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Graphical abstract 
 

 

Abstract 
 

In this study, new hybrid model is developed by integrating two models, the discrete 

wavelet transform and least square support vector machine (WLSSVM) model. The hybrid 

model is then used to measure for monthly stream flow forecasting for two major rivers in 

Pakistan. The monthly stream flow forecasting results are obtained by applying this model 

individually to forecast the rivers flow data of the Indus River and Neelum Rivers. The root 

mean square error (RMSE), mean absolute error (MAE) and the correlation (R) statistics are 

used for evaluating the accuracy of the WLSSVM, the proposed model. The results are 

compared with the results obtained through LSSVM. The outcome of such comparison 

shows that WLSSVM model is more accurate and efficient than LSSVM.  

 

Keywords: Artificial neural network, modeling, least square support system, discrete wavelet 

transform 

 

Abstrak 
 

Dalam kajian ini, model hibrid baru dibangunkan dengan mengintegrasikan dua model, 

gelombang kecil diskret dan model Kuasa dua Terkecil Vektor Sokong (WLSSVM). Model 

hibrid kemudiannya digunakan untuk menguji ramalan aliran-aliran bulanan untuk dua 

sungai utama di Pakistan. Keputusan ramalan aliran bulanan diperolehi dengan 

menggunakan model ini secara berasingan untuk sungai data Sungai Indus dan Sungai 

Neelum . Punca min ralat kuasa dua ( RMSE ), min ralat mutlak ( MAE ) dan korelasi statistik 

(R ) digunakan untuk menilai keupayaan model WLSSVM yang dicadangkan. Keputusan 

model yang dicadangkan dibandingkan dengan keputusan yang diperolehi 

menggunakan LSSVM. Hasil daripada perbandingan ini menunjukkan bahawa model 

WLSSVM adalah lebih tepat dan cekap daripada LSSVM . 

  

Kata kunci: Rangkaian neural buatan, pemodelan, kuasa dua terkecil sistem sokongan, 

diskret gelombang kecil transformasi 

 

© 2015 Penerbit UTM Press. All rights reserved 

  

 

 
1.0  INTRODUCTION 
 

The accuracy of stream flow forecasting is a key factor 

for reservoir operation and water resource 

management. However, streamflow is one of the most 

complex and difficult elements of the hydrological 

cycle due to the complexity of the atmospheric 

process. Pakistan is mainly an agricultural country with 

the world’s largest contiguous irrigation system. 

Therefore, the economy of Pakistan heavily depends 

on agriculture, hence rainfall is needed to keep its 

rivers flowing. The Indus River and Neelum River are the 

largest source of water in different provinces of 

Pakistan. It forms the backbone of agriculture and 

food production in Pakistan.   
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Recently, the support vector machine (SVM) method, 

which was suggested by [18], has been used in a 

range of application, including hydrological modeling 

and water resources process [2]. Several studies have 

been carried out using SVM in hydrological modeling 

such as streamflow forecasting [2], rainfall runoff 

modeling [6] and flood stage forecasting [20]. In the 

hydrology context, SVM has been successfully applied 

to forecast the flood stage [12] and to forecast 

discharge [11]. Previous studies have indicated that 

SVM is an effective method for streamflow forecasting 

[2]. As a simplification of SVM [16], [17], have proposed 

the use of the least squares support vector machines 

(LSSVM). LSSVM has been used successfully in various 

areas of pattern recognition and regression problems 

[8].  

In order to make it computationally inexpensive 

without compromising over reliability and accuracy, 

LSSVM were introduced [17], this approach depends 

on computing least square error by considering the 

input vectors and the obtained vectors(results). The 

inclusion of this step ensures a higher level of accuracy 

in comparison to SVM. Besides, LSSVM is found suitable 

for solving linear equations which is a much needed 

characteristics. Unlike SVM, LSSVM works under the 

influence of equality constraints. Equality constraints 

are instrumental in reducing computational speed. 

Regarding convergence efficiency LSSVM provides an 

appreciative level of precision and carries good 

convergence [4], [5]. LSSVM is still considered in 

developing stages and is rarely used in addressing the 

problems of hydrological modeling [14]. However, the 

model was successfully applied for solving regression, 

pattern recognition problems [8] and for modeling 

ecological and environmental systems [21]. 

