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A GRAPHICAL USER INTERFACE APPLICATION FOR
CONTINUOUS-TIME IDENTIFICATION OF DYNAMICAL

SYSTEM

MOHD. FUA'AD RAHMAT1, ROSLI OMAR2, HISHAMUDDIN JAMALUDDIN3

Abstract. This paper introduces a Graphical User Interface (GUI) application in system identifica-
tion and parameter estimation of dynamic systems using Generalized Poisson Moment Functionals
(GPMF) method based on Instrumental Variable (IV) algorithm. The GUI based on MATLAB
consists of data preprocessing, parameter estimation, model validation and model simulation. A step-
by-step instruction on how to use the GUI employed in the study is also presented. A validation process
had been implemented using cross validation process. Simulation process based on the estimated
mathematical model was performed to analyze the dynamic behaviors of the model. From the
simulation results and analysis, it could be concluded that the model obtained using this GUI is reliable.
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Abstrak. Kertas kerja ini memperkenalkan teknik grafik pengantaramukaan pengguna di dalam
pengenalpastian sistem dan penganggaran parameter sistem menggunakan kaedah GPMF yang
berdasarkan algorithma IV. GUI yang berdasarkan kepada perisian MATLAB ini mengandungi pra
pemproses data, anggaran parameter, penentusah model dan simulasi model. Prosedur penggunaan
GUI juga ditunjukkan dalam kajian ini. Proses penentusah model adalah menggunakan proses
penentusahan silang. Proses simulasi yang berdasarkan kepada anggaran model matematik telah
dilaksanakan untuk menganalisis ciri-ciri dinamik model. Dari keputusan simulasi dan analisis didapati
model matematik yang diperolehi adalah boleh dipercayai.

Kata kunci: GUI, pengenalpastian sistem, anggaran parameter, GPMF, IV

1.0 INTRODUCTION

The classic definition of a user interface is the hardware and software through which
human and computer interact. Over the years, this concept has evolved, incorporating
more aspects of the human-computer experience and applying them to varied con-
texts. The definition has also changed to reflect the technological advances, moving
from a command-line oriented interface to one that includes graphic features.
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Graphical interfaces have grown in popularity, resulting in widely accepted conven-
tions for the use of the components of these interfaces[1]. A graphical user interface
(GUI) is a user interface made up of graphical objects, such as menus, buttons, lists,
and fields.

The goal of this paper is to introduce a GUI that can be used to estimate the para-
meters of mathematical models of dynamic system using the Generalized Poisson
Moment Functionals (GPMF) method based on the IV algorithm from experimental
input output data.

MATLAB was used as the programming language to develop a GUI that allows
the user to perform model identification, validate the models and finally simulate the
models. The GUI that contains specific commands will manipulate the GPMF based
on IV algorithm in order to estimate the parameters when the appropriate input and
output relationship of a dynamic system is applied. Consequently, the computer
calculates the estimated parameters.

This paper is divided into four sections and organized as follows. Section 1
discusses a brief introduction to GUI and its objective. Section 2 presents a literature
on continuous-time system identification. A theoretical framework of the Poisson
Moment Functional(PMF) algorithm and instrumental variable estimator necessary
for the study are also discussed in this section. Section 3 explains the software deve-
lopment that includes a step-by-step explanation on how to use the GUI. Finally,
section 4 concludes with a summary on the contributions of the paper.

2.0 DYNAMIC SYSTEM MODEL IDENTIFICATION

2.1 Continuous-time verses Discrete

All dynamic system models may be divided into two main types based on whether
they characterize a continuous-time or discrete-time process [2]. In the field of system
identification and parameter estimation, the attention received by the discrete-time
models is so enormous that the continuous-time counterpart was completely over-
shadowed until a few years ago [3]. The rapid development of the parameter estima-
tion procedures for discrete-time models has tended obscure parallel developments
in continuous-time model estimation, despite the fact that much conceptual control
systems analysis is still carried out in terms of continuous-time differential equation
[4]. However, the situation is gradually changing and the relevance of continuous-time
models has been established in a number of situations [5]. Much of the current
literature on identification is now concerned with the identification of continuous-time
models [3]. Furthermore, for many applications, continuous time models are more
appealing to engineers than discrete-time models because they are closely related to
the underlying physical systems, whereas discrete-time model is considered to be
defined at a sequence of time-instants related to measurement[6]. Moreover, most
models encountered in the physical world are continuous and the development of

Untitled-86 02/16/2007, 18:412



A GRAPHICAL USER INTERFACE APPLICATION 3

automatic control owes a great deal to the concepts evolved originally in continuous-
time domain. Another motivation for continuous time modelling is that as the cost of
computation becomes cheaper, data acquisition equipment in today’s industry
provides near continuous time measurement. Fast sampled data can be more
naturally dealt with using a continuous time model than a discrete model.

