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Abstract 
 

In a deregulated power market, generation companies attempt to 

maximize their profits and minimize their risks. This paper proposes a risk 

model for bidding strategy of generation companies based on EVT-CVaR 

method. Extreme Value Theory can overcome shortcomings of traditional 

methods in computing financial risk based on value-at-risk and conditional 

value-at-risk method. Also, generalized Pareto distribution is suggested to 

model tail of an unknown distribution and parameters of the GPD are 

estimated by likelihood moment method. Numerical results for risk 

assessment using the proposed approach are presented for IEEE 30-bus test 

system. According to the findings, this method can be used as a robust 

technique to calculate the risk for bidding strategy of generation 

companies. 
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1.0  INTRODUCTION 
 

In an electricity market, price of electricity is the most 

important signal for all market participants. All activities 

of generation companies (GENCOs) are affected by 

electricity price. An important characteristic of 

electricity price is its volatility. A discussion about the 

reasons of electricity price volatility can be found in [1, 

2]. The objective of a GENCO in electricity markets is to 

maximize its own profit from the sale of power and 

ancillary services. However, electricity price volatility 

and fluctuations may lead to financial loss of GENCOs. 

Thus, financial risks always threat GENCOs in electricity 

markets. Consequently, GENCOs need effective 

bidding strategy for contributing in electricity markets. 

This strategy should maximize the profit of the GENCO 

and at the same time consider forecast price 

uncertainty and risk management [3]. Therefore, 

appropriate analytical tools are required for modeling 

financial risk of GENCOs in electricity markets.  

In [4], objective is to maximize utility function, which 

is obtained from combining the risk and profit. Risk 

penalty factor represents the relation between the risk 

and profit, which is depend on the GENCO's risk 

aversion. In [4], risk is modeled through mean variance 

method, which is a model in portfolio selection. In [5], 
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an extended version of mean variance method, 

named mean variance skewness model is proposed. 

This method maximizes the expected profit and 

skewness, while minimizing the variance of return as the 

risk. Expected downside risk is used as risk measure in [1]. 

Another tool for risk assessment is value at risk (VaR). It 

determines Financial risk associated with a production 

schedule, one can estimates that at a specified 

confidence level, GENCO due to fluctuations LMPs how 

sees loss [6]. Confidence level depends on the amount 

of risk aversion GENCO. Normally, confidence level for 

a medium risk aversion is 95%, the highest confidence 

level is 99% (high risk aversion), the lowest confidence 

level is 92.5% (low risk aversion) [6]. When VaR is 

accepted that base on the normal distribution. This 

assumption for the market price may be not 

acceptable.  

CVaR is the average loss that has exceeded the VaR 

value. Since CVaR is larger than the VaR, scheduling 

with less CVaR necessarily, will lead to less VaR [6]. CVaR 

can be models for discrete random variables. It is an 

advantage of CVaR in portfolio optimization [7]. 

In [6] VaR is calculated using the safety parameter 

and security constrained self-scheduling method is 

proposed that financial risk is measured using the VaR 

and CVaR. The other security constrained self-

scheduling method in the day ahead market is 

proposed in [8] that unit commitment of generators is 

considered in a mixed integer programming (MIP) 

model. In [9] using expected downside risk (EDR) as 

constraint to modeling of financial risk. The formulated 

problem is mixed integer linear program.  

In [7] a review of risk management methods in the 

power market is performed. Hydropower scheduling 

model is considered in power market and stochastic 

programming method is used in Hydropower 

scheduling. 

Recently the new method has been proposed for 

risk management, uses fuzzy numbers for modeling the 

price uncertainty. In [10] a stochastic profit 

maximization problem was presented in which price 

uncertainty is modeled using fuzzy number.  

It is clear that previous methods of calculating VaR 

and CVaR that was used for market risk analysis; the key 

point was to describe the loss distribution function F, 

which is usually used from the normal distribution. As 

mentioned, the normal distribution for the power 

market price may be not acceptable.  

Extreme value theory (EVT) is a branch of statistics 

theory [11]. For data analysis are used that have 

abnormal behavior and it considers an unknown loss 

distribution function [12]. 

McNeil studied estimation of the tail of loss 

distribution and estimated the measure of risk for 

financial time series using EVT [13].  

In this paper, to model the tail of unknown 

distribution is used GPD distribution. Most often 

Maximum Likelihood (ML) method is used to calculate 

the parameters of GPD but this method has problems. 

This method has not answer for some samples. 