Technically both of these methods, i.e. SVM and LSSVM 

are equally effective. In terms of implementation 

LSSVM is comparatively easier than SVM. In terms of 

their generalized performance both of them are 

comparable [19] and are found reliable.  

Though LSSVM is found good in terms of stability and 

accuracy and generally it seems to be a good choice 

for training data. The only concern is that for getting 

generalized results, like any other AI based technique 

LSSVM also requires huge amount of data for training 

purposes. With this idea i.e. training it on large 

database would make it able to deal with most of the 

variations which are likely to be there in the collected 

dataset. So there is strong need to utilize the capability 

of LSSVM by optimizing the input data. The present 

research addresses this issue and successfully optimizes 

the training and testing data. 

Recently, wavelet theory has been introduced in the 

field of hydrology, [3]. Wavelet analysis has recently 

been identified as a useful tool for describing both 

rainfall and runoff time series [3].  In this regard there 

has been a sustained explosion of interest in wavelet in 

many diverse fields of study such as science and 

engineering. During the last couple of decades, 

wavelet transform (WT) analysis has became an ideal 

tool studying of a measured non-stationary times 

series, through the hydrological process. 

An initial interest in the study of wavelets was 

developed by [9]. Daubechies employed the wavelets 

technique for signal transmission applications in the 

electronics engineering. Foufoula Georgiou and 

Kumar [7] used geophysical applications. 

Subsequently, [15] attempted to apply wavelet 

transformation to daily river discharge records to 

quantify stream flow variability. The wavelet analysis, 

which is analogous to Fourier analysis is used to 

decomposes a signal by linear filtering into 

components of various frequencies and then to 

reconstruct it into various frequency resolutions. Rao 

and Bopardikar [13] described the decomposition of a 

signal using a Haar wavelet technique, which is a very 

simple wavelet.  

The main contribution of this paper is to propose a 

novel hybrid integrating model of least square support 

vector machine with wavelet transform model for 

streamflow river data. In order to achieve this target, 

the daily streamflow data of Indus River and Neelum 

River were decomposed into subseries at different 

scale by Mallat algorithm. Then, effective subseries 

were summed together and the used as inputs into the 

LSSVM model for streamflow forecasting. Finally to 

evaluate the model ability, the proposed model was 

compared with individual model LSSVM. 

 

 

2.0  METHODS AND MATERIALS 

 
In the subsections, Least square support vector 

machine models, Discrete wavelet transform method 

along with the data used for research purpose is 

explained in details. 

 

2.1 Least Square Support Vector Machines (LSSVM) 

Model 

 

LSSVM optimizes SVM by replacing complex quadratic 

programming. It achieves this by using least squares 

loss function and equality constraints. For the purpose 

of understanding about the construction of the model 

consider a training sample set represented by ),( iyix

where xi represents the input training vector. Suppose 

that this training vector belongs to ‘n’ dimensional 

space i.e. Rn, so we can write
n

Rix  . Similarly, 

suppose that yi represents the output and this output 

can be described as, Riy  . SVM can be described 

with the help of Equation (1) 

bx
T

wxy  )()(                                                               (1) 

Where )(x is a function that ensures the mapping of 

nonlinear values into higher dimensional space. LSSVM 

formulates the regression problem according to 

Equation (2) 
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The regression model shown in Equation (1) works 

under the influence of equality constraints  

iebix
T

wxy  )()(  , ni ...,,2,1               (3) 

It introduces Lagrange multiplier for:  
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Where i represents Lagrange multipliers. Since 

Equation (4) involves more than one variable so, for 

studying the rate of change partial differentiation of 

Equation (5-8) is required. Therefore differentiating 

Equation (4) with respect to iebw ,, and i  and 

equating them equal to zero yields the following set of 

Equations. 
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Substituting Equation (5-7) in Equation (4) we get the 

value of ‘w’. This ‘w’ is described according to 

Equation (8) 
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Putting Equation (9) in Equation (3) 
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Where, K(xi, x), represents a kernel such that: 