In addition, the process of continuous-time system modelling is always developed
based on physical laws such as Newton’s Second Law or Ohm’s law, which provides
a priori knowledge. A typical example of a priori knowledge is the choice of the order
of the transfer function that is obtained from differential equation after Laplace Trans-
form was applied. This a priori knowledge was necessary to be defined before the
parameters can be estimated to ensure the accurate model that represents the real
model to be identified. Besides, a priori information can typically best be incorpo-
rated into a continuous time model. In the resulting differential equation obtained
from physical law, the coefficients are closely related to the corresponding physical
parameters in the system.

2.2 Identification Procedure

Continuous-time model identification may be seen to consist of two stages [2]

(i) The primary stage in which the system equation of the parameter estimation
is derived from the dynamical model of the system to be identified is ap-
plied at this stage.

(ii) The secondary stage in which the continuous-time parameters are estimated
using IV method within the framework of a parameter estimation method.

The primary stage arises out of the derivative measurement problem [2]. The GPMF
transformation that is derived in this first stage converts the process differential equa-
tion into an algebraic form. This method helps in reducing the calculus of continuous-
time dynamical systems into appropriate algebra required for parameter estimation.

The secondary stage is independent of the original model form and depends only
on the system of IV algorithm arising out of it. These two stages are shown in
Figure 1.
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PFC denotes the Poisson Filter Chain operation. PFC is shown in Figure 2.

Information
of system
structure

System model

PFC PFC

Generalized Poisson Moment Functional
(GPMF)

Instrumental Variable Algorithm

Parameters

The
primary

stage

The
secondary

stage

Figure 1 Parameter estimation in continuous-time models

Figure 2 Piosson filter chain (PFC)

Each element of the PFC has a transfer function of the form 
s λ+

1
. The PFC opera-

tion is such that while retaining the parameters of the continuous model in their actual
original form, it facilitates the generation of the appropriate measurements for the
parameter estimation equation. The PMF of the signals are generated by passing them
through PFC. In GPMF, the generalized PFC (GPFC) is used. Hence each element of

the GPFC has a transfer function 
s

β
λ+  where b is a positive real number.

2.3 Poisson Moment Functionals (PMF)

A signal f(t), t∈(0, t0), is treated as a distribution or generalized function, and ex-
panded about a time instant t0 as shown in the following expression.

( ) ( ){ } ( ) ( ) ( )k
k

k
f t M f t t t t tλ δ

∞

=
= − − −  ∑ 0 0

0
exp (1)

1
s + λ

1
s + λ

1
s + λ

f fl fk

1st stage 2nd stage (k+1)-th stage

Untitled-86 02/16/2007, 18:414



A GRAPHICAL USER INTERFACE APPLICATION 5

where d(k) (t − t0) is the k-th generalized time derivative of an impulse distribution
occurring at t = t0 and

( ){ } ( ) ( )
t

k k kM f t f f t p t t dt≡ = −∫
0

0
0

0

(2)

with

( ) ( )
k

k k
t

p t p t
k !

λ≡ = −0 0
0 0exp (3)

and λ is a positive real number. kp
0  is called the k-th order Poisson pulse function

(PPF) at t0 and kf
0  is termed as the k-th PMF of f(t) about t = t0.  kf

0  may be viewed

as the output due to an input f(t), at t = t0, of the (k+1)-th stage of a cascaded filter with
identical stages, also called the PFC, each element of which has a transfer function
1/(s + λ) as indicated in Figure 2.