Calculation is complex and has a convergence 

problem. This method for 𝜉 ≥ 1 has not answer because 

the likelihood function has not local maximum. A new 

method for calculating the parameters is likelihood 

moment method. This method has simple calculation, 

always exists and asymptotic effects are high. It has a 

little sensitivity to the chosen threshold [8, 14]. 

This paper is organized as follows: section II describes 

EVT model and compute VaR and CVaR based on EVT; 

section III is threshold selection and describes two 

methods of parameters estimation: Maximum likelihood 

and likelihood moment estimators; section IV and V are 

numerical results and conclusions. 

 

 

2.0  METHODOLOGY  
 
2.1  Extreme Value Theory and Risk Management 

 
There are two ways to model the distribution tail. The 

older method is Block maxima (BM) method. In this 

method, time is divided into blocks or periods and the 

maximum sample in each period will be selected and 

considered. This method is useful when data include of 

a maximum set. The second method is peak over 

threshold (POT). This method considers higher values of 

the threshold, more effective and more used in 

financial applications [12]. So our choice of method in 

this paper is POT. 

We consider an unknown loss distribution function 

F(x) of the variables x. we focus on the distribution 

functionFu. Distribution function Fu is called conditional 

excess distribution function (cedf) as follows: 

 

Fu(y) = Pr{x − u ≤ y|x > 𝑢}                                              (1) 

 

Where y = x − u is called excess number. 

This probability can be expressed as follows: 

 

Fu(y) =
Pr{x − u ≤ y|x > 𝑢}

Pr(x > 𝑢)
=

Pr{u < 𝑥 ≤ y + u}

Pr(x > 𝑢)
 

=
F(y + u) − F(u)   

1 − F(u)
                                                                  (2) 

 

Sincex = y + u . So we can write the following formula 

for x > 𝑢[16]. 

 

F(x) = [1 − F(u)]Fu(y) + F(u)                                         (3) 

 

Blakema (1974) and De Haan, Pickand (1975) provided 

a result about conditional excess distribution that can 

be expressed as the following theorem: 
Theorem1. For a large group of underlying distribution 

functions, conditional excess distribution function 

Fu(y)for a large value of u, is estimated as follows: 
 

Fu(y) ≅ Gξ,σ(y);           u → ∞                                              (4) 
 

Where 

Gξ,σ(y) = {1 − (1 +
ξy

σ
)

− 
1

ξ
   ξ ≠ 0

1 − e−y/σ              ξ = 0

}                                               (5) 
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For y ∈ [0, xF − u]  if ξ ≥ 0 and y ∈ [0, −σ/ξ]if ξ < 0. xF ≤ ∞is 

the right endpoint of F. Gξ,σ is called generalized Pareto 

distribution (GPD). ξis called tail index, σ is called scale 

parameter [12]. 

According to the above theorem, we can use the 

GPD instead of Fu(y) in (3). 

 

F(x) = [1 − F(u)]Fu(y) + F(u)(6) 

 

We require an estimate of F(u). An obvious candidate 

is empirical estimate(𝑛 − 𝑁𝑢)/𝑛, where n is the total 

number of observations and 𝑁𝑢 is the number of 

observations above the threshold. The result is as 

follows: 

F(x) = 1 −
Nu

n
(1 + ξ

x−u

σ
)−1/ξ                                                        (7) 

Equation (7) is tail of estimator and it is valid only for x >
𝑢 [15]. 

 
If F is the loss distribution function and β is the 

confidence level, VaR is calculated from the following 

equation: 

VaRβ = F−1(1 − β)                                                                     (8) 

F−1(α) = u +
σ

ξ
[(

n

Nu
α)

−ξ
− 1]                                                  (9) 

If α = 1 − β, according to equation (8), equation (9) 

defines VaR for us[17]. 

VaRβ = u +
σ

ξ
[(

n

Nu

(1 − β))

−ξ

− 1]                                (10) 

CVaRβ = VaR + E(x − VaRβ|x > VaRβ)                         (11) 

 
Where E(x − VaRβ|x > VaRβ) is the mean of excess 

distributionFVaRβ
(y) over the thresholdVaRβ. The EVT 

model for excess distribution above a given threshold is 

stable. If a higher threshold is taken, the excess 

distribution above the higher threshold is also a GPD 

with the same shape parameter but a different scale 

parameter. Consequence is as follow: 
 

FVaRβ
(x − VaRβ) = Gξ,σ́(x − VaRβ)                                           (12) 

 
The mean of the above distribution is given by(β +
ξ(VaRβ − u))/(1 − ξ). The CVaR is estimated as [12] 

CVaRβ =
VaRβ

1−ξ
+

β−ξu

1−ξ
                                                                   (13)                      

Now, should ξ and σ parameters in GPD distribution and 

the threshold u are calculated. Then market risk can be 

calculated. 

