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Abstract 
 

At diminishing separations, the load carrying capacity of opposing rough surfaces is 

distributed among asperities across a smaller contact area as compared with the 

apparent contact area. An improved understanding on asperity interactions is 

therefore required in order to better predict the tribological behaviour of a rough 

surface contact. In this paper, based on Weir’s method for computing the work of 

adhesion, a simplistic adhesive contact model is proposed, applying the Lennard-Jones 

force law, to study an asperity pair interaction. Assuming that the tip represents an 

asperity, the numerical model is subsequently applied to simulate a Tungsten Carbide 

(WC) coated AFM tip indenting on a Diamond (111) surface. It was found that the 

simulated pull-off force agrees with the measured value by Enachescu et al for a WC 

AFM tip on a Diamond (111). 
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1.0  INTRODUCTION 
 

The size of equipments and measurement devices are 

decreasing with the advancement in technology and 

science as forecasted in Moore’s law. The 

miniaturisation of machine elements introduces nano-

scale contact in the form of increased surface asperity 

interactions, which are heavily influenced by 

intermolecular and surface forces such as boundary 

adhesion [1]. To understand these contact 

interactions, one of the earliest theories proposed by 

Hertz [2] for local elastic deformation of smooth 

contacting bodies, could be used to describe the 

normal contact load, deflection of the body and the 

contact area between two contacting bodies. 

However, the model excludes any kind of surface 

forces. By considering surface adhesion, Johnson et al 

[3] proposed a contact model using fracture-

mechanics, known as the JKR model. On the other 

hand, Derjaguin et al [4] approximated the effects of 

adhesion between two contacting spherical bodies by 

assuming that surface forces occur only outside of the 

contact region, thus giving the DMT model. 

Initially, both models seemed to have produced 

contradicting ideas, but were later proven to be 

interrelated by Tabor [5]. However, there are still 

shortcomings in using the aforementioned models: 

DMT model is only valid at small values of Tabor’s 

coefficient ( 1 ) while the JKR model is only valid at 

higher values of the Tabor’s coefficient ( 1 ). This 

led to further adhesive contact model development 

by Muller et al [6], using Lennard-Jones potential to 

describe the behaviour of two contacting spheres and 

Maugis [7], using the Dugdale model with relation to 

Tabor’s parameter, to illustrate the transition between 

JKR to DMT. Recently, improved numerical analysis on 
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the adhesive contact was proposed by Attard and 

Parker [8], Greenwood [9], Feng [10] and Chong [11]. 

A common parameter used for the above-

mentioned adhesive contact models involves the 

surface energy for the materials, which is ascertained 

empirically most of the time. Therefore, by using Weir’s 

[12] method in computing the surface energy, this 

study proposes a simplistic numerical scheme to solve 

for an adhesive contact using the Lennard-Jones 

power law. For validation, the numerical scheme is 

applied to simulate a Tungsten Carbide (WC) coated 

AFM tip on a Diamond (111) surface. The predicted 

pull-off force is then compared with the measured 

value by Enachescu et al [13]. 

 

 

2.0  MATHEMATICAL MODEL 
 

The study attempts to simulate an adhesive contact, 

considering a spherical cap on the AFM tip indenting 

a planar surface. The contact problem is illustrated in 

Figure 1. 

 
Figure 1  Schematic of spherical cap AFM tip indenting 

sample 

 

 

The deformed contact profile,  rh  given in Figure 1 is 

described as follow: 
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where  is the non-deformed indenter or tip approach, 

Z  being the equilibrium spacing between two 

parallel flat surface of 1.65 Å [14,15] with R referring to 

the curvature radius of the spherical cap on the AFM 

tip. The deformation of the contact,  rw   is given as: 
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where E  represents the reduced modulus of elasticity 

with K  being the complete elliptic integral of the first 

kind. The term  rp is the contact pressure within the 

approaching contact and is expressed as: 
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where,  
2121 22    is the work adhesion.  

     The surface energy terms,  are most often 

obtained experimentally, leading to an empirical 

solution for the adhesive contact. Therefore, in order 

to have a more theoretical intensive model, Weir’s 

method [12] is applied in computing the surface 

energy as follows:  

 

  
  22

1




nmaB


               (Eq. 4) 

 

where   31Ma  , is the material Poisson’s ratio, and  

  213  EB is the material bulk modulus with M  and 

  referring to the molecular weight and density of the 

material. The terms m  and n depend on the power of 

the Lennard-Jones potential, which are 6 and 12 

respectively in this study. 