)()(),( ix
T

ixxixK 
                                 

(11) 

 The  vector which is a Lagrange Multiplier and the 

Biased can be computed by solving a set of linear 

equations shown in Equation (12) 
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 Where,  nyyy ...;;1 ,  1...;;11  ,  n ...;;1 This 

eventually constitutes LSSVM model which is described 

according to Equation (13).  
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 The model shown in Equation (13) deals with the 

linear system and solution this linear system is provided 

by i , b . The high dimensional feature space is 

defined by a function. This function is generally known 

as ‘kernel function’ and is represented by ),( xixK  

There are various choices available for picking up this 

function. 

 

2.2  Discrete Wavelet Transform (DWT) 

 

A wavelet based forecasting method for time series is 

introduced which construct by a multiple resolution 

decomposition of the signal using the redundant trous 

wavelet transform and has the advantage of being 

shift – invariant. Wavelet decomposition is used to 

propose as a learning tool to predict consecutive 

application data. 

Wavelets are becoming an increasingly important 

tool in time series forecasting. The basic objective of 

wavelet transformation is to analyze the time series 

data both in the time and frequency domain by 

decomposing the original time series in different 

frequency bands using wavelet functions. Unlike the 

Fourier transform, in which time series are analyzed 

using sine and cosine functions, wavelet 

transformations provide useful decomposition of 

original time series by capturing useful information on 

various decomposition levels.  

Assuming a continuous time series )(tx , ],[ t , a 

wavelet function can be written as  
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Where t stands for time,  for the time step in which 

the window function is iterated, and ],0[ s  for the 

wavelet scale. )(t called the mother wavelet can be 

defined as 0)( 

 dtt . The continuous wavelet 

transform (CWT) is given by  
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Where )(t stands for the complex conjugation of 

)(t . ),( sW   presents the sum over all time of the time 

series multiplied by scale and shifted version of 

wavelet function )(t . The use of continuous wavelet 

transform for forecasting is not practically possible 

because calculating wavelet coefficient at every 

possible scale is time consuming and it generates a lot 

of data.    

Therefore, Discrete Wavelet Transformation (DWT) is 

preferred in most of the forecasting problems because 

of its simplicity and ability to compute with less time. 

The DWT involves choosing scales and position on 

powers of 2, so-called dyadic scales and translations, 

then the analysis will be much more efficient as well as 

more accurate. The main advantage of using the DWT 

is its robustness as it does not include any potentially 

erroneous assumption or parametric testing procedure 

[23][27][30].  The DWT can be defined as 
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Where, m and n are integers that control the scale 

and time, respectively; s0 is a specified, fixed dilation 

step greater than 1; and 0
 
is the location parameter, 

which must be greater than zero. The most common 

choices for the parameters s0 = 2 and 0 = 1. For a 

discrete time series )(tx  where )(tx  occurs at discrete 

time t, the DWT becomes 
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Where, nmW , is the wavelet coefficient for the 

discrete wavelet at scale 
m

s 2  and n
m

2 . In Eq. 

(18), )(tx  is time series (t = 1, 2, …, N-1), and N is an 

integer to the power of 2 (N= 2M); n is the time 

translation parameter, which changes in the ranges       

0 < n < 2M – m, where 1 < m < M.  

According to Mallat’s theory [1], the original discrete 

time series )(tx
 
can be decomposed into a series of 

linearity independent approximation and detail signals 

by using the inverse DWT. The inverse DWT is given by 

[1][23][30].  
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or in a simple format as 
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which )(tMA is called approximation sub-series or 

residual term  at  levels  M  and )(tmD ( m = 1, 2, ..., M) 

are detail sub-series which can capture small features 

of interpretational value in the data. 

 

 

3.0  APPLICATION 
 

In this study the time series of monthly streamflow data 

of the Neelum and Indus river of Pakistan are used. The 

Neelum River catchment covers an area of 21359 km2 

and the Indus River catchment covers 1165000 km2. 

