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Graphical abstract 
 

 

Abstract 
 

The monitoring of power quality (PQ) disturbances in a systematic and automated way is 

an important issue to prevent detrimental effects on power system. The development of 

new methods for the automatic recognition of single and hybrid PQ disturbances is at 

present a major concern. This paper presents a combined approach of wavelet transform 

based support vector machine (WT-SVM) for the automatic classification of single and 

hybrid PQ disturbances. The proposed approach is applied by using synthetic models of 

various single and hybrid PQ signals. The suitable features of the PQ waveforms were first 

extracted by using discrete wavelet transform. Then SVM classifies the type of PQ 

disturbances based on these features. The classification performance of the proposed 

algorithm is also compared with wavelet based radial basis function neural network, 

probabilistic neural network and feed-forward neural network. The experimental results 

show that the recognition rate of the proposed WT-SVM based classification system is more 

accurate and much better than the other classifiers.  

 

Keywords: Power quality disturbances, wavelet transform, support vector machine 

 

Abstrak 

 

Pemantauan gangguan kualiti kuasa (PQ) dengan cara yang sistematik dan automatik 

adalah isu yang penting untuk mengelakkan kesan yang menjejaskan sistem kuasa. 

Pembangunan kaedah baru untuk pengelasan automatik gangguan kualiti kuasa tunggal 

dan hybrid pada masa kini adalah menjadi kebimbangan utama. Kertas kerja ini 

membentangkan pendekatan gabungan jelmaan wavelet dan sokongan mesin vektor 

(WT-SVM) untuk pengelasan automatik gangguan kualiti kuasa tunggal dan hibrid.  

Pendekatan yang disyorkan menggunakan modal sintetik pelbagai isyarat kualiti kuasa 

tunggal dan hibrid. Ciri-ciri yang sesuai bagi bentuk gelombang kualiti kuasa pertama kali 

disari dengan menggunakan jelmaan wavelet diskret. Kemudiannya SVM mengelaskan  

jenis gangguan kualiti kuasa berdasarkan ciri-ciri ini. Prestasi pengelasan algoritma yang 

dicadangkan itu dibandingkan dengan wavelet berdasarkan kebarangkalian rangkaian 

neural dan rangkaian neural suap ke hadapan. Keputusan uji kaji menunjukkan bahawa 

kadar pengiktirafan pengelasan WT-SVM yang dicadangkan adalah lebih tepat dan lebih 

baik daripada pengkelas lain. 

 

Kata kunci: Gangguan kualiti kuasa, jelmaan wavelet, Mesin vektor sokongan 

 

© 2017 Penerbit UTM Press. All rights reserved 
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1.0  INTRODUCTION 
 

Power quality (PQ) is a consumer driven issue, 

therefore it can be defined as, “any sudden power 

problem manifested in voltage, current and/or 

frequency deviation that results in failure or mal-

operation of customer equipment [1]”. In the last few 

decades, the monitoring of electric PQ disturbances is 

gaining much interest. It has become a significant 

issue for modern power industry to protect the 

electrical and electronic equipment and to identify 

the cause of the disturbances [2, 3]. The significance 

of PQ is highlighted from the interest of researchers on 

the performance, monitoring and control of modern 

electrical power system [4]. The PQ is also an important 

issue in new, restructured and deregulated power 

industry. A huge economic loss due to the mal-

operation of electronic equipment is one of the most 

important reasons for the interest in monitoring the PQ 

disturbances [5]. The PQ problems are created due to 

the growing operation of solid-state switching devices 

and non-linear loads, unbalanced faults, lighting 

control, computer and data processing equipment as 

well as industrial plant rectifiers and inverters [6]. 

Although the PQ disturbances are resulted from these 

devices yet these devices are mal-functioning due to 

the induced PQ disturbances.  

The PQ disturbances, if not mitigated properly, may 

cause the overall interruption of the power transmission 

and distribution networks. Traditional PQ monitoring 

devices are operated manually that are utilized to 

measure PQ events initially, and then transfer the data 

to a computer for the further analysis [7]. The PQ 

events are identified after the data analysis in both the 

device and computer. However, the monitoring of PQ 

events in this way is a difficult task for the utilities due to 

the huge data to be stored. In order to overcome 

these drawbacks, several studies based on automatic 

classification of PQ disturbances have been done in 

recent years. For the automated recognition system  

artificial intelligent classifiers such as artificial neural 

network, fuzzy expert system and support vector 

machine have been proposed in conjunction with 

advanced signal-processing techniques such as 

Fourier transform, Kalman filter, wavelet transform [4]. 

