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Abstract. This paper focused on the  proportional-integral sliding mode control  for uncertain
dynamic systems with mismatch uncertainties. First, the switching surface condition for the sliding
mode control is synthesized. Then the control law is designed to drive the state trajectories of the
system onto the sliding surface and the system remains in it thereafter. The proposed control law is
applied to a numerical example and its performance is compared to the  state variable  feedback control
system design methodology.
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1.0 INTRODUCTION

The control of dynamical systems, whose mathematical models contain uncertainties,
has occupied the attention of researchers in recent times and has been  extensively
studied. These uncertainties could be due to parameters, constant or varying, which
are unknown or perfectly known, or due to unknown or imperfectly known inputs into
the system [1]. Sliding mode control (SMC) has been widely applied to system with
uncertainties since it was introduced about three decades ago. A salient future of this
control is that it is completely robust to systems with matched uncertainties [2]. It is
certainly true that many systems can be classified under this category. However, there
are many systems which unfortunately are affected by uncertainties which do not sat-
isfy the matching condition. A sliding mode control scheme for mismatched uncer-
tain systems has been recently developed [3,4,5,6]. All these researches used the tradi-
tional method to design the sliding surface. However, [7] has developed a sliding
mode control scheme using an integral-type sliding surface.

In this paper we considered a class of uncertain-dynamical system in mismatched
condition. The sliding surface is designed based on proportional-integral sliding mode
control (PISMC). We also proposed a new control scheme to control such a system
with mismatched uncertainties. The proposed control scheme performance is com-
pared with the state variable feedback regulator (SVFR) system design methodology
to show the effectiveness of the control design.
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2.0 SYSTEM DEFINITION

Consider the uncertain dynamic system which can be modeled by the equation:

( ) ( ) ( ) ( , )
•

= + +x t Ax t Bu t f x t (1)

where x(t) ∈ ℜn is the n-dimensional state vector, u(t) ∈ ℜm is the controlled input
signal, and the constant matrices A and B are of appropriate dimensions. The vector
f(x,t) represents the uncertainties with the matched and mismatched parts in the plant.
Note that f(x,t) is uniformly bounded with respect to time t, and locally uniformly
bounded with respect to state x. The following assumptions are taken as standard:

Assumption i: There exists a known non-negative scalar function such that

( , ) ( , )β≤f x t x t , where •  denotes the standard Euclidean norm.

Assumption ii: The pair (A,B) is controllable and the input matrix B has full rank.

3.0 SWITCHING SURFACE DESIGN

In this study, we utilized  the PI sliding surface defined as follows:

0

( ) ( ) ( ) ( )σ τ τ= − +∫
t

t Cx t CA CBK x d (2)

where C ∈ ℜmxn and K ∈ ℜmxn are constant matrices. The matrix K satisfies λmax (A
+ BK) < 0 and C is chosen so that CB is nonsingular. It is well known that if the system
is able to enter the sliding mode, α(t) = 0. Therefore the equivalent control, ueq(t) can

thus be obtained by letting ( ) 0σ
•

=t  [8] i.e,

( ) ( ) { } ( ) 0σ
• •

= − + =t C x t CA CBK x t (3)

If the matrix C is chosen such that CB is nonsingular, this yields

1( ) ( ) ( ) ( , )−= −equ t Kx t CB Cf x t (4)

Substituting equation (4) into system (1) gives the equivalent dynamic equation of the
system in sliding mode as:

1( ) ( ) ( ) { ( ) } ( , )
• −= + + −nx t A BK x t I B CB C f x t (5)
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Theorem 1: If 1
1( , ) ( , ) ( ) ( , )β β−≤ = −nF x t x t I B CB C x t , the uncertain system in

equation (5) is boundedly stable on the sliding surface σ (t) = 0.

Proof:

For simplicity, we let

( )= +A A BK (5a)

1( , ) { ( ) } ( , )−= −nF x t I B CB C f x t (5b)

and rewrite (5) as

( ) ( ) ( , )
•

= +x t Ax t F x t (6)

Let the Lyapunov function candidate for the system is chosen as

( ) ( ) ( )= TV t x t Px t (7)

Taking the derivative of V(t) and substituting equation (5) into it, gives

( ) ( )[ ] ( ) ( , ) ( ) ( ) ( , )

( ) ( ) ( , ) ( ) ( ) ( , )

•
= + + +

= − + +

T T T T

T T T

V t x t A P P A x t F x t Px t x t P F x t

x t Qx t F x t Px t x t P F x t
(8)

where P is the solution of + = −TA P P A Q  for a given positive definite symmetric

matrix Q. It can be shown that equation (8) can be reduced to:

2
min 1( ) ( ) ( ) 2 P ( ) ( , )λ β

•
≤ − +V t Q x t x t x t (9)

Since λmin (Q) > 0, consequently, ( ) 0
•

<V t  for all t and x ∈ Bc (η), where Bc (η) is the

complement of the closed ball B (η), centered at x = 0 with radius 1

min

2 ( , )

( )

β
η

λ
=

x t P

Q
.

