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Abstract 
 

Extensive research has been performed in the past decades to study the behavior of soft 

biological tissues in order to reduce the need for practical experiments. The applicability 

of these researches, particularly for skin, ligament, muscles and the heart, brings up its 

importance in various biological science and technology disciplines such as surgery and 

medicine. Softness and large deformation govern the behavior of soft materials and 

prohibit the use of small strains solutions in finite element method. 

In this work, the focus is set on a strain energy function which has the advantage of 

accurately representing the behavior of a variety of soft tissues with only a few parameters 

in a finite element approach. The numerical results are verified with a set of tensile 

experiments to demonstrate the performance of the proposed model. The parameters 

include the matrix and collagen bundles and their orientation. Different cases are 

analyzed and discussed for better prediction of different soft tissue responses.   

 

Keywords: Soft biological tissue, large deformation, finite element method, collagen 

 
© 2015 Penerbit UTM Press. All rights reserved 

  

 

 

1.0 INTRODUCTION 

 
Investigation of soft biological tissues has a very long 

background. The distinct behavior of this group of 

material and its role in human life gives it a significant 

importance that encourages many researchers to put 

their attitude in this field in order to achieve better 

understanding of their mechanical response, based on 

simplified or comprehensive theories. 

Histologically, the macroscopic mechanical 

properties of soft biological tissues, like any other solids 

with micro-scale structure, are affected by microscopic 

responses. The soft tissues are composed of collagen 

fibers and ground matrix. The substructure of collagen 

includes tropocollagens that gather together and 

make fibrils. Then, bundles of fibrils construct collagen 

fibers. Collagen has the most load carrying capacity in 

a soft tissue [1,2]. Collagen is structurally woven in 

helical patterns and it cannot bear loads (it is negligible 

in primary region) until it is partially erected and gets 

along with the loading direction. Afterwards, it 

becomes a firm rod and its bearing capacity increases 

rapidly. This behavior makes the stress-stretch response 

to be a so called J-shaped curve. it increases 

significantly when the fibers are mobilized. In the first 

part of the curve, the main load carrier is the ground 

matrix [3]. The procedure can be followed in Figure 1. 

The soft tissues are generally assumed to be 

incompressible. Application of this property is generally 

performed by separating the volumetric and the 

isochoric parts. The volumetric part comprises a pseudo 

penalty method to impose the incompressiblity 

condition with the aid of the bulk modulus. For further 

information on formulation of incompressibility, see 

Bonet and Wood [4]. 

One of the earliest works that pushed researchers 

forward and made a fundamental platform for further 

developments was reported by Fung [5]. He proposed 

a hyperelastic model with an exponential strain energy 

function under the quasi-static loading assumption. 

Then, many other strain functions were proposed with 



8          Farshid Fathi, Shahrokh Shahiet &Soheil Mohammadi / Jurnal Teknologi (Sciences & Engineering) 76:7 (2015) 7–12 

 

 

different assumptions to model the anisotropic nature 

of tissue due to the presence of collagen [6-8]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 Schematic illustration of fiber response in various levels 

of loading 

 

 

Orientation of fibers acts an important role in 

mechanical response of fiber reinforced materials. It is 

directly related to histological information of the tissue. 

For cases such as ligaments and tendons only one 

preferred direction exists and is aligned with fibers, 

whereas in cases like arterial walls and skin, the 

orientation is complicated, and two or three different 

directions of fibers have to be considered in the 

formulation. 

Holzapfel et al.[3] used the quadratic form of the 

exponential type (
2

2 4
exp( [ 1] ) 1c I   ) in terms of, 

4
I   

and 
6

I   for different fibers of arterial walls [3]. In the 

recent decade, new SEFs have been proposed for 

better estimation of behavior for special cases such as 

the aortic heart valve [9] or to include the effects of 

damage [7] or viscosity in soft tissues [8]. 

 

 

2.0  RESULTS AND DISCUSSION 

 

2.1  Hyperelastic Strain Energy Function 

 

An arbitrary body in the material configuration is 

characterized by X  and in the current configuration 

by x . The nonlinear deformation mapping from X  to 

x , d dx F X , is defined by the deformation gradient

( ) ( )tF X X , where the parameter 
t  is the 

mapping operator and the Jacobian 

( ) det ( ) 0J  X F X . The right Cauchy tensor is 

defined as, 
TC F F  which is used to define the 

second Piola-Kirchhoff stress, ˆ2 ( )C S C . 

Moreover, the principal invariants of the second order 

tensor C  are presented as, 
2

1 2 3
tr ,  tr[ ],  det . I I I  C C C  

The structural tensor M  is used to define the pseudo-

invariants for considering the anisotropy generated by 

fibers, a a M , where a  is the unit vector along 

the fiber direction. The pseudo-invariant 
4I  for the 

single family of fiber is then defined as, 
4 tr[ ]I  CM . 

The SEF proposed by Balzani et al.[6] for abdominal 

aorta is adopted here. The first term is the generalized 

Neo-Hookean term to represent the isotropic matrix 

and the second term prohibits the volume change in 

the case of nearly incompressible material. The 

anisotropic part is characterized by fibers. 
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The second Piola-Kirchhoff is derived as: 
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   (Eq. 4) 

 

By further derivation with respect to the right 

Cauchy tensor C , the so-called elasticity tensor can 

be derived. (see Appendix).  