The major steps usually involved in the automatic 

classification of PQ disturbances are illustrated in 

Figure 1.   

The well-known signal-processing techniques of 

Discrete Fourier Transform (DFT) and Short-Time Fourier 

Transform (STFT) were proposed in [8, 9] for the steady-

state analysis of the harmonics signals only. However, 

due to fixed window, the DFT and STFT are not suitable 

for the detection of transient PQ signals. Likewise the 

STFT can provide both time and frequency information 

but it suffers strictly from the Heisenberg uncertainty 

principle [10] which causes a “trade-off” between 

time resolution and frequency resolution. Therefore, 

the STFT is found inappropriate for the analysis of mostly 

happening non-stationary PQ disturbances. The 

wavelet transform with Multi-Resolution Analysis (MRA) 

provides the solution of attaining the time-frequency 

information and offers better time resolution for high-

frequency signals, and better frequency resolution for 

low-frequency signals [11]. Continuous wavelet 

transform (CWT), discrete wavelet transform (DWT) and 

wavelet packet transform (WPT) have been used for 

feature extraction. In this paper, DWT with MRA 

property is proposed for the extraction of energy and 

entropy feature vectors that are used for training and 

testing the Support Vector Machine (SVM) classifier. 

The features extracted from the signal processing 

techniques are usually combined with intelligent 

classifiers, such as artificial neural network [12], Fuzzy 

expert systems [13], support vector machine [7], 

extreme learning machine [14], rule-based classifier 

[15], hidden Markov model [16] etc. to accomplish the 

task of classification. The SVM classifier is proposed in 

this paper due to its strong classification and 

recognition capabilities. 

The remaining parts of this paper are as follows. 

Theoretical background of wavelet transform and its 

mathematical theory and support vector machine 

formulation for classification are briefly described in 

sections 2 and 3 respectively. The proposed wavelet 

transform based SVM classification system is explained 

in section 4. The simulation results and the comparison 

of the proposed method to other methods are 

discussed in section 5. Finally, conclusions are given in 

section 6.  

 

 

2.0  METHODOLOGY 
 
2.1  Wavelet Transform  

 
The wavelet transform is an advanced signal-

processing tool which performs a significant role of 

feature extraction for the pattern recognition of PQ 

Figure 1 Block diagram of PQ disturbances classification 

system 
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disturbances. It has proven a powerful feature 

extraction technique for PQ disturbances data using 

Multi-resolution Analysis (MRA) technique [32]. The 

signal being analyzed is decomposed into various 

scales of a short term waveform called the “mother 

wavelet”. Unlike Fourier transform, the Wavelet 

Transform (WT) simultaneously provides time–frequency 

information of a signal which makes it suitable for 

analyzing time–frequency resolution of signals. The WT 

coefficients hold the characteristics of the PQ signals in 

the different frequency bands.  

In literature, the WT has been used for feature 

extraction, data compression and de-noising of the PQ 

disturbances. The wavelet transform approaches offer 

continuous WT (CWT), discrete WT (DWT) and wavelet 

packet transform (WPT) methods for the feature 

extraction of signals. The CWT of a time-continuous 

signal x(t) is defined as [17]: 

 𝐶𝑊𝑇(𝑎, 𝑏) =
1

√|𝑎|
∫ 𝑥(𝑡) 𝜓 (

𝑡 − 𝑏

𝑎
)

∞

−∞

𝑑𝑡 (1) 

where ψ(t) is "mother wavelet", a and b are the scale 

and translation parameters, respectively. In realistic 

applications, the CWT can be transferred to discrete 

form via a sampling way. The DWT of the discrete 

signal x(k) is employed to replace the CWT in Eq. (1)  

 𝐷𝑊𝑇(𝑚, 𝑛) =
1

√𝑎0
𝑚

∑ 𝑥(𝑘)𝜓 (
𝑛 − 𝑘𝑏0𝑎0

𝑚

𝑎0
𝑚 )

𝑘

 (2) 

In Eq. (2) 𝑎 and 𝑏 are replaced to be the functions of 

integers 𝑚 and 𝑛 respectively and 𝑎0 and 𝑏0 are the 

discrete scale and translation factor, respectively [7]. 

In MRA, a given signal is decomposed into different 

levels of resolutions, which provides a unique 

information on features in time-frequency domain. The 

waveform to be analyzed is first decomposed into two 

distinct representations through high pass and low pass 

filters, one with high frequencies (detail D1) and other 

with low frequencies (approximations A1). 

