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Abstract 
 

The interest of electric utilities in distributed energy resources has increased in 

terms of maximising the latter’s technical, economic and  environmental benefits. 

This paper presents a Grey Wolf Optimizer (GWO) -based approach for optimal 

placement and sizing of multiple Distributed Generation (DG), aimed at reducing 

active and reactive energy losses in the distribution system. Power system 

constraints, such as voltage magnitude limits and current boundaries are also 

considered. Recently, a swarm intelligence technique, namely, GWO was 

introduced, which is inspired by grey wolves strategy and utilises four categories of 

grey wolves (alpha, beta, delta and omega) to simulate a leadership hierarchy. 

The GWO technique and two other popular methods Particle Swarm Optimization 

(PSO) and Gravitational Search Algorithm (GSA) – are here tested on 15- and 33-

bus radial distribution systems. The numerical results obtained using these methods 

are compared, with the best performance recorded via the proposed GWO 

method in terms of not only active and reactive energy loss but also voltage 

profile and convergence characteristics. 

 

Keywords: Grey Wolf Optimizer, Distributed Generation, Distribution System, Energy 

Losses, Voltage Profile 

 

 

Abstrak 
 

Tumpuan oleh pembekal elektrik kepada sumber tenaga teragih semakin 

bertambah dari segi memaksimumkan faedah teknikal, ekonomi dan alam sekitar 

kepada mereka. Kertas kerja ini membentangkan pendekatan berasaskan 

Pengoptimum Serigala Kelabu (GWO) untuk memperoleh penempatan dan 

pensaizan optimum Penjanaan Teragih (DG) yang bertujuan mengurangkan 

kehilangan kuasa aktif dan reaktif dalam sistem pengagihan. Had dalam sistem 

kuasa seperti had magnitud voltan dan batas arus juga diambil kira. Teknik 

kecerdikan kerumunan yang terkini iaitu GWO telah diperkenalkan yang 

diilhamkan oleh strategi serigala kelabu dengan empat kategori serigala kelabu 

(alpha, beta, delta dan omega) yang digunakan untuk mensimulasikan susunan 

kepimpinan. Teknik GWO dan dua kaedah popular lain iaitu Pengoptimuman 

Kerumunan Zarah (PSO) dan Algoritma Carian Graviti (GSA) juga diuji ke atas 

sistem agihan jejari 15 bas dan 33 bas. Hasil yang diperoleh daripada kaedah 

tersebut dibandingkan dengan hasil terbaik daripada kaedah GWO yang 

dicadangkan bukan sahaja daripada segi kehilangan tenaga aktif dan reaktif, 
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malah juga melibatkan profil voltan dan ciri penumpuan penyelesaian. 

 

Kata kunci: Pengoptimum Serigala Kelabu, Penjanaan Teragih, Sistem Agihan, 

Kehilangan Tenaga, Profil Voltan 

 

 © 2017 Penerbit UTM Press. All rights reserved 
 

  

 
 

1.0  INTRODUCTION 
 

In recent years, power generation and transmission 

systems are operating under increasingly stressed 

conditions and are experiencing increasing power 

loss due to rising demand, environmental and 

economic constraints, as well as a competitive 

energy market [1]. The demand for energy is 

expected to rise 37% by 2040 [2]. Both electric utilities 

and society require environmentally friendly 

technology, more economic solutions, reliable 

operation, compensation in load demand, a 

reduction in losses and voltage profile improvement. 

Among the support methods available to the 

distribution grid, the strategic allocation of Distributed 

Generation (DG) in the grid is widely considered a 

viable option in comparison to network 

reconfiguration and capacitor placement [3]. 

Power can be maximised at the demand side via 

energy loss reduction in distribution and transmission 

lines. Over the last three decades, power loss 

minimisation based on optimal DG allocation has 

become one of the most attractive areas of 

research, including topics such as distribution system 

voltage stability enhancement, loadability 

improvement, reliability improvement and economic 

cost reduction. Real and imaginary power losses are 

generated due to the resistive and  reactive 

elements of distribution lines, respectively. Active 

power loss reduces the efficiency of energy 

transmission, with distribution companies (DISCOs) 

subject to financial penalties if active power losses 

are higher than standard ones and obtaining a profit 

if the reverse is true [1]. Therefore, an extensive body 

of literature has been devoted to this area, with a 

range of different approaches adopted aimed at 

real power loss minimisation [4-12] and active energy 

loss minimisation [13-17]. Furthermore, reducing 

active power/energy loss and improving the voltage 

profile of the distribution network have been 

formulated as a multi-objective function [18-20]. 