The first set of data comprises of monthly streamflow 

data of Neelum River from January 1983 to February 

2012 and the second data of set of streamflow data of 

Indus River January 1983 to March 2013. In the 

application, the first 75% of the whole data set were 

used for training the network to obtain the parameters 

model. Another 20% of the whole dataset was used for 

testing.  

The comprehensive assessments of model 

performance atleast mean absolute error (MAE) 

measures, root mean square error (RMSE) and 

correlation coefficient (R). Evaluated the results of time 

series forecasting data to check the performance of 

all models for forecasting data and training data.   
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Where n is the number of observation, ty


 stands for 

the forecasting rainfall, yt is the observed rainfall at all-

time t.  

 

 

4.0  RESULTS AND DISCUSSION 

 
The analysis of data and design and comparison of 

model results and discussions are presented in 

following section.  

 

4.1  Fitting Ann Model And Lssvm Model To The Data 

 

In this part, the LSSVM model is tested. In this study the 

same inputs structures of the datasets which is M1 to 

M6 were used. In order to obtain the optimal model 

parameters of the LSSVM, a grid search algorithm and 

cross-validation method were employed. Many works 

on the use of the LSSVM in time series modeling and 

forecasting have demonstrated favorable 

performances of the RBF [20]. Therefore, RBF is used as 

the kernel function for streamflow forecasting in this 

study. The LSSVM model used herein has two 

parameters (, 2) to be determined. The grid search 

method is a common method which was applied to 

calibrate these parameters more effectively and 

systematically to overcome the potential shortcomings 

of the trails and error method.  It is a straightforward 

and exhaustive method to search parameters. In this 

study, a grid search of (, 2) with  in the range 10 to 

1000 and 2 in the range 0.01 to 1.0 was conducted to 

find the optimal parameters. In order to avoid the 

danger of over fitting, the cross-validation scheme is 

used to calibrate the parameters. For each hyper 

parameter pair (, 2) in the search space, 10-fold 

cross validation on the training set was performed to 

predict the prediction error. The best fit model 

structure for each model is determined according to 

the criteria of the performance evaluation.   

For training and forecasting period, obtain the best 

results for MAE, RMSE and R. Six models (M1 – M6) 

having various input structures are trained and test by 

ANN models. The network was trained for 5000 epochs 

using the back-propagation algorithm with a learning 

rate of 0.001 and a momentum coefficient of 0.9. 

(Table 1) lists model performance evaluation results of 

the    M1 – M6 models. 

1.0

max24.1



y

y

ty         (23) 

Where yt = standardized flow; and ymax = maximum of 

the flow values. 
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Let yt represent the river flow at time t. In the present 

study, the following combinations of input data of flow 

were evaluated. As shown in (Table 2) the 

performance results obtained in the training and 

testing period of the regular LSSVM approach (i.e. 

those using original data). For the training and testing 

phase in Neelum River, the best values of the MSE 

(0.0021), MAE (0.0281) and R (0.7912) were obtained 

using input model 5. In the input model 6 has the 

smallest MSE (0.0279) and MAE (0.111) whereas it has 

the highest value of the R (0.8470). For Indus River 

training and testing phase, the best value of MSE 

(0.0004) and MAE (0.0095) and R (0.9071) were 

obtained using input model 2, whereas the for the 

testing phase the best value of MSE (0.0085), MAE 

(0.0267) and R (0.8968) were obtained using input 

model 3. 

 

Table 1 The model structures for forecasting streamflow  

Input Original streamflow data    DWT of streamflow data 

1 yt-1   DWt-1 

2 y t-1-,  yt-2   DWt-1, DWt-2 

3 y t-1-,  yt-2,  yt-3   DWt-1, DWt-2, DWt-3 

4 y t-1-,  yt-2,  yt-3,  yt-4   DWt-1, DWt-2, DWt-3, DWt-4 

5 y t-1-,  yt-2,  yt-3,  yt-4,  yt-5   DWt-1, DWt-2, DWt-3, DWt-4, DWt-5 

6 y t-1-,  yt-2,  yt-3,  yt-4,  yt-5,  yt-6   DWt-1, DWt-2, DWt-3, DWt-4, DWt-5, DWt-6 

 