Mathematically, they are represented as wavelet and 

scale function. This process is reiterated as the 

waveform is filtered at subsequent levels of detail, as 

illustrated in Figure 2. The filtering process is 

accomplished by a down-sampling operator, which 

minimizes the information passed to preceding levels. 

The energy and entropy values of the signals can be 

extracted from the detail and approximation 

coefficients (𝐷1, 𝐷2 … 𝐷𝑙 , 𝐴𝑙) of the DWT [18]. Thus the 

application of WT is more suitable for the feature 

extraction of PQ disturbances. 

 

2.2  Support Vector Machine  

 

Vapnik [19] introduced SVM as a supervised learning 

machine tool for applications of pattern recognition 

and classification problems. The learning of the pattern 

recognition approach is based on the statistical 

learning theory. SVM is used efficiently in large 

classification problems because the training of SVM 

can handle large feature vector dimensions more 

effectively as compared to conventional classifiers. 

Besides, SVM has better generalization properties than 

the conventional classifiers [20]. 

From the perspective of the principle of operation, the 

SVM is a linear learning machine working in the high 

dimensional feature space created by the nonlinear 

mapping of M-dimensional input vector 𝑥 into a K-

dimensional feature space (K>M) through the usage of 

function φ(x) [11]. The separation of two classes is 

performed by the hyper-plane defined in Eq. (3) 

 𝑔(𝑥) = 𝑤𝑇𝜑(𝑥) + 𝑏 = 0                    (3) 

where φ(x) = [φ1(x),  φ2(x), … , φk(x)]T is the conversion  

function that is applied to convert data from input 

space to high-dimensional space and the parameters 

𝑤, the weight vector of network 𝑤 = [𝑤1, 𝑤2, … , 𝑤𝑘]𝑇 

and 𝑏, the bias constitute the hyper-plane. The 

purpose of the learning of the SVM network in the 

classification problems is the maximization of the 

separation margin between the two classes, which are 

indicated here as d1 = 1 and d2 = −1. The hyper-plane 

is called the optimal splitting hyper-plane that creates 

the maximum distance between the plane and the 

adjacent data as shown in Figure 3. The optimal hyper-

plane is found based on the quadratic optimization 

problem. Mathematically, it corresponds to the 

minimization of cost function ϕ(w, ξ) defined as 

 𝑚𝑖𝑛 𝜙(𝑤, 𝜉) =
1

2
𝑤𝑇𝑤 + 𝐶 ∑ 𝜉𝑖

𝑃

𝑖=1

                 (4) 

with constraints 

 

 𝑑𝑖(𝑤𝑇𝜑(𝑥) + 𝑏) ≥ 1 − 𝜉𝑖 ,      𝜉𝑖 ≥ 0, 𝑖 = 1,2, … 𝑝 (5) 

 

Figure 2 Consecutive decomposition of a signal by MRA 

technique 
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Figure 4 Power quality disturbances 
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In Eq.(4) and Eq. (5), C>0 is the user-specified constant 

indicating the regularization coefficient, ξi ≥ 0 is the 

non-negative slack variable, and p is the number of 

given learning data pairs 𝑥𝑖 , 𝑑𝑖 .  

The minimization of the second term in (4) corresponds 

to the maximization of the distance between the 

hyper-plane and the nearest points on the margins 

with the constraint that there are two margins on 

opposite sides of the hyper-plane. 

   

2.3  Proposed Methodology 

 
The proposed algorithm consists of three stages 

namely data generation, feature extraction and 

classification as shown in Figure 1. The data is 

generated using parametric equations based on the 

IEEE 1159 standard. A unique feature vector is created 

for each type of the disturbances using wavelet MRA. 

The PQ disturbances are classified with the help of SVM 

classifier by using the features obtained from the 

feature extraction stage. The proposed algorithm is 

also validated with the real-time PQ data obtained 

from the PSCAD/EMTDC based simulation of an 11 kV 

distribution system. 

 

2.4  Data Generation  

 
In the date generation stage, sixteen types of different 

PQ disturbances including one normal, 9 single and 6 

hybrid PQ disturbances as shown in Table 1 were 

generated in Matlab 2014a environment by using 

parametric equations. Figure 4 depicts the ten cycles 

of the PQ disturbances. For each type of disturbance 

signal, two hundred samples (total 3200 disturbances) 

were generated with the randomly variation of 

parameters according to IEEE 1159 standard [21]. One 

hundred signals of each class were used as training 

data and the remaining one hundred signals were 

used as the testing data for each module of the SVM 

classifier.  