In contrast, imaginary power loss reduction has 

received less attention. Many of the benefits 

associated with reactive power improvement, such 

as reducing imaginary power consumption and the 

suspension of network upgrades; decreasing voltage 

drops and enhancing system loadability;and helping 

active power flow through transmission lines to the 

client  [21-25]. In terms of reactive power loss 

minimisation, fewer authors have considered this a 

single objective [24] than as part of a multi-objective 

study [22, 26-29].  

 

In the literature, authors have adopted a variety of 

different approaches to achieve their loss 

minimisation objective, approaches which can be 

best described by their classification into analytical 

and optimisation techniques. Whereas one group of 

researchers have employed an analytical approach 

[4, 10, 11, 15], others have used optimisation 

techniques, such as  Particle Swarm Optimization [6-

8, 16],  Mixed–Integer Nonlinear Programming [13], 

Evolutionary Programming [14], Modified Teaching–

Learning–Based Optimization [5], and Gravitational 

Search Algorithm (GSA) [9, 12]. In [17],  Oppositional 

Krill Herd Algorithm was utilised to determine DG 

optimal capacity and site.  

 In the present paper, a GWO-based optimisation 

approach is proposed with which to solve the multi-

objective problem for optimal DG placement and 

sizing, with the weighted sum of active energy loss 

and reactive energy loss taken as a fitness function 

with network constraints. The same multi-objective is 

also achieved via the implementation of some other 

two techniques, such as PSO and GSA. Finally, the 

proposed and existing techniques are compared 

with the results validated using 15-bus and 33-bus 

radial distribution systems and discussed in detail. 

The rest of the paper is structured as follows: 

Section 2 provides the multi-objective problem 

formulation,  a description, and implementation of 

the proposed methodology. The detailed 

comparative study, including statistical results, the 

graphical representation of voltage profiles and 

convergence characteristics of all the analysed 

methods, is outlined in Section 3; while the 

concluding remarks are presented in Section 4. 

 

 

2.0  METHODOLOGY 
 

The multi-objective of the proposed methodology is 

to minimise both active and reactive energy losses in 

distribution networks via the optimal allocation of 

multiple DG units. The mathematical formulation of 

the multi-objective index and the imposed 

constraints used to ensure the safe operation of the 

distribution system are described as follows: 

 

2.1  Multi-Objective Energy Index 

 

The Multi-objective Energy Index (MOEI) is formulated 

as the weighted sum of the Active Energy Index (PEI) 

and Reactive Energy Index (QEI). These indices can 

be expressed by Equations(1),(2)and(3), respectively. 
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PE QEMOEI w PEI w QEI                                               (1) 

 

When selecting weighting factor values from 0 to 100 

percent, the relative percentages depend on the 

objective function considered the more important; in 

the present study, an equal trade-off was considered 

between the weighting factors of active energy loss 

(wPE) and reactive energy loss (wQE ). 

 

/

DG
loss

w oDG
loss

PE

PE
PEI 

                                                              
(2)                            

/

DG
loss

w oDG
loss

QE

QE
QEI                                                               (3)        

 

where
DG
lossPE and DG

lossQE are active energy loss and 

reactive energy loss with DG, respectively, and 
/W oDG

lossPE  and /W oDG
lossQE  are active energy loss and 

reactive energy loss without DG, respectively. 

 

In the absence of DG, total active power loss 

(kW), reactive power loss (kVAr), and load values of 

the IEEE-RTS system presented in [30] versus time (T 

hours) graphs for a 15-bus system and a 33-bus 

system are shown in Figure 1 and Figure 2, 

respectively. In the planning horizon, it is assumed 

that the same 24-hour load profile is repeated over 

the whole year. 

 

Figure 1 Active and reactive power loss and load versus 

time for the 15-bus distribution system 

 

 

Figure 2 Active and reactive power loss and load versus 

time for the 33-bus distribution system 
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where Nbr= number of network branches; hrT  = 

time period ( 1 hour ); /w oDG
lossP and DG

lossP   = active 

power loss without and with considering DG, 

respectively; and DG
lossQ  and /w oDG

lossQ  = reactive power 

loss with and without considering DG, respectively. 
 

2.2  Power System Constraints 

 

The constraints considered in this study for the safe 

operation of DG and the distribution system are listed 

below: 
 

2.2.1  DG Active and Reactive Power Operating Limit 
 

Usually, the specific range of DG active power (
DGP ) 

is predefined. In the present study, a discretised size 

of DG is considered, which is generally readily 

available in the market. When the DG operating 

power factor (pf) is known, the reactive power of DG 

( DGQ ) follows its active power supply. 