The PMF transformation about t = t0 of y(t) viz. Mk {y(t)} is defined as

( ) ( ) ( ) ( )t
t t

k
t tdy t dy t

M e dt
dt k ! dt

λ− −−  ≡ 
 

∫
0

00

0

(4)

Integrating by parts, the right hand side of Equation (4) yields

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
k k kt

tt t t t t tt t t t t t
e y t e e y t dt ,

k ! k ! k !
λ λ λλ

−
− − − − − − − − −

− − + 
−  

∫
0

00 0 0

1
0 0 0

0
0 1

(5)
implying that

( ) ( ) ( ){ } ( ) ( )
t

j
k k k k k

t

dy t
M M y t y y p y ,

dt
λ=

−
  ≡ = − − 
  00

1 00 0 0
1 0 (6)

wherein the subscript ‘0’ signifies the transformation about t = t0, the subscript k
denotes the order of the PMF and the subscript ( j) denotes the order of the derivative

term; y(0)(0) = y(t = 0). kp
0  is the value of the PPF of order k at t = 0. By analysis similar

to the above, it can be shown that

( ) ( ){ } ( ) ( ) ( ) ( ) ( )k k k k k k k
t

M y t y y p p y p yλ λ λ− − −= − + − − −
0

2 0 10 0 2 0 0 0 0
2 1 12 0 0 (7)

The derivatives of PMF’s are expressed as linear combinations of those of the original
function. These derivatives can be measured as the outputs of a PFC, excited by the
original function.
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Consider a differential equation

( ) ( ) ( )dy t
a y t bu t

dt
+ = (8)

The k-th PMF transformation of Equation (8) about t0

( ) ( ){ } ( ){ }k k kt t
t

dy t
aM M y t bM u t

dt
  + = 
  0 0

0

(9)

Inserting Equation (6) into Equation (9) yields

( ) ( )k k k k ka y y p y y b uλ−     − − + =    
00 0 0 0 0

1 0 (10a)

or

( ) ( )k k k k k
a

y y p y u y
b

λ−
  − − − =    

00 0 0 0 0
1 0 (10b)

In Equation (10a) the initial condition  y(0)(0) is known from ( ) ty t =0 .
Let k = 1, t0 = t1 and t2 ( j = 1,2), then

( ) ( )
( ) ( )

y y p y u a y

b yy y p y u

λ

λ

   − − − −   =     −  − − −   

01 1 1 1 1
0 1 1 1 1

202 2 2 2
10 1 1 1

0

0
(11)

2.4 Identification of Lumped Linear Time-Invariant SISO System

Consider the n-th order linear differential equation of lumped linear time-invariant
SISO system with constant coefficients

( ) ( )i in m

i ii i
i i

d y t d u t
a b , m n

dt dt= =
= <∑ ∑

0 0
(12a)

which can be used to model an n-th order lumped linear time-variant SISO system
with the input u(t) and output y(t). In most physical systems, the value of m does not
exceed n − 1. Without loss of generality, in Equation (12a), fix a0 = 1 or an = 1. How-
ever, for the purpose of a general treatment these conditions are not imposed at the
beginning. Let m = n for symmetry in the mathematical expressions and Equation
(12a) was rewritten in the form

T( ) = ( ),T y t u tα β (12b)

where

[ ]Tna a a= …0 1α (12c)
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[ ]Tnb b b= …0 1β (12d)

( ) ( )
Tn

n
dy d y

t y t ,
dt dt

 
=  

 
y " (12e)

and

( ) ( )
 

=  
 

"
Tn

n
du d u

t u t ,
dt dt

u (12f)

The PFC operation is now applied on y(t) and u(t) giving certain measures of these

signals and their otherwise unmeasurable time derivatives. Accordingly, if ( )ty ,k
m

and ( )tu ,k
m  are the k-th measures of the vectors yyyyy(t) and uuuuu(t) respectively, Equation

(12b) may be written as

( ) ( )t t
T T
y ,k u ,k

m m=α β (13)

2.5 The PMF Algorithm

In this section, the general PMF algorithm is developed. Taking the n-th order PMF
transformation about t = tk for the PFC operation, it can be shown that

( ) = ∧ − ∧t
T T T T

k k yy ,k
m y SΦ (14a)

and

( ) = ∧ − ∧t
T T T T T T

k k uu ,k
m y SΦ (14b)

where

( ) ( ) T
k k n ky y t y t=   …0 (14c)

( ) ( ) T
k k n ku u t u t=   …0 (14d)

yi(tk) is the i-th order PMF of y(t) about t = tk, and ui(tk) = i-th order PMF of u(t) about
t = tk.