The PQ disturbance waveforms were created at a 

sampling rate of 10 kHz and fundamental frequency of 

50Hz. Therefore, ten cycles of each class consisting of 

2000 sample points were used for classification. The 

advantages of using parametric equations is the 

flexibility of adjusting variation of parameters of each 

class in a wide range and in a controlled manner and 

the signals generated are very similar to the actual 

situation. Moreover, an Adaptive White Gaussian Noise 

(AWGN) was also uniformly added to all types of PQ 

disturbances with Signal-to-Noise Ratio (SNR) values of 

20, 30, 40, and 50 dB. 

 

2.5  Feature Extraction  

 

The feature extraction is the most important stage in 

the automatic classification of the PQ disturbances. 

The signal waveforms are decomposed into wavelet 

coefficients using wavelet transform, then based on 

these features statistical features are calculated.  

In the proposed method, combined energy and 

entropy feature vectors have been used for training 

the classifier. The energy features of the signals are 

obtained based on Parseval's theorem which states 

that the energy of the time domain signal x(t) is equal 

to the energy frequency domain (Fourier transformed) 

signal X[n]. 

 

 

 𝐸𝑠𝑖𝑔 =
1

𝑇
∫|𝑥(𝑡)|2𝑑𝑡

𝑇

0

=
1

𝑁
∑|𝑋[𝑛]|2

𝑁

𝑛=0

 (6) 

In Eq. (6), N and T are the sampling period and time 

period of the signal respectively. The application of 

Parseval's theorem to the DWT for the different 

frequency bands can calculate the energy of the 

signal as below [22]: 

 

 

Figure 3 Optimal hyper-plane 
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Table 1 Mathematical models of single and multiple Power quality disturbances 

 

Label PQ Disturbances Mathematical Equations Parameters 

C1 Normal 𝑦(𝑡) = 𝐴𝑠𝑖𝑛(𝜔𝑡) 𝑤 = 2𝜋𝑓 ; 𝑓 = 50𝐻𝑧 

C2 Sag 𝑦(𝑡) = 𝐴[1 − 𝛼(𝑢(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2))]𝑠𝑖𝑛(𝜔𝑡) 0.1 ≤ 𝛼 ≤ 0.9;  𝑇 ≤ 𝑡2 − 𝑡1 ≤ 7𝑇 

C3 Swell 𝑦(𝑡) = 𝐴[1 + 𝛼(𝑢(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2))]𝑠𝑖𝑛(𝜔𝑡) 0.1 ≤ 𝛼 ≤ 0.8;  𝑇 ≤ 𝑡2 − 𝑡1 ≤ 7𝑇 

C4 Interruption 𝑦(𝑡) = 𝐴[1 − 𝛼(𝑢(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2))]𝑠𝑖𝑛(𝜔𝑡) 0.9 ≤ 𝛼 ≤ 1;  𝑇 ≤ 𝑡2 − 𝑡1 ≤ 7𝑇 

C5 Harmonics 𝑦(𝑡) = 𝐴[𝛼1 sin(𝜔𝑡) + 𝛼3 sin(3𝜔𝑡) + 𝛼5 sin(5𝜔𝑡) + 𝛼7 sin(7𝜔𝑡)] 0.05 ≤ 𝛼3,𝛼5,𝛼7 ≤ 0.15; ∑ 𝛼𝑖
2 = 1 

C6 Sag with Harmonics 
𝑦(𝑡) = 𝐴[1 − 𝛼(𝑢(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2))][𝛼1 sin(𝜔𝑡) + 𝛼3 sin(3𝜔𝑡)

+ 𝛼5 sin(5𝜔𝑡)] 

0.1 ≤ 𝛼 ≤ 0.9;  𝑇 ≤ 𝑡2 − 𝑡1 ≤ 7𝑇 

0.05 ≤ 𝛼3,𝛼5,𝛼7 ≤ 0.15; ∑ 𝛼𝑖
2 = 1 

C7 Swell with Harmonics 
𝑦(𝑡) = 𝐴[1 + 𝛼(𝑢(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2))][𝛼1 sin(𝜔𝑡) + 𝛼3 sin(3𝜔𝑡)