 

2.2  Parameters Estimation 

 

Threshold selection is important. If we choose too low a 

threshold, there might be biased estimation. Otherwise, 

choose high threshold will cause estimation with high 

standard errors because Number of observations 

decreases (variance of parameter estimation will be 

too high) [17]. 

We usually use Mean Excess Function (MEF) to 

estimate threshold. 

e(u) = E(X − u|X > 𝑢)                                                           (14) 

Where u is the threshold and 𝑒(𝑢) is the mean excess 

function. 

For GPD, the mean excess function is a linear function 

given by de Rozario. 

 

e(u) =
σ+ξu

1−ξ
                                                             (15) 

This is increasing if 𝜉 is positive [12]. 

The mean excess plot, introduced by Davidson and 

Smith (1990), which graphs the conditional mean of the 

data above different thresholds, the sample mean 

excess function which is defined by 

enu
(u) =

∑ (xi−u)nu
i=1

∑ I(xi>𝑢)
nu
i=1

                                                                (16) 

Where I=1 if (𝑥𝑖 > 𝑢) and 0, otherwise. 𝑛𝑢is the number 

of data points which exceed the threshold u. If the 

empirical MEF has a positive gradient above a certain 

threshold u, it is an indication that the data follows the 

GPD with a positive shape parameter ξ [15]. 

 

3.2  Estimation of Parameters ξ, 𝜎 

 

After threshold selection, next step is the estimation of 

parameters ξ, 𝜎 of the GPD. The estimation can be 

obtained using the method of maximum likelihood. 

 

3.3  Maximum Likelihood Estimation (MLEs) 

 

To estimation value ξ and 𝜎, process is following: 

Get derivative through 𝐺𝜉,σ , and then we have density 

function: 

gξ,σ(x) =
1

σ
(1 + ξ

x

σ
)

−(
1

ξ
+1)

(17)    

For𝑥1, 𝑥2, … , 𝑥𝑛, density function is as follow: 
1

σn
∏ (1 + ξ

xi

σ
)

−(
1

ξ
+1)n

i=1                                                        (18) 

Likelihood function is as follow: 

L(x, ξ, σ) = −n(lnσ) − (
1

ξ
+ 1) ∑ ln (1 +

ξxi

σ
)n

i=1                     (19) 

To calculate𝜉, 𝜎, get derivative through𝐿(𝑥, 𝜉, 𝜎): 

∂L(x, ξ, σ)

ξ
=

1

ξ2 ∑ ln (1 +
ξxi

σ
) − (

1

ξ
+ 1) ∑

xi

σ + ξxi

n

i=1

n

i=1

= 0 

∂L(x,ξ,σ)

σ
=

−n

σ
+ (

1

ξ
+ 1) ∑

ξxi

σ2+σξxi

n
i=1 = 0(20) 

With solving above equations, we can get ξ , [11]. 

 

2.3  Likelihood Moment Estimation (LMEs)  

 

We can use (b, ξ) instead of (𝜎, ξ) where b=ξ/𝜎. 

Let X= (𝑥1, 𝑥2, … , 𝑥𝑛). The likelihood function is 

𝑙(𝑥, 𝑏, 𝜉) = 𝑛𝑙𝑛 (
𝑏

𝜉
) − (

1

𝜉
+ 1) ∑ ln (1 + 𝑏𝑥𝑖)𝑛

𝑖=1    (21) 

The equation satisfied by the MLEs for (b, ξ) is equivalent 

to  

𝑛−1 ∑ (1 − 𝑏𝑥𝑖)−1 − (1 − 𝜉)−1 = 0, 𝜉 = −
1

𝑛
∑ ln (1 −𝑛

𝑖=1
𝑛
𝑖=1

𝑏 𝑥𝑖)                                                                                 (22) 

Eliminating ξ, the equation is as follow: 

𝑛−1 ∑ (1 − 𝑏𝑥𝑖)−1 − (1 +
1

𝑛
∑ ln (1 − 𝑏𝑛

𝑖=1
𝑛
𝑖=1 𝑥𝑖))−1 = 0 (23) 

The numerical solution (23) is complex and may have 

convergence problems. 
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Note that E((1 − bX)r) = (1 + rξ)−1for any constant r 

satisfying1 + 𝑟𝜉 > 0, the sample version which is 

equivalent to 

n−1 ∑ (1 − bxi)
r − (1 +n

i=1 rξ)−1 = 0                                     (24) 

The equations satisfied by the MLEs in (22) correspond 

to𝑟 = −1. 

