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)
{−𝜀𝛽𝐵𝑛−2(𝑛 − 2)(𝑛

− 3) 

−2𝜀𝜂𝐵𝑛−3(𝑛 − 3) + (𝜔2 − 𝜂2)𝐵𝑛−4 

−2𝜀𝜔𝐴𝑛−3(𝑛 − 3) − 2𝜂𝜔𝐴𝑛−4} 

      

                            (28b) 

With these equations, the boundary conditions (25a) 

and (25b) can be rewritten as: 

 

𝑎𝐶2 + 𝑏𝐶3 = 0, 

      

                             (29) 

𝑐𝐶2 + 𝑑𝐶3 = 0, 

 

where a, b, c, and d are complex constants.  

Specifying, for example 𝐶1 = 1 (𝐴1 = 1 and 𝐵2 = 0), 

and 𝐶3 = 0 (𝐴3 = 𝐵3 = 0), from equations (25a) and 

(25b) one can have: 

 

𝑎 = ∑ 𝐴𝑛𝑛(𝑛 − 1) + 𝑖𝐵𝑛𝑛(𝑛 − 1)

∞

𝑛=0

 

      

      (30) 

𝑐 = ∑ 𝐴𝑛𝑛(𝑛 − 1)(𝑛 − 2) + 𝑖𝐵𝑛𝑛(𝑛 − 1)(𝑛 − 2)

∞

𝑛=0

 

 

Similar to the previous case, if one specifies 𝐶2 = 0 

and 𝐶3 = 1, i.e. one sets 𝐴2 = 𝐵2 = 𝐵3 = 0, 𝐴3 =
1, then one could obtain 

𝑏 = ∑ 𝐴𝑛𝑛(𝑛 − 1) + 𝑖𝐵𝑛𝑛(𝑛 − 1)

∞

𝑛=0

 

      

      (31) 

𝑑 = ∑ 𝐴𝑛𝑛(𝑛 − 1)(𝑛 − 2)

∞

𝑛=0

+ 𝑖𝐵𝑛𝑛(𝑛 − 1)(𝑛 − 2) 

 

where 𝐴𝑛 and 𝐵𝑛 are given by recurrent equations 

(29a) and (29b). 

The condition of existence of a non-trivial solution for 

the homogeneous system of linear algebraic 

equations (30) is that the determinant formed from the 

coefficients must be equal to zero or  

det [
𝑎 𝑏
𝑐 𝑑

] = 0     

      (32) 

 

from which the critical parameters of the initiation of 

the dynamic instability can be obtained by means of 

a theoretical procedure for determining the roots of 

a non-linear algebraic equation. 

 

4.0 DISCUSSION 

 
Results of the theoretical calculations of the critical 

parameters corresponding to the initiation of dynamic 

instability, simply supported pipes with flowing water 

are given in Fig.2. From this figure, the area below the 

curves corresponded to the case when the flowing 

medium generated the damping effect, and in the 

area above the theoretical curves, it powered the 

development of unstable and unbound deflections.   

 

 

 

 

 

 

 

 

 

 
 

 

 
Fig. 2: Critical conditions for initiation of dynamic instability 

 

This response was governed by two non-dimensional 

parameters incorporating mechanical properties of 

the pipe and the characteristics of the flowing 

medium. As an example of the usefulness of the 

obtained results, the initiation of dynamic instability 
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investigated in this work had been considered as a 

major risk factor for high pressure aboveground 

pipelines as a full bore failure can provoke the 

development of such behavior. In this case, a 

significant damage can be expected due to chaotic 

movements of the pipe.  

The derived conditions of the initiation of instability 

were considered as a pretty conservative estimate as 

the present mathematical model did not take into 

account other important factors, for example, friction 

or gravity, which could contribute significantly to the 

damping properties and the energy absorption 

mechanisms.   

To assess the relevance of the derived conditions of 

the initiation of instability to practical problems, 

consider, for example, a full bore failure in a 

hypothetical aboveground gas flowline of a diameter 

Di = 160 mm and wall thickness t = 4 mm, subjected to 

operating pressure Po = 10 MPa. Let the gas density at 

operating condit o = 100 kg/m3 and the 

typical values for raw natural gas. The velocity of the 

gas flow through the orifice can be roughly estimated 

using the simplified gas dynamics model presented 

[17] and this was found to be around 350 m/s.  The gas 

flow density behind the decompression wave was 

approximately 60 kg/m3. Furthermore, one can 

determine the ratio 𝛽 𝜀 =
𝜆𝑝+𝜆𝑓

𝜆𝑓
≈ 15 ⁄ . The line 𝛽 =

15𝜀 intersects the critical curve (see Figure 10) at 𝜀 =
1.25. From equation (8b), the critical length of the 

pipe was found to be around 15 meters.  

This example demonstrates that the pipe whip 

phenomenon or dynamic instability is relevant to the 

typical operating conditions that normally occur in 

high-pressure aboveground pipelines of relatively 

small diameter; and to avoid this potentially 

dangerous dynamic effect, the pipe has to be 

restrained against lateral movements every 15 meters. 

The anchor spacing can be increased by selecting 

pipes with large moment of inertia (lager diameter 

and wall thickness) and with the reduction of the 

operating pressure or gas density.  

The equations derived here may also be useful in 

reducing potential damage from other equipment 

working under high-pressure conditions. The criterion 

(Figure 10) can be applied, for example, when 

designing pipe attachments, exhausts or dispensers of 

relatively small diameter or flexible connections.  

 

 

5.0  CONCLUSION 
 

In this study, an analytical perturbation technique was 

developed to analyze the transient response of a 

simply supported pipe with flowing water subjected to 

dynamic loading. This response was governed by two 

non-dimensional parameters incorporating the 

mechanical properties of the pipe and the 

characteristics of the flowing medium. Besides, the 

conditions of the initiation of the dynamic instability in 

the case of a simply supported type of the pipe 

support conditions were investigated. Nevertheless, a 

similar approach could be adopted for investigation 

of transient response of a pipe with other support and 

loading conditions, as well as for the determination of 

the conditions of the initiation of dynamic instability. 

For example, as for the usefulness of the obtained 

results, the initiation of dynamic instability investigated 

in this work had been considered as a major risk factor 

for high pressure aboveground pipelines as a full bore 

failure can provoke the development of such 

behavior. In this case, a significant damage can be 

expected due to chaotic movements of the pipe. The 

derived conditions of the initiation of instability could 

be considered as a pretty conservative estimate as 

the present mathematical model did not take into 

account other important factors, for example, friction 

or gravity, which could contribute significantly into the 

damping properties and energy absorption 

mechanisms. The derived model represents the 

simplest extension of the Bernoulli-Euler beam theory, 

and, of course, could not capture all mechanisms and 

effects associated with pipe-flow interactions, and 

thus, more sophisticated models might be required for 

more accurate assessments. The latter will be a 

subject for further investigations.  
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