+ 𝛼5 sin(5𝜔𝑡)] 
0.05 ≤ 𝛼3,𝛼5,𝛼7 ≤ 0.15; ∑ 𝛼𝑖

2 = 1 

C8 Interruption with Harmonics 
𝑦(𝑡) = 𝐴[1 − 𝛼(𝑢(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2))][𝛼1 sin(𝜔𝑡) + 𝛼3 sin(3𝜔𝑡)

+ 𝛼5 sin(5𝜔𝑡)] 0.05 ≤ 𝛼3,𝛼5,𝛼7 ≤ 0.15; ∑ 𝛼𝑖
2 = 1 

C9 Flicker 𝑦(𝑡) = 𝐴[1 + 𝛼𝑓sin (𝛽𝜔𝑡)]𝑠𝑖𝑛(𝜔𝑡) 0.1 ≤ 𝛼𝑓 ≤ 0.2;  5 ≤ 𝛽 ≤ 20𝐻𝑧; 

C10 Oscillatory Transient 𝑦(𝑡) = 𝐴[𝑠𝑖𝑛(𝜔𝑡) + 𝛼−𝑐(𝑡−𝑡1) 𝜏⁄ 𝑠𝑖𝑛𝜔𝑛(𝑡 − 𝑡1)(𝑢(𝑡2) − 𝑢(𝑡1)] 
0.1 ≤ 𝛼 ≤ 0.8;  0.5𝑇 ≤ 𝑡2 − 𝑡1 ≤ 3𝑇 

8𝑚𝑠 ≤ 𝜏 ≤ 40𝑚𝑠; 300 ≤ 𝑓𝑛 ≤ 900𝐻𝑧 

C11 Impulsive Transient 𝑦(𝑡) = 𝐴[1 − 𝛼{𝑢(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2)}]𝑠𝑖𝑛(𝜔𝑡) 
0 ≤ 𝛼 ≤ 0.414;  

𝑇/20 ≤ 𝑡2 − 𝑡1 ≤ 𝑇/10 

C12 Periodic Notch 

𝑦(𝑡) = 𝑠𝑖𝑛(𝜔𝑡) − 𝑠𝑖𝑔𝑛(𝑠𝑖𝑛(𝜔𝑡)) 

 × {∑ 𝐾

9

𝑛=0

[𝑢(𝑡 − (𝑡1 − 0.02𝑛))  − 𝑢(𝑡 − (𝑡2 − 0.02𝑛))]} 

0 ≤ 𝑡1, 𝑡2 ≤ 0.5𝑇; 

0.01𝑇 ≤ 𝑡2 − 𝑡1 ≤ 0.05𝑇; 

0.1 ≤ 𝐾 ≤ 0.4; 

C13 Spike 

𝑦(𝑡) = 𝑠𝑖𝑛(𝜔𝑡) + 𝑠𝑖𝑔𝑛(𝑠𝑖𝑛(𝜔𝑡)) 

× {∑ 𝐾

9

𝑛=0

× [𝑢(𝑡 − (𝑡1 − 0.02𝑛)) − 𝑢(𝑡 − (𝑡2 − 0.02𝑛))]} 

0 ≤ 𝑡1, 𝑡2 ≤ 0.5𝑇 

0.01𝑇 ≤ 𝑡2 − 𝑡1 ≤ 0.05𝑇 

0.1 ≤ 𝐾 ≤ 0.4; 

C14 Flicker with harmonics 
𝑦(𝑡) = 𝐴(1 + 𝛼𝑓sin (𝛽𝜔𝑡))𝑠𝑖𝑛(𝜔𝑡)[𝛼1 sin(𝜔𝑡) + 𝛼3 sin(3𝜔𝑡)  

+ 𝛼5 sin(5𝜔𝑡)] 

0.1 ≤ 𝛼𝑓 ≤ 0.2;  5 ≤ 𝛽 ≤ 20𝐻𝑧; 

0.05 ≤ 𝛼3,𝛼5,𝛼7 ≤ 0.15; ∑ 𝛼𝑖
2 = 1 

C15 Flicker with sag 𝑦(𝑡) = 𝐴(1 + 𝛼𝑓sin (𝛽𝜔𝑡))𝑠𝑖𝑛(𝜔𝑡) (1 − 𝛼(𝑢(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2))) 
0.1 ≤ 𝛼𝑓 ≤ 0.2;  0.1 ≤ 𝛼 ≤ 0.9; 

𝑇 ≤ 𝑡2 − 𝑡1 ≤ 7𝑇;  5 ≤ 𝛽 ≤ 20𝐻𝑧; 