In other words, yi(tk) for this example is the output of a PFC at its (i + 1)-th stage at
t = tk. Next Λ ( is an (n + 1) ( (n + 1) matrix whose ij − th element is defined as in
Equations (14e) and (14f)
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( ) ( )
( )+ − = − +
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 −Λ =   − + ≥ +  + − + 

n j iij i j n
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i
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i j n
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0 2
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1 2

2

(14f)

∆ is an (n + 1) × (n +1) shift matrix defined as

 
=  

  

T

n

O O

I O
∆ (14g)

( ) ( ) ==
i

i
t Oi

d y
y

dt
0 (14h)

Similarly

( ) ( )
−

+

=
= ∆∑

n
i i

u
i

S u O
1

1

0
(14i)

kΦ  is a vector of Poisson pulse functions (PPF) defined as

( ) ( ) ( )=   " T
k k i k n kp t p t p tΦ 0 (14j)

( ) ( ) ( )= −i
i k k kp t t t / i !λexp (14k)

Inserting Equation (14a) and (14b) into Equation (13) and rearranging, yields

 − + − = 
T T T T T T T T
k k k u yS S OΛ Λ Φ Λy uα β β α (15)

At this point, any of the terminal elements in ( can be fixed as unity. Suppose if
a0 = 1 and bn = 0 as in the case in most physical systems, then

 =  
TT| aα 1 (16a)

and

 =  
TTb |β 0 (16b)

Under these condition, Equation (15) can be written as

     + − =     
T TT T T T T T T T T T

k k k u ya b |O S S OΛ Λ Φ Λy u1 −| β α (17a)

or

( )
 
  − = −   
  

TT T
k k k n k

a

| | b y t

f

∗Τ Τ ∗Λ Λ Φ Λy u (17b)
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Equation (17b) may be concisely written in standard form as

+ =T *
k km p v y (18a)

where

( )=*
k n ky y t (18b)

 =  
TT T Tp a |b | f (18c)

− − = − + − 
T T T T T T *
k k k km y | y |Λ Λ Φ Λ (18d)

v in Equation (18a) is a disturbance vector. Λ  is matrix Λ  with its first column re-

moved and ∗Λ  is Λ  with its last column removed and f is an n-vector of initial
condition terms which is obtained by dropping out the last element of the vector

 − 
T T
u yS Sβ α . Equation (18a) has 3n unknowns to be determined. These include

the n initial condition terms in f along with the 2n system parameters contained in a
and b. The system of parameter estimation equations can now be obtained by taking
PMF’s about tk, k = 1, 2, ..., N, with Equation (18a) in the standard form

+ =Mp v y* (19)
where

 
 

=  
 
  

#

T
l

T
N

m

M

m
(20)

and

[ ]= " T
Ny* y* y*1 (21)

When N = 3n, the number of unknowns, is

=p M y*1 (22)

and if N > 3n the IV estimate of p is

� ( )−
= T Tp Z M Z y*

1
(23)

where Z are the instrumental variables.
There are two conditions to impose instrumental variables Z in order to make the

estimator �p  consistent [6]. First, the instrumental variables Z should be uncorrelated

with the disturbances so that . Second, matrix must be invertible.
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Hence in addition, to the two previously imposed conditions, it is necessary that

ZT M be large so that �p  provides an efficient estimate. In other word, the instrumental

variables should be chosen so that they are simultaneously uncorrelated with and
highly correlated with M.

3.0 SOFTWARE DEVELOPMENT

3.1 The Software Basic Features

The GUI features all the basic components in system identification such as input-
output data loading, data preprocessing, parameter estimation, model validation, and
model simulation. The features can be summarized as [7]

(i) Estimate the procedures of single-input single-output (SISO) model
(ii) Loading the input-output data from various sources.
(iii) Select data preprocessing method such as remove trends, remove means

and filter the data.
(iv) Select the data range for estimation.
(v) Display the result in the form of continuous-time transfer function or show

the values of zeros and poles.
(vi) View the model output, frequency response, root locus, prediction error,

model residual and the comparison between the estimated respond with
the measured data.

(vii) Entering other set of measured data for the purpose of model validation.
(viii) Save the value of estimated parameters.
(ix) Enable the user to give his comments about the estimated model for future

reference.

Figure 3 shows the flow chart representing the whole procedure of estimating the
parameters of any dynamic systems.
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3.2 The Completed GUI

The goal of the GUI is to estimate the parameters of a model to any SISO system,
validate the estimated model and validate the model. The final GUI window in
MATLAB environment is shown in Figure 4. Altogether, the GUI consists of 14
editable text boxes, 7 push buttons, and 2 pop-up menus. The implementation and
the ideas of the GUI will be described in section 3.3.