 

 

3.0  NUMERICAL APPROACH 
 

Applying the discretisation provided by Feng [10], 

Equation (1) can then be rearranged to give a residual 

equation,   as follows: 

     rW
r

ArHr 
2

2

                        (Eq. 5) 

The residual is solved iteratively until, 3101  . In 

this study, the integral term for the discretised surface 

deflection, W is calculated using Gaussian quadrature. 

Subsequently, following the numerical scheme as 

being illustrated in Figure 2, the discretised profile, H  is 

successively relaxed using: 

oldoldnew HH  001.0                         (Eq. 6) 
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Figure 2  Flowchart for the numerical scheme 

 

 

4.0  RESULTS AND DISCUSSIONS 
 

In the study, the contact was solved for a domain of 

128 elements. The simulation parameters for an AFM tip 

coated with WC on a Diamond (111) surface are 

tabulated in Table 1, giving a Tabor’s parameter of 

0.014, which is well within the DMT domain. This bodes 

well with the assumption of a spherical cap AFM tip, 

where deformation of the tip is mainly focused along 

the tip area. 

Figure 3(a) shows the non-dimensional contact and 

profile at different tip approach locations, illustrating 

the build-up of compressive stress, which eventually 

would elastically deform the WC coated AFM tip with 

a further increase in indentation. Because the 

investigated contact problem is shown to be within the 

DMT region, it can be observed that tip deflection is 

minimal as illustrated in Fig 3(b). 
 
 

 

 
Figure 3 (a)  Contact characteristics of the WC coated 

AFM tip on a Diamond (111) surface: Non-dimensional 

contact pressure 

 

 
Figure 3 (b)  Contact characteristics of the WC coated AFM 

tip on a Diamond (111) surface: Non-dimensional profile 
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The force-cantilever displacement curve measured 

by Enachescu et al [13] is given as in Figure 4(a). The 

definitive parameter from the plot - pull-off force, is 

given as 7.3nN. Applying the proposed numerical 

model, using Weir’s method [12] in computing the 

theoretical work of adhesion (see, Figure 4(b)), the 

predicted pull-off force is obtained as 8.6nN, giving a 

deviation of 17.8% from the measured value. At such 

diminishing scale, the difference is deemed to be 

acceptable because the proposed numerical 

scheme assumes an ideal contact between the AFM 

tip and the surface. Whereas, in reality other factors 

may also reduce the “stickiness” of the contact (e.g. 

foreign particles between contacts, nano-scale 

surface asperity interactions along the coated tip or 

surface). 

 

 
Table 1  Simulated parameters for a WC coated AFM on a 

Diamond (111) surface 

 

 
Diamond (111) 

[16] 

Tugnsten Carbide 

[17] 

Molar Mass 

(kg) 
1.99 x 10-26 3.25 x 10-25 

Density 

(kg m-3) 
3500 15250 

Young’s Modulus  

(GPa) 
1164 600 

Poisson’s Ratio 0.079 0.2 

 

 

 
 

Figure 4 (a)  Measured and simulated force curves for a WC 

coated AFM on a Diamond (111) surface: Force-Cantilever 

displacement [13] 

 

but the DMT fit experimental data showed a 0.019 Tabor’s coefficient that is 41.9% lower than the

theoret ical calculat ions.

After ret rieving Tabor’s coefficient and the radius of the spherical cap, simulat ing the spherical

cap of the AFM tip indent ing sample is done by the computat ional numerical analysis. With the

simulat ion, unlike the experimental data, it is possible to examine the deformat ion of the indenter

as well as the pressure profile which are shown below.

From figure 3, deformat ion is shown as the indenter approaches the sample. At this low of a

Tabor’s coefficient , it is difficult to judge the instance when the indenter jumps-on the sample by

using the surface and indenter profile graph. On the other hand, the pressure profile can be used to

determine the jump on point as the pressure changes from a negat ive pressure (tensile) to a posit ive

pressure (compressive).

Figure 4 shows the pressure profile of the AFM tip indent ing on the sample. The graph shows

that the pressure is tensile as the indenter approaches the sample at the upper limit of the user

defined approach, ↵. In contrast , at approach, ↵ = 0.0212nm, the pressure profile has a significant

shift from being tensile to compressive at the beginning of the plot as seen above. Thus, showing a

jump-on contact by the indenter at that part icular approach. As approach increases, the beginning

of the plot will show a higher compressive pressure and the tensile force will shift towards the end

of the plot .