C16 Flicker with swell 𝑦(𝑡) = 𝐴[1 + 𝛼𝑓sin (𝛽𝜔𝑡)]𝑠𝑖𝑛(𝜔𝑡) [1 + 𝛼(𝑢(𝑡 − 𝑡1) − 𝑢(𝑡 − 𝑡2))] 
0.1 ≤ 𝛼𝑓 ≤ 0.2;  0.1 ≤ 𝛼 ≤ 0.9;  

𝑇 ≤ 𝑡2 − 𝑡1 ≤ 7𝑇;  5 ≤ 𝛽 ≤ 20𝐻𝑧; 

 

 

 𝐸𝐷𝑖
= ∑|𝐷𝑖,𝑗|

2
𝑁

𝑗=1

           𝑖 = 1,2, … , 𝑙 (7) 

 𝐸𝐴𝑙
= ∑|𝐴𝑙,𝑗|

2
𝑁

𝑗=1

 (8) 

 𝐸𝑖 = [𝐸𝐷1
 𝐸𝐷2

 ⋯ 𝐸𝐷𝑙 𝐸𝐴𝑙
] (9) 

 

where EAJ
 and EDj

 are the energies of 

approximation and detail coefficients at level j. 

Entropy is a measure of uncertainty used to estimate 
the degree of state such as irregularities, imbalance. 
The entropy measurement technique is considered as 

an ideal tool for determining the order of non-
stationary waveforms. The entropy features of the 
detail and approximation coefficients are calculated 
by using Eq. (10) and Eq. (11) respectively.  

 𝐸𝑛𝑡𝐷𝑖
= − ∑ 𝐷𝑖,𝑗

2 log (𝐷𝑖,𝑗
2 )

𝑁

𝑗=1

 (10) 

 𝐸𝑛𝑡𝐴𝑙
= − ∑ 𝐴𝑖,𝑗

2 log (𝐴𝑖,𝑗
2 )

𝑁

𝑗=1

 (11) 

Over all statistical features obtained from the MRA 
based DWT for any PQ signal are given by  

 𝐸𝑛𝑡𝑖 = [𝐸𝑛𝑡𝐷1
 𝐸𝑛𝑡𝐷2

 ⋯ 𝐸𝑛𝑡𝐷𝑙 𝐸𝑛𝑡𝐴𝑙
] (12) 

 𝐹𝑒𝑎𝑡𝑖 = [𝐸𝑖  𝐸𝑛𝑡𝑖] (13) 
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 In this stage, DWT with MRA technique at level 8 and 

other wavelet db4 was applied to decompose the 

disturbance signals into approximation and detail 

coefficients. All the PQ disturbances are decomposed 

into eight levels. The wavelet transform toolbox in 

MATLAB software was used to obtain the 

decomposition. The energy and entropy features are 

extracted for each detail level and last approximation 

level. The total size of the training and testing data set 

is 18 x 1600, where 18 is the size of feature of each 

class and 1600 is the 100 cases per class for 16 classes. 

 

2.6  Classification  

 

In the classification stage, the various types of PQ 

disturbances are classified using the SVM classifier. 

SVM machine learning tool is mostly used in different 

classification systems due to the fact that they provide 

a global solution, have a high speed of generalization 

and training. In this paper, a Lib-SVM built-in library of 

SVM in MATLAB environment is used. It consists of the 

most recent optimization method known as sequential 

minimal optimization (SMO) for the solution of the 

multi-class SVM problem. The Lib-SVM employs one 

versus one (OVO) method due to faster in training than 

the one versus all (OVA) method.  The RBF kernel has 

been used in the SVM classifier.  

Initially, the identification of the SVM parameters 

(optimal kernel and regularization parameters C and 

γ) from a wide interval is one of the most important 

stages in obtaining an SVM classifier. The investigation 

of the selected range of parameters provides the 

parameters resulting in the minimum classification 

error. Hence, an efficient search strategy is required. In 

this paper, a k-fold cross-validation process is applied 

to choose the optimal parameters. In k-fold cross-

validation, the training data is randomly separated 

into k roughly equal subsets. The SVM prediction model 

is trained using k-1 subsets and validated on the subset 

left out. This process in continued until k times with 

each of the subset used as the validation subset in 

turn. The average of validation errors over the k trials 

provides a prediction of the generalization error. 