Load data

Enter model order
and sampling

interval

Preprocess data

Enter data range
for parameters

estimation process

Enter lambda value

Select estimation
algorithm (IV or LS)

Select model
representation

(Transfer function or
zero-pole)

Model validation

Model simulation

Yes

No

Without a priori
information

Without a priori
information

Figure 3 Flow chart for the wohoe process of estimating model parameters
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3.3 GUI Implementation

In this section, a step by step explanation on the use of GUI employed in the study is
demonstrated.

(i) Enter Input-output Data, Sampling Interval, Model Order and
Pre-process the Data

System identification is about data and models and creating models from data. Be-
fore the creation of the model can be executed, the input-output data, sampling period
and model order need to be defined. At the upper left corner of the GUI window, user
is able to choose the sources of the data. The data may be loaded from file saved
under the MAT file extension of the MATLAB software, insert the data manually or
using simulated data stored in ASCII file. Here, only the first method is discussed i.e.,
loading the data from a file since measured data saved in MAT file is used.

Figure 4 The developed GUI used to estimate parameters from input-output data.
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Figure 5 shows part of the GUI that is located at the upper left hand side of the GUI
window. It allows the user to choose the data source, insert a sampling period and
model order in the space provided.

Figure 5 Part of the GUI that allows the user to choose
and enter data that are needed to estimate the parameters.

For this example, we will use a hairdryer data that can be loaded from MATLAB
environment by typing “load dryer”. Notice that there are 2 sets of input output data.
The first set, set I i.e., ze is used as the estimation data set whereas the second data set,
set II i.e., zv is used as the validation data set. The user is reminded to give a label to
the input-output data for each set. For data set I, the first column is output data and
labeled as y and second column is input data set and labeled as u. To label this, the
user can type in the MATLAB workspace such as “y = ze(:,1)” and “u = ze(:,2)”. Then
type “z = [y u]”. For data set II, which is used for the purpose of model validation, the
output (first column) is labeled as yv and input (second column) is labeled as uv. To
label this, go to the MATLAB workspace and type “y = zv(:,1)” and “u = zv(:,2)”.
Then save it as a filename. In this example, the required filename is “dryer1”. Hence
type in the MATLAB  workspace “save dryer1”. Then, put this file name in Load from
section as shown in Figure 5.

Notice, because of the data are loaded from file, there is no need to insert the time
span since the length of the data is known. It will be calculated in the background and
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will be displayed in the space called Time span 0 to. Note that the model order must
have three elements. The first, second and third elements represent the order of model
denominator, numerator and delay respectively. This model order is obtained from
physical modeling such as Newton's second law or Ohm’s Law etc.

In summary, when dealing with this Insert Input-Output Data part, the users are
required to:

(a) Select the data source (load data from a file)
(b) Insert file name where the data is located (without the extension)
(c) Insert sampling period (in second)
(d) Insert the model order obtained from physical modeling

After all the information required were entered, the Go button was pressed. Then
the data will be displayed as shown in Figure 6.

Figure 6 The input-output data to be estimated

The input and output data can also be represented graphically by clicking the Look
at data... pop-up-menu and choose Plot data. Examples are shown in Figure 7.
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The data then can be processed according to the user’s request. The user may
remove the mean and trend or filter the data by clicking the popup-menu denoted by
Preprocessing dat. It may involves repairing the data in terms of replacing missing or
obviously erroneous data. It typically also involves data polishing by removing undes-
ired disturbance. This is accomplished primarily by low-pass or high-pass prefiltering
and/or subtracting trends (detrend) from the data.

(ii) Parameter Estimation

Estimating model from the data is the central activity in this GUI. The models were
estimated using the data set as displayed in Figure 6. The Model Estimation part as
shown in Figure 8 uses the data to estimate the models. This GUI treats only a para-
metric method where a specific model structure is assumed and the parameters in this
structure are estimated using measured data.

Figure 7 The graphs that represents the input-output data
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When dealing with the Model Estimation part, firstly the user must key in the data
range to be executed. The user then can choose the estimator to be used, either least
square (LS) or IV. IV estimator is preferred over LS because it gives more accurate
estimation and reduced the bias of the parameter estimated. Value for lambda must
be inserted manually. There are two ways to represent the estimated model, one by
the model transfer function and by the zeros and poles representation.