Now it can be see that the condition ξ<1 exists for ML, 

the condition1 + 𝑟𝜉 > 0 for (24) to hold when 𝑟 = −1. 

Replacing the r in (24) by –
𝑟

𝜉
  together with the second 

equation in (22) gives the estimating equation for b: 
1

𝑛
∑ (1 − 𝑏𝑥𝑖)𝑝 − (1 − 𝑟)−1 = 0         𝑛

𝑖=1                                (25) 

Where 𝑝 = 𝑟𝑛/ ∑ ln(1 − 𝑏𝑥𝑖)𝑛
𝑖=1  and r < 1. 

The LMEs equal the MLEs approximately if the r chosen 

to the true parameter ξ. The LMEs with 𝑟 = −
1

2
 has high 

asymptotic efficiencies, and should be recommended 

if there is no information about ξ. Unlike (23), the 

numerical solution of (25) becomes easy due to the 

following theorem. 

Theorem2. Let g (b) is the left side of (25). Then, 

(a) g (b) is a smooth monotone function of b unless 

𝑟 = 0 or𝑥1, 𝑥2, … , 𝑥𝑛. 

(b) 𝑙𝑖𝑚𝑏→−∞ 𝑔(𝑏) < 0 And 𝑙𝑖𝑚𝑏→𝑥(𝑛)
−1  𝑔(𝑏) > 0 if𝑟 <

1

2
 , 𝑟 ≠ 0 and 𝑛 > 2. 

Using theorem 2, (25) has a unique solution 𝑏̂ ∈ (−∞, 𝑥(𝑛)
−1 ) 

which can be easily obtained by numerical iterative 

approaches. Moreover, 𝑏̂0 = −1 can simply is used as an 

initial value of the procedure, but any value belonging 

to (−∞, 𝑥(𝑛)
−1 ) is qualified. 

When 𝑏̂ is obtained, ξ is estimated by 

𝜉 = −
1

𝑛
∑ ln (1 − 𝑏̂𝑥𝑖)

𝑛

𝑖=1

 

Then 𝜎 can be estimated by σ̂ = 𝜉/𝑏̂ [8, 14]. 

 

 

3.0  RESULTS AND DISCUSSION 
 
This model is tested on the IEEE 30-bus system [18]. The 

data used in the numerical simulation of this paper 

have been obtained from PJM market. Prices are for the 

year 2009. Prices for a week, equivalent to 168 hour are 

predicted. Using this information the optimization 

program is written in Gams software and loss is 

calculated. Then using Matlab software risk is 

calculated using EVT-CVaR. According to what was 

stated in the past, we need to estimate parameters and 

threshold selection for the calculation of EVT-CVaR. 

Figure 1 shows the diagram that is obtained from the  

MEF. As can be seen u = 147 is chosen, because after it, 

plot is linear and has a positive slope. 

 

 
 

Figure 1 MEF chart to select the threshold 

 

 

After estimating the parameters using likelihood 

moment method in Matlab software following results 

were obtained: 

ξ = 0.3486 

σ = 2261.4 
Now we can calculate the CVaR and VaR using EVT. 

Results are given in the Table 1 for various confidence 

levels.  

 
Table 1 CVaR and VaR calculation results using EVT 

 
CVaR VaR β 

5163.2 1410.8 0.90 

6033.9 1978 0.92 

8105.3 3327.3 0.95 

 

Results are shown on the chart in Figure 2. 

Figure 2 CVaR and VaR calculation results using the EVT 

 

 

For all β values should CVaR value is larger than the 

VaR. results obtained from calculation the VaR and 

CVaR using EVT in Table 1, it shows. 

According to the Table 1, will be seen that 

increasing β increases VaR and CVaR. Since β shows 

the level of GENCO risk, increasing β is increasing VaR 

and CVaR and is leading to lower profits. 
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4.0  CONCLUSION   
 
This paper proposes a risk model for bidding strategy of 

generation companies based on EVT-CVaR method. 

Extreme Value Theory (EVT) can overcome 

shortcomings of traditional methods in computing 

financial risk measures of value-at-risk (VaR) and 

conditional VaR (CVaR). Also, generalized Pareto 

distribution (GPD) is suggested to model tail of an 

unknown distribution and parameters of the GPD are 

estimated by likelihood moment (LM) method. 

Numerical results for risk assessment are presented for 

IEEE 30-bus test system and The results of the proposed 

approach compared with traditional 

methods(CvaR,VaR). 
Based on these results the calculated risk of the 

proposed method is equal to the amount of risk 

calculated by the CvaR. These results prove the 

accuracy of this method. 
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