Hence, optimum intervals of parameters which 

perform the minimum root mean square error (RMSE) 

values are obtained. Then a tuning search process is 

used to the training data in the region of optimum 

intervals. The lowest RMSE value produced from a 

tuning search process shows the optimal SVM 

parameters.   

In the next stage, the training of the SVM classifier is 

accomplished according to these parameters. Finally, 

the feature vector obtained from the feature 

extraction stage is employed to the SVM input.  

 

 
3.0  RESULTS AND DISCUSSION 
 

As discussed earlier, for each type of the PQ 

disturbances two hundred waveforms with varying 

parameters and time durations were generated for 

training and testing. The PQ waveforms were randomly 

separated into two parts for training and testing the 

SVM classifier. The LibSVM tool for SVM classifier was 

used to evaluate the classification performance of the 

extracted features of PQ disturbance waveforms. The 

SVM parameter setting was carried out with an RBF 

kernel which can behave like a linear or a sigmoid 

kernel.       

The classification results for the sixteen types of PQ 

disturbances in terms of confusion matrix is shown in 

Table 2. The diagonal elements in the table indicate 

the correct classified signals, whereas off-diagonal 

elements show the signals which are misclassified. 

Table 2 shows that the proposed algorithm can 

effectively classify the various type of single and 

multiple PQ disturbances.  

The performance results of the proposed algorithm 

are compared with the results obtained by radial basis 

function (RBF) neural network, multi-layer perceptron 

(MLP) neural network and probabilistic neural network 

(PNN) as shown in Table 3. The overall classification 

accuracies obtained by PNN, MLPNN, RBFNN and SVM 

are 97.19, 95.25, 96.625 and 99.06 respectively. 

Therefore, SVM provides the best classification results 

for this case.  

 

3.1  Performance Under Noisy Environment    

 

In electrical power distribution system, the actual PQ 

data consists of noise. Hence, performance of the 

proposed algorithm is also evaluated in the presence 

of noise. In actual practice the noise is randomly 

distributed on the sinusoidal waveform.  

 

Table 2 Confusion matrix for classification of PQ disturbance 

waveforms 

 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 
Accuracy 

(%) 

C1 100                100 

C2  99  1             99 

C3   99      1        99 

C4    100             100 

C5     99     1       99 

C6  1    99           99 

C7       100          100 

C8  1   1 1  97         97 

C9         99    1    99 

C10 1    1     98       98 

C11       1    99      99 

C12            100     100 

C13 1        1    98    98 

C14              100   100 

C15        2       98  98 

C16                100 100 

Overall Accuracy 99.06% 
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Figure 5 11kV Distribution system 

Table 3 Results comparison of RBFNN, MLPNN, PNN and SVM 

classifiers 

 

Types of 

disturbances 

Classification Accuracy (%) 

PNN MLP RBF SVM 

Normal 99 97 98 100 

Sag 98 96 98 99 

swell 99 97 99 99 

Interruption 97 95 96 100 

Harmonics 99 97 97 99 

Sag with Harmonics 96 94 94 99 

Swell with Harmonics 96 94 96 100 

Interruption with 

Harmonics 
95 95 95 97 

Flicker 97 93 95 99 

Oscillatory Transient 98 92 96 98 

Impulsive Transient 96 94 97 99 

Periodic Notch 95 94 95 100 

Spike 96 98 98 98 

Flicker with harmonics 98 95 98 100 

Flicker with sag 97 96 97 98 

Flicker with swell 99 97 97 100 

Average 97.19 95.25 96.625 99.06 

 

Table 4 Classification results for noisy PQ disturbance 

waveforms 

 

Types of PQ 

Disturbances 

Classification Accuracy (%) 

20bB 30dB 40dB 50dB 
Noise- 

less 

C1 99 100 100 100 100 

C2 89 92 94 95 99 

C3 90 94 95 94 99 

C4 84 89 93 94 100 

C5 88 95 95 95 99 

C6 83 91 94 95 99 

C7 84 90 93 94 100 

C8 85 92 92 92 97 

C9 82 88 92 94 99 

C10 80 86 90 91 98 

C11 81 87 89 92 99 

C12 88 93 93 93 100 

C13 98 100 100 100 98 

C14 84 89 93 94 100 

C15 88 95 95 95 98 

C16 83 91 94 95 100 

Overall  

Performance 
86.625 92 93.88 94.56 99.0625 

 

 

A white Gaussian noise is widely used in the studies 

of PQ analysis. In the proposed study, different levels of 

noise with the signal to noise ratio (SNR) values of 20, 

30, 40 and 50 dB were applied for testing the 

performance. The classification results for the PQ 

disturbances contaminated with noise are indicated in 

Table 4. 
 