(iii) Model Validation

Up to this stage, the mathematical model of a system has been developed. The iden-
tified model needs to be examined to verify whether it fulfills the model requirements
according to subjective and objective criteria of good model approximation. Figure 9
shows an option called Model Validation.

Figure 8 The Model Estimation part to estimate the model parameters using GPMF based on IV

Figure 9 Model Validation option used to validate the model
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It is good and common practice in identification to evaluate an estimated model’s
properties using a “fresh” data set, that is, one that was not used for the estimation.
The validation data is different from the estimation data. It is called simulation. The
most versatile validation tool is probably simulation [8].

In this part of the GUI, the user should enter the file name that contains the valida-
tion data set to be compared with the simulated data from the model. Then, enter the
data range and push the OK button. It will display the input data graphically as shown
in Figure 10.

A very good way of obtaining insight into the quality of a model is to simulate it
from a different data set, and compare the simulated output with the measured one.
This test is obtained by checking Compare to the measured. Then the data in the valida-
tion data set will be used for comparison. The comparison between the output of
validation data and simulated data is displayed graphically as shown in Figure 11.

Figure 10 The graph of input data for model validation process
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(iv) Model Simulation

To check whether a model is capable of reproducing the observed output when driven
by the actual input, a simulation can be performed. Simulation to obtain simulated
output was done by checking the checkbox called Model Output contained in one part
of the GUI named Model Simulation as shown in Figure 12. The output excited by the
actual input is shown in Figure 13.

Figure 11 The window that shows the comparison between the measured data and simulated
data.

Figure 12 Model Simulation part used to view the model properties
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The true system and the derived model are then fed with the same input signals,
whereupon the measured outputs are compared to the predicted output of the model.
This is done when the Compared to measured checkbox is checked. The compared
outputs is shown in Figure 14.

Figure 13 The output simulated from the estimated model

Figure 14 Comparison between simulated and measured data
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Finally, the zeros and poles map of the system model can also be plotted by check-
ing the Zeros and poles checkbox button as shown in Figure 15.

The poles of a system are the roots of the denominator of the transfer function, while
the zeros are the roots of the numerator. In particular the poles have a direct influence
on the dynamic properties of the system. The Model Simulation part makes the analy-
sis of the estimated model much simpler.

(v) Model Description

One of the features of this GUI is that it enables the user to give some descriptions of
the model obtained. It is important to the user if he wishes to keep the information
about the obtained model in a safe way and easy to view format for future reference.
The description of the model can be filled in the space called Model Descriptions. It is
shown in Figure 16.

Figure 15 Poles zeros map of the system model

The model is good. But the residuals can be improved

Figure 16 A model properties can be described in this provided space
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Then, the descriptions and the estimated models can be saved. The user can reach
the file in the future and refer to the comments to get the ideas about the model. The
advantage of this feature is the best model can be assessed from all models developed
in the study. The user may write down the pros and cons of each model estimated. By
doing this, the user can choose the best model after taking some consideration to the
pros and cons of all models.

(vi) Save, Open File and Reset Data

It is common to most of GUIs to have features that enable the user to save and open
files and reset the data. The developed GUI also has these features. After the user
finished estimating the model of a system and give some descriptions to the esti-
mated model, he can save his work by clicking the Save button located at the lower
left corner of the GUI. He can also refer to the file by opening it if he wishes to know
about the estimated model properties in some other time without doing the same
modelling process using the same data and model order. This will considerably save
his time.

4.0 CONCLUSION

It has been presented that the GUI that used the GPMF method based IV algorithm
have successfully identify the appropriate model from input and output data of a sys-
tem as shown in section 3. Of the existing continuous-time parameter estimation ap-
proaches based on an equation error approach which use transfer function models,
the Poisson Moment Functionals approach is claimed to be one of the best under
noisy conditions. IV estimator was considered rather than the least square because it
gives more accurate estimation and reduced the bias of the parameter estimated.
Consequently, this developed GUI has achieved the objectives and it can be consid-
ered successful. It was shown that this GUI has made the modeling process of a
dynamic system easy and quick. The GUI contains six parts; Enter input-Output data,
estimate the parameters, Model Validation, Model Simulation and Model Descri ptions. It
has important features that every GUI must have such as user-friendly and easy to use.
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