Since the fibers do not resist in compression, the 

tensile test is performed, where the stretch has a value 

more than one. Therefore, initiation of load bearing in 

helically shaped fibers can be considered in 

formulation of the anisotropic part of SEF by 

subtracting a constant parameter around 1 in the 

exponential term from the pseudo invariant. Hence, 
(1)

4
( 1)I   utilized in the SEF. 

Now, the focus is set on a specific parameter, which 

has a significant effect on the mechanical response of 

the soft tissues and it is the angle of fiber orientation. 

This parameter is defined within the unit vector, 
0a , 

and is entered in formulation by the generalized new 

invariants. It can be obtained from the unit vector of 

fiber direction 
0

a  and the stretch  , (

00 0

2
tr[ ] . . aa a  CM C ),   demonstrating   the 

amount of elongation in the preferred direction. 

 
2.2  Verification and Numerical Example 
 

To illustrate the applicability of the proposed SEF, the 

finite element numerical results are compared with 

available experimental tests. As an example, an 

abdominal aorta of the human cadaver is 

considered. It is separated into layers and the middle, 

called media, which is used in tensile tests. Other layers 

are intima and adventitia but the focus is set on 

media, which has the most significant role among the 

arterial layers and a high strength ability to resist high 

circumferential and longitudinal loads. The schematic 

illustration of the tissue samples of the arterial wall is 

presented in Figure 2, and the material parameters 

are shown in Table 1. 

 

 
Table 1 Material parameters 

 

1
 (kPa)c   (kPa)    

1
 (kPa)  

2
  

13.5 10 20 14
10  20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 Validation of the model. Comparison of the present results with the experimental data for circumferential (left) and 

longitudinal (right) oriented strips. The angle between collagen families and the direction of loading in circumferential direction is  

43.39˚, reported in Balzani et al. (2006). 
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A large deformation finite element analysis based on 

the developed formulation is performed, The results 

are compared with the experimental data of Balzani 

et al. [6] in Figure 2, which shows a good agreement. 

The numerical procedure of fiber alignment is 

performed several times with different angles 

between fiber families and the axis of loading to 

demonstrate the dependency of response to the 

distribution of fibers in the direction of loading axis, as 

illustrated in Figure 3 for circumferential or longitudinal 

stripped samples. Both samples are subjected to the 

same uniaxial loading. The results are illustrated in 

Figure 4. 

 

 
 

 
Figure 3 Schematic illustration of fiber orientation in different angles to demonstrate the dependency of mechanical response to 

the angle. 

 

 
(a) 

 

(b) 

 
Figure 4 Effect of fiber orientation on the mechanical response of circumferential (a) and longitudinal (b) sample strips 
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It is evident in Figure 4 that the dependency of 

mechanical response to the fiber orientation in higher 

angles (more dispersed) is mostly related to the matrix 

and less variation is observed. It is also evident that in 

low values (more coherent orientation) a highly 

significant effect is observed in the mechanical 

response in both samples. Particularly, in any specific 

deformation, very high variation of stress can be 

reached with a little alteration of angle. It means that 

any significant projection of vectors which 

characterize the fiber directions will generate 

substantially higher stresses and more strength and 

durability. With a limit analysis, it can be deduced that 

when the angle “β” between the fiber vector and 

loading direction approaches zero (
0

lim(cos ) 1





 ), 

the biggest projection and the highest strength are 

reachable. Thus, fibers play a significant role in the 

mechanical response in more coherent cases, 

whereas in dispersed cases, it is the matrix that has the 

main role because the fibers are not mobilized. 

Another numerical example analyzed in this work is 

the special sampling in 45˚ with respect to the 

longitudinal direction. Details are presented in Figure 

6. The fiber distribution in this case is the natural 

orientation reported in Balzani et al. (2006) with 

respect to circumferential direction [6]. The results of 

45˚  inclined sampling are presented in Figure 6. 

Comparing Figure 5 and Figure 6, the significant role 

of angle of fiber and loading direction is observable. 

In the inclined sampling case, when the angle of fiber 

family 1 is 1.61  , the partial alignment with the 

loading direction ( 0  ) allows for higher load 

bearing, whereas the fiber family 2 is approximately 

perpendicular to the axis of loading ( 91.61  ) and 

does not significantly affect the behavior of the tissue 

sample. Clearly, the role of fiber as the most load 

bearing component is evident. It is also observable 

that in lower displacements, considerable higher 

stresses are reached. 

 

 

 
 
Figure 5 Illustration of the inclined sampling and mechanical response. The angle between loading direction and longitudinal axis 

is 45˚ 

 

4.0  CONCLUSION 
 

In this study, the kinematics and large deformation is 

successfully incorporated within a strain energy 

function, which shows a good agreement with the 

experimental data. A comprehensive formulation, 

based on derivatives of the strain energy function, 

includes the pseudo invariants, which characterize 

the elongation in the direction of fibers. The changes 

in the angle between the families of fibers and the 

loading direction are studied to determine the 

significance of this parameter. The density of collagen 

fibers along the loading direction is the most important 

parameter in the mechanical response. A direct 

dependency exists between the number of collagen 

in the direction of loading and the mechanical 

response. It means that the bigger the projection of 

collagen fibers in direction of loading, the more the 

resistance of the tissue. Thus, the strength of a soft 

tissue mostly depends on the fiber orientation. In near 

future, it would be possible to produce artificial tissues 

as natural as reality, so the orientation and 

accumulation of these fibers will act an important role 

in tissue engineering.  
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The elasticity tensor for the proposed function is  

derived as: 
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