3.2  Test Results On Distribution Network 

 

A typical 132/11kV radial distribution network system in 

Malaysia shown in Figure 5 was simulated using 

PSCAD/EMTDC power system simulation software. The 

distribution network consists of a 132kV, 50 Hz power 

supply, two 132/11kV step-down power transformers 

and two 11kV feeders. The network contains 38 nodes 

that represent 34 sections each having lumped loads. 

The PQ disturbances have been classified into three 

categories, namely (i) disturbances due to faults such 

as sag, swell and interruption, (ii) disturbances due to 

switching of capacitor banks like oscillatory and 

impulsive transients and (iii) disturbances due to power 

electronics based converters such as harmonics, 

notches and flickers. The multiple PQ disturbances 

have been created by applying any two or three 

types of events simultaneously. 

Figure 6 shows the waveform measured at node 24 

in distribution network which is generated by a single-

line-to-ground fault occurred at node 24. The fault has 

been created at 0.08 s and cleared at 0.14 s. The sag 

and interruption disturbances are usually created in 

the fault line depending upon the magnitude of fault 

resistance and swell is produced in non-fault phase. 

The magnitude of sag, swell and interruption depend 

upon the fault resistance. The impulsive and oscillatory 

transients were produced due to the capacitor banks 
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Figure 6 Single-line-to-ground fault in distribution network 

 
 and harmonics were produced due to the application 

of six pulse bridge rectifier. The hybrid PQ disturbances 

were generated by applying the disturbances 

creating loads simultaneously. The classification 

accuracy results obtained for the distribution network 

are shown in Table 5.  

 
Table 5 Classification results for distribution network PQ data 
 

Types of 

disturbances 

Classification Accuracy (%) 

Training 

/Testing 

Patterns 

Correctly 

Classified 
Misclassified 

Normal 100 97 3 

Sag 100 96 4 

swell 100 97 3 

Interruption 100 95 5 

Harmonics 100 97 3 

Sag with Harmonics 100 94 6 

Swell with Harmonics 100 94 6 

Interruption with 

Harmonics 100 95 5 

Flicker 100 93 7 

Oscillatory Transient 100 92 8 

Impulsive Transient 100 94 6 

Periodic Notch 100 94 6 

Spike 100 98 2 

Flicker with harmonics 100 95 5 

Flicker with sag 100 96 4 

Flicker with swell 100 97 3 

Average 100 95.25 4.75 

 
 
3.3  Comparative Analysis 

 

The classification performance results of the proposed 

WT-SVM classification system have been compared 

with those recently reported similar methods in 

literature. The comparative results are presented in 

Table 6. The comparison of results shows that the 

proposed algorithm is capable of classifying the 16 

types of single stage and multiple PQ disturbances 

with the highest classification accuracy of 99.06%. 

Therefore, this method is suitable for practical 

implementation for automatic classification of PQ 

disturbances. 

 

Table 6 Comparison of classification accuracy with proposed 

methods in literature 

 

S. 

No. 
References 

No. of PQ 

Disturbances 

Classification 

Accuracies 

1 Hu, et al. [23] 6 98.4 

2 Moravej, et al. [24] 9 98.89 

3 Eristi and Demir [7] 5 98.51 

4 Zhang, et al. [25] 7 97.7 

5 Foroughi, et al. [26] 4 99.5 

6 Proposed method 16 99.06 

 

 
4.0  CONCLUSION 
 

In this paper, an intelligent pattern classification system 

using WT-SVM has been proposed for the automatic 

classification of single and multiple PQ disturbances. A 

suitable energy-entropy feature vector is acquired 

from the wavelet MRA for training and testing the SVM 

classifier. The performance of the SVM classifier is also 

compared with the PNN, RBF and MLP neural network 

classifiers. This illustrates that the performance of the 

suggested algorithm is quite superior than the other 

similar classification systems proposed in literature. The 

SVM classifier has a significant performance and less 

computation time. The SVM is observed to be much 

faster, especially in terms of calculation time and have 

a higher pattern classification performance than the 

neural network classifiers. The effectiveness of the 

proposed WT-SVM algorithm was checked with the PQ 

disturbances obtained from the parametric equations 

as well as from a real time 11kV distribution model. The 

proposed WT-SVM algorithm is found a powerful tool so 

that it can be applied in any real-time applications.  
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