Hence, the system is boundedly stable.

Remark: For the system with uncertainties satisfy the matching condition, i.e,
rank[B | f(x,t)] = rank[B], then equation (5) can be reduced to

( ) ( ) ( )
•

= +x t A BK x t  [9]. Thus, asymptotic stability of the system during slid-

ing mode is assured.
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We now design the control scheme that drives the state trajectories of the system in
equation (1) onto the sliding surface σ (t) = 0 and the system remains in it thereafter.

4.0 VARIABLE STRUCTURE CONTROLLER DESIGN

For the uncertain system in equation (1) satisfying assumptions (i) and (ii), the follow-
ing control law is proposed:

1 1 ( )
( ) ( ) [ ( ) ( )] ( )

( )
σφσ

σ δ
− −= − + −

+
t

u t CB CAx t t k CB
t (10)

where φ ∈ ℜmxm is a positive symmetric design matrix, k and δ are positive constants.

Theorem 2: The hitting condition of the sliding surface (2) is satisfied if

( ) ( , )+ ≥A BK x t f x t (11)

Proof:

In the hitting phase σT(t) σ (t) > 0; using the Lyapunov function candidate

1
( ) ( ) ( )

2
σ σ= TV t t t , we obtain

2

( ) ( ) ( )

( )
( )[ ( ) ( ) ( ) ( , )]

( )

[{ } ( ) { ( ) ( , ) } ( ) ]
( )

σ σ
σσ φσ

σ δ

φ σ σ
σ δ

• •
=

= − + − − +
+

≤ − + + + −
+

T

T

V t t t

k t
t CA CBK x t t Cf x t

t

k
t C A BK x t C f x t t

t

(12)

It follows that ( ) 0
•

<V t  if condition (11) is satisfied. Thus, the hitting condition is

satisfied.

5.0 EXAMPLE

To illustrate the performance of the proposed controller, consider the third order single
input system as given in references [2,3,4], i.e,

( ) ( ) ( ) ( , ), where
•

= + +x t Ax t Bu t f x t
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0.03 0.01 0.01 0

0.05 0.15 0.05 0

0.09 0.03 0.17 1

−   
   = − − =   
   − −   

A B

and f(x,t) = ∆Ax(t) + f1(t) where

1

0.01 0.44 sin(3.14 ) 0.01 0.004 cos(3.14 ) 0.008 0.002 sin(6.28 )

0.55 0.220 sin(3.14 ) 0.05 0.020 cos(3.14 ) 0.04 0.010 sin(6.28 )

0.50 sin(3.14 ) 0 0

0

( ) 0

5 sin(3.14 )

+ + + 
 ∆ = + + + 
  
 
 =  
  

t t t

A t t t

t

f t

t

Note that the matrix f1(t) satisfies the matching condition while the matrix ∆Ax(t)
does not. For the proportional-integral sliding mode control (PISMC), we utilize the
pole placement method to determine the value of   which yields K = [–6449.4 938.13 –
7.65] such that λ (A + BK) = {–1, –3, –4}. In this simulation, the following values are
selected: C = [10 50 0.01], φ = 500, k = 1 and δ = 0.01. For comparison purposes, the
performance of the PISMC is compared to the SVFR of the form u = –Kx where K is
the state feedback gain. The values of the state feedback gain for the SVFR chosen is
similar to the values of K in PISMV, i.e., k1 = –6449.4, k2 = 938.13 and k3 = –7.65.
Figures 1(a), 1(b) and 1(c) show the state response subjected to the initial condition
x(0) = [1 0 0]T for both controllers. Figure 2 displays the variation in the sliding surface
with respect to time. The corresponding control input for both controllers is shown in
Figure 3. It can be seen from the simulation results that the  system with mismatch
uncertainties utilizing both controllers are practically stable but the PISMC performed
better as compared to the SVFR control technique. The result also shows that the state
trajectory hits and slides on the sliding surface as intended.

6.0 CONLUSIONS

In this paper, the PI sliding mode control technique is proposed  for controlling uncer-
tain system  where the uncertainties do not satisfy the matching condition. The pro-
posed control law is compared with the state variable feedback regulator. It has been
shown mathematically and through computer simulations  that the proposed control
scheme is capable of controlling the uncertain system and is practically stable with
respect to  the mismatched uncertainty condition and performed better as compared
to the state variable feedback control technique.
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Figure 1(a),(b),(c) States responses for both controllers

Figure 2 Sliding surface for PISMC
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Figure 3 Controlled input of the system
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