 
,min , ,maxDG DG new DG

K K KP P P                                            (8) 

  , , 1tan cosDG new DG new
K KQ P pf                                    (9) 

where k= DG number 

 

2.2.2  Active and Reactive Power Conservation Limits 

 

DG allocation on the buses typically causes the 

voltage level to rise at some buses in the distribution 

system. If the total DG output exceeds total demand 

and losses, reverse power flow may occur in the 

system. Therefore, a total demand plus total system 

losses should be greater than the total DG supply. 

 
4

1 1 1

Nbus Nbr
load loss DG
j L k

j L K

P P P
  

                                           (10) 

4

1 1 1

Nbus Nbr
load loss DG
j L k

j L K

Q Q Q
  

                                           (11) 
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where loadP and loadQ  are active and reactive 

demands, respectively; lossP and lossQ  are real and 

imaginary distribution line losses, respectively; and 

Nbus is the total bus numbers.    

 

2.2.3  Voltage Magnitude Limits 

 

During operation, the voltage magnitudes ( busV  ) at 

every bus in the distribution system are kept within a 

prescribed range from 95% to 105% of the nominal 

voltage value.  

 
min , maxk new

bus busbusV V V                                             (12) 

 

 where   k=1,2,…..Nbus 

 

2.2.4  Line Amperage Limits 

 

The injection of DG power on the buses may increase 

the current in some of the branches. Therefore, line 

current in the presence of DG( DGI ) must not exceed 

the maximum allowable branch current limit ( maxI ). 

 

max
K K
DGI I               k= 1, 2 ….Nbr                                            (13) 

                                       
2.2.5  Grey Wolf Optimizer  

 

The Grey Wolf Optimizer (GWO) technique was first 

introduced by Syedali Mirjalili et al. in [31], largely 

inspired by grey wolf hunting strategy in the wild. As 

apex predators, grey wolves typically live in packs 

and strictly follow the dominant social leadership 

hierarchy. Figure 3 displays the clear hierarchy level 

decreases from Alphas (α) to omega (ω) search 

agent. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3  Hierarchy level of grey wolves from α to ω 

 

 

α are the leaders of the pack and occupy the 

highest level in the hierarchy; α individuals can be 

male or female and he/she makes all decisions. Beta 

(β) wolves are subordinate to α and help the leader 

to make and implement decisions. In addition, they 

also act as a source for giving back information to 

the leader. Delta (δ) wolves report to α and β but are 

dominant over the ω wolves, who occupy the lowest 

level in the hierarchy and must follow all governing 

wolves. 

 

Social Hierarchy  

 

For the mathematical formulation of the GWO 

algorithm, the priority of the fittest solution is ordered 

according to the level of hierarchy in the pack, such 

as α, β, δ and ω wolves. 

 

Encircling Prey 

 

Grey wolves firstly encircle their prey when hunting. 

This encircling attitude was mathematically modelled 

in [31] and can be expressed as follows: 

 

   pK B Z IT Z IT                                                  (14) 

   1 pZ IT Z IT D K                                                (15) 

 

Set parameters of GWO, NSA, 

ITmax, search boundaries

START

Initialize positions of each agents

and set IT=1

Run Thukaram load flow and determine 

constraints of system and DG

Is constraints

satisfied?

Calculate MOEI

Update position of search agents Zα,Zβ, Zδ, 

excluding then including omega 

Convergence_curve (IT)=Best MOEI 

so_far

END

Yes

No

Discard 

result

IT=IT+1

If IT <=  ITmax

Yes

No

 
Figure 4 Flow chart of proposed methodology 
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where the position vectors of grey wolf and prey are 

denoted by Z  and pZ , respectively; the algorithm’s 

current iteration by IT; and B  and D are coefficient 

vectors calculated as  

 

2 2B r                                                            (16) 

2 1D d r d                                                      (17) 

 

where r1 and r2 are random numbers in the range 

[0,1]; component d is a linear decreases from 2 to 0 

over the iterations range. 

 

Hunting Prey 

 

When simulating the hunting attitude of grey wolves, 

α, β and δ individuals have a better knowledge 

regarding the probable location of the victim. The 

first three solutions ( 1Z , 2Z , 3Z ) obtained so far are 

stored, with the other search agents (including 

omegas) updating their locations according to the 

location of the best search agent [31]. The following 

mathematical equations were developed in this 

regard [31]: 

 

{ 1K B Z Z    , 2K B Z Z    , 

3K B Z Z    }                                                       (18) 

 

{  1 1Z Z D K    ,  2 2Z Z D K    ,   

 3 3Z Z D K     }                                                  (19) 

 

   1 2 31 / 3Z it Z Z Z                                             (20) 

 

Attacking and Searching Prey (Exploitation) 

 

exploitation and exploration abilities of grey wolves, 

respectively. Here ‘D’ is a random value that lies in 

the range [-d,d]. These values are used to energise 

the search agent to move away from the victim. 