With the simulat ion done, another comparison can be made with the pull-o↵ force of the theo-

ret ical calculat ions based on Lennard-Jones potent ial and the experimental data. Feng [9] stated in

his paper that the minimum point of the force-approach graph produced from the numerical analysis

of the theoret ical calculat ion is the pull-o↵ force. Thus, a full computat ional numerical analysis for

the force-approach curve is carried out and shown below.
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FIG. 2. Friction map of an individual island. All friction and
local contact conductance measurements were performed on

similar islands. The image size is 300 Å 3 300 Å.

to contact area. These results show unambiguously that

the load dependence of the contact area for this single

asperity interface can indeed be described by the DMT

model. Furthermore, in the inset of Fig. 3, we also fitted

the first curve with the JKR model using the constraint

Lc ≠ 0.1 mN. The incompatibility of the JKR model

applied to our single-asperity contact is clearly shown by

the graph. We also found from the fitting statistics that the

mean square deviation of the JKR fit is more than 1 order

of magnitude higher than that of the DMT. Moreover, a

FIG. 3. A family of 128 I -V curves recorded as a function
of increasing load up to 1.7 mN, while the sample was biased
(for clarity, only each seventh curve is shown). Each curve
shows a clear semiconductorlike behavior. The inset represents
the current measured through the tip-sample contact vs load, at
different constant voltages. Note the accurate fit of the current,
which is proportional to the contact area, to the prediction of the
DMT continuum mechanics model. A JKR fit, inserted only for
the first set of experimental data, is clearly incompatible with
this hard, stiff contact.

JKR fit using Lc as a free parameter predicts a value quite

different from the independently measured Lc.

Friction measurements were performed using a

0.23 Nym cantilever to enhance the sensitivity to fric-

tional forces. The maximum applied load during the

friction experiments was 20 nN, well within the wearless

friction regime. The radius of curvature of the parabolic-

shaped tip was obtained by scanning over the sharp edges

of a faceted SrTiO3s305d sample [5], and found to be

110 6 10 nm. The radius of curvature of the tip was mea-

sured before and after tip-sample contact, and no evidence

of wear was observed. Using Lc ≠ 2 2p gR, we can

obtain g from the measured pulloff force from force vs

displacement experiments. For Lc ≠ 2 7.3 nN (inset of

Fig. 4) and R ≠ 110 nm, we find that g ≠ 0.01 Jym2.

Using z0 ≠ 2 Å, Ediamond ≠ 1164 GPa, ydiamond ≠ 0.08
[27] and Etip ≠ 714 GPa, y tip ≠ 0.24, we find that m ≠
0.019. Indeed, this value is much smaller than the DMT

condition m , 0.1 discussed above, showing that the

contact is firmly in the DMT regime, and that the DMT

model applies.

Figure 4 shows the results of frictional force measure-

ments as a function of applied load, which were repro-

ducible at different locations on the sample. The data in

Fig. 4 were obtained by decreasing the load from 12 nN

to negative loads (unloading). Experiments when the load

was increased (loading) exhibited the same behavior as

shown in Fig. 4, indicating that the deformation of the

contact is elastic for the loads investigated. The data in

Fig. 4 can be fitted with the DMT model, treating both g
and the shear strength t as free parameters, demonstrat-

ing that friction is proportional to A. The fit (solid line)

results in a pulloff force of 2 7.3 nN and a shear strength

of 238 MPa. The contact area is 3.9 nm2 at zero applied

load (due to adhesive forces) and 7.4 nm2 at the maxi-

mum applied load of 12 nN. No friction data for loads

FIG. 4. Friction vs load showing the same dependence as
that of contact conductance vs load, and therefore the same
dependence predicted by the DMT model, showing that friction
is proportional to the contact area. The inset shows a force-
distance curve with the pulloff force, in very good agreement
with the value obtained from the DMT fit.
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Figure 4 (b)  Measured and simulated force curves for a WC 

coated AFM on a Diamond (111) surface: Force-Tip 

approach 

 

 

4.0  CONCLUSION 
 

A numerical scheme is proposed, solving for the 

adhesive contact using the Lennard-Jones force law 

together with Weir’s method in computing the 

theoretical value for the work of adhesion,  . For a 

WC coated AFM tip on a Diamond (111) surface, the 

pull-off force predicted is shown to deviate by 17.8% 

from the measured value. This is in agreement with 

the experimental measurement, looking at the fact 

that the proposed numerical model assumes a 

theoretical work of adhesion, based on Weir’s 

method. The study prepares a platform to further 

investigate the relevance of Weir’s approach in 

predicting the work of adhesion for an adhesive 

contact with higher value of Tabor’s parameter. 
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