When 1D  , the wolves make an effort to attack the 

prey, and vice versa in the case of 1.D   Vector C 

contains values in the range [0,2] [31].  

In the present study, the DG output and address 

are set as position vectors and MOEI as the fitness 

function. The GWO algorithm follows steps to obtain 

optimal sites and sizes of DG units in order to reduce 

energy loss in the distribution system with constraints. 

The flow chart of the algorithm is shown in Figure 4. 

 

 

3.0  RESULTS AND DISCUSSION 

 

The proposed method (GWO) and comparative 

techniques (PSO and GSA) were implemented on 15- 

and 33-bus systems in order to determine the optimal 

capacity and address of four DG units. The summary 

of  these test systems are indicated as follows: 

 

3.1  15-bus Distribution Network 

 

Figure 5 shows the single line diagram of the 15-bus 

distribution network. This system comprises 15 buses 

and 14 branches, with a total active load of 5.54 MW 

and a reactive load of 4.31 MVAr [32].  

 

 
Figure 5  Single line diagram of the 15-bus distribution system 

 

3.2  33-bus  Distribution Network 

 

A bus system comprising 33 buses and 32 branches, 

3.715 MW active load and 2.3 MVAr reactive load 

was considered as the second test system; its single 

line diagram is shown in Figure 6 [33].  

 

 
 

Figure 6 Single line diagram of  the 33-bus distribution system 

 

 
Simulations were carried out using 15-bus and 33-

bus radial distribution systems in the MATLAB 

environment. All optimisation results were tabulated 

after 200 iterations for all algorithms. In order to 

obtain more fruitful results, it was assumed that all DG 

units feeding both real and imaginary power to the 

grid, with their operating pf assumed at 0.9. 

Thukaram load flow technique [34] was used to 
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determine the bus voltages, branch current, as well 

as power and energy loss.  

After simulation, the optimal sites and sizes of four 

different DG units in the 15-bus and 33-bus networks 

according to the three methods are shown in Tables 

1 and 2, respectively, while Tables 3 and 4 present 

the pre- and post-installation results for DG units in the 

15-bus and 33-bus systems, respectively, in terms of 

PE, QE, PEI, QEI, Vmin, Vmax and best MOEI. The lower 

the value of all of these parameters, with the 

exception of the voltage magnitude, the better the 

performance. Figures 7 and 8 present convergence 

characteristic curves for the 15-bus and 33-bus 

systems, respectively.  In addition, Figures 9 and 10 

show the voltage magnitude at every bus of 15-bus 

and 33-bus distribution system according to the three 

methods, respectively, before and after DG unit 

allocation. The following parameters of the two 

comparative methods (PSO proposed in [35] and 

GSA presented in [36]) were considered: 

 

PSO: C1=C2=1.7, Wmax=0.9, and Wmin=0.4  

GSA: alfa=20 and G0=100 

 

 
 

Table 2  33-bus system: optimal size and site of four DG units according to the three different methods 

Method DG1 DG2 DG3 DG4 

 
Size 

(MVA) 

Site 

(bus no.) 

Size 

(MVA) 

Site 

(bus no.) 

Size 

(MVA) 

Site 

(bus no.) 

Size 

(MVA) 

Site 

(bus no.) 

GWO 0.7 7 0.6 14 0.9 24 0.9 30 

PSO 0.8 7 0.5 14 0.6 25 0.9 30 

GSA 0.6 13 0.8 25 1.1 26 0.8 30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 15-bus system: Optimal size and site of four DG units according to the three different methods 

   DG1 DG2 DG3 DG4 

Method 
Size 

(MVA) 

Site 

(bus no.) 

Size 

(MVA) 

Site 

(bus no.) 

Size 

(MVA) 

Site 

(bus no.) 

Size 

(MVA) 

Site 

(bus no.) 

GWO 1.7 5 1.3 8 0.8 11 0.8 15 

PSO 1.5 6 1.1 8 0.9 11 0.9 15 

GSA 0.8 5 1.9 8 1.1 11 0.9 14 
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Table 3 Performance analysis of the 15-bus radial distribution system without and with DG allocation 

Analysis 
PE 

(MWh) 

QE 

(MVArh) 

Vmin 

(pu) 

Vmax 

(pu) 

PEI 

(pu) 

QEI 

(pu) 

Best MOEI 

(pu) 

Elapsed 

time 

(S) 

Without 

DG 
1.9091 1.4430 0.9648 1 1 1 1 

-- 

GWO 0.2505 0.1647 0.9927 1 0.1312 0.1141 0.1227 219.683 

PSO 0.2607 0.1710 0.9932 1 0.1366 0.1185 0.1276 104.178 

GSA 0.3736 0.2187 0.9911 1.0005 0.1957 0.1516 0.1736 244.075 

 

 
Table 4 Performance analysis of the 33-bus radial distribution system without and with DG allocation 

Analysis 
PE 

(MWh) 

QE 

(MVArh) 

Vmin 

(pu) 

Vmax 

(pu) 

PEI 

(pu) 

QEI 

(pu) 

Best MOEI 

(pu) 

Elapsed 

time 

(S) 

Without 

DG 
3.5574 2.4105 0.9038 1 1 1 1 -- 

GWO 0.3450 0.2665 0.9804 1 0.096981 0.110558 0.10376 329.829 

     PSO 0.3611 0.2719 0.9760 1 0.101507 0.112798 0.10716 188.284 

GSA 0.4029 0.3127 0.9816 1 0.113257 0.129724 0.12150 766.596 

 

 

 It is clearly indicated in Table 1 that bus 

numbers 8 and 11 have the same optimal address for 

DG placement in all the examined methods. On the 

other hand, Table 2 shows that bus number 30 was 

the common location for single DG placement 

regardless of the applied algorithm. 

 The statistical data displayed in Tables 3 and 

4 indicate that a significantly greater amount of 

active and reactive energy is conserved via the 

GWO approach compared to the PSO algorithm 

and GSA methods. For both 15- and 33-bus systems, 

the highest MOEI, PEI, and QEI were obtained via 

GSA, followed by the PSO and GWO algorithms, for 

both systems. PSO provided a better performance 

than GSA. 

 For both systems, it can be observed in 

Figures 7 and 8 that the GWO algorithm results were 

slowest to converge among the three techniques, 

followed by PSO and GSA. However, premature   

convergence can lead to generation of low-quality 

solutions. 

 The elapsed time, using all three methods 

were tabulated in Tables 3 and 4 after 15 trials of 

each method seperately, with no variance obtained 

in MOEI value upto 15 decimal places, indicating 

consistency in the results for GWO, PSO and GSA.

 

 

 

 



 

79:4 (2017) 87–96 | www.jurnalteknologi.utm.my | eISSN 2180–3722 | 

 

  

Figure 7 Convergence characteristics of the different 

approaches for the 15-bus system 

Figure 8 Convergence characteristics of the different 

approaches for the 33-bus system 

 

 

 

 

 

 
Figure 9 Voltage profile of the 15 bus distribution system with 

and without DG 

 
 

Figure 10 Voltage profile of the 33-bus distribution system 

with and without DG 

 
 



95                                    Azhar Khairuddin et al. / Jurnal Teknologi (Sciences & Engineering) 79:4 (2017) 87–96 

 

 

 It can be noticed from Tables 3 and 4 that 

the proposed GWO method requires more 

computational time than the other applied 

technique, namely PSO. As these methods were 

implemented in off-line mode, time is not of great 

concern. 

 It can clearly be observed from Figures 9 and 

10 that the voltage magnitude at every bus 

improved after DG unit installation at its base value, 

with the system operating within the prescribed 

range of voltage (i.e. +/-5% nominal voltage). 
 

 

4.0  CONCLUSION 
 

A new approach based on GWO for DG allocation in 

15- and 33-bus radial distribution systems was 

presented, aimed at reducing annual active energy 

and reactive energy losses with imposed network 

constraints. Two existing methodologies, PSO and 

GSA, were also implemented to solve the DG 

allocation problem. Besides the tested GWO, PSO 

and GSA methods all provided optimal site and size 

information for multiple DG units. Considerably, more 

active energy and reactive energy were conserved 

via the GWO approach, as well as an improvement 

in the voltage profile of both 15-bus and 33-bus 

distribution system. The convergence characteristic 

curves indicate that the presented approach is 

simple, reliable and competent to handle the 

multiple DG allocation problems in distribution 

systems.    

The develped technique is important for energy 

planners to achieve optimal active and reactive 

energy loss reduction within the system constraints.  

In addition, the application of a GWO hybrid with 

another algorithm may provide a more exciting area 

of future research. 
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