Table 2 Training and testing performance indicates of LSSVM Model 

Data 
 

Input 

Training  Testing 

MSE MAE R  MSE MAE R 

Neelum 

1 0.0129 0.0863 0.8007  0.0271 0.1180 0.7869 

2 0.0029 0.0354 0.9597  0.0297 0.1152 0.8174 

3 0.0025 0.0313 0.9651  0.0352 0.1213 0.7869 

4 0.0023 0.0300 0.9685  0.0396 0.1243 0.7684 

5 0.0021 0.0281 0.9712  0.0458 0.1352 0.7336 

6 0.0031 0.0344 0.9565  0.0279 0.1111 0.8470 

Indus 

1 0.0005 0.0110 0.8745  0.0080 0.0250 0.7991 

2 0.0004 0.0095 0.9071  0.0087 0.0266 0.8561 

3 0.0004 0.0097 0.9035  0.0085 0.0267 0.8968 

4 0.0004 0.0096 0.9055  0.0083 0.0265 0.8958 

5 0.0004 0.0098 0.9043  0.0089 0.0275 0.8825 

6 0.0004 0.0096 0.9057  0.0089 0.0274 0.8774 

 

 

4.2  Fitting Hybrid Models Wavelets-ANN Model And 

Wavelet-LSSVM Model To The Data 

 

A hybrid model Wavelet-LSSVM (WLSSVM) model is 

obtained by combining two methods, discrete 

transform (DWT) and LSSVM. In WLSSVM, the original 

time series was decomposed into a certain number of 

sub-time series components which were entered 

LSSVM in order to improve the model accuracy. In this 

study, the Deubechies wavelet, one of the most widely 

used wavelet families, is chosen as the wavelet 

function to decompose the original series [1][10]. The 

observed series was decomposed into a number of 

wavelet components, depending on the selected 

decomposition levels. Deciding the optimal 

decomposition level of the time series data in wavelet 

analysis plays an important role in preserving the 

information and reducing the distortion of the 

datasets. However, there is no existing theory to tell 

how many decomposition levels are needed for any 

time series. To select the number of decomposition 

levels, the following formula is used to determine the 

decomposition level [10]. 

 

M = log(n) 

Where, n is length of the time series and M is 

decomposition level. In this study, n = 350 and n = 483, 

monthly data are used for Neelum and Indus, 

respectively, which approximately gives M = 3 

decomposition levels. Three decomposition levels are 

employed in this study, the same as studies employed 

by [12]. The observed time series of discharge flow 

data was decomposed at 3 decomposition levels (2 – 

4 – 8 months).  

The effectiveness of wavelet components is 

determined using the correlation between the 

observed streamflow data and the wavelet 

coefficients of different decomposition levels. (Table 3) 

shows the correlations between each wavelet 

component time series and original monthly stream 

flow data. It is observed that the D1 component shows 

low correlations.  The correlation between the wavelet 

component D2 and D3 of the monthly stream flow and 

the observed monthly stream flow data show 

significantly higher correlations compared to the D1 

components. Afterward, the significant wavelet 

components D2, D3 and approximation (A3) 

component were added to each other to constitute 

the new series. For the WLSSVM model, the new series 

is used as inputs to the LSSVM model. (Figure 1) and 

(Figure 2) shows the original streamflow data time and 
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their Ds, that is the time series of 2-month mode (D1),  

4-month mode (D2) , 8-month mode (D3), 

approximate mode (A3), and the combinations of 

effective details and approximation components 

mode ( A2 + D2 + D3).  Six different combinations of 

the new series input data (Table 1) is used for 

forecasting as in the previous application. 

A program code including wavelet toolbox was 

written in MATLAB language for the development of 

LSSVM. The forecasting performances of the Wavelet-

LSSVM (WLSSVM) model is presented in (Table 4) 

respectively, in terms of MSE, MAE and R in training 

and testing periods. 

As seen in the (Table 4), the WLSSVM models are 

evaluated based on their performances in the training 

data and testing data. For the training phase of 

Neelum river, the best value of the MSE (0.0006), MAE 

(0.0168) and R (0.9919) statistics for input data model 6. 

However, for the testing phase, the best MSE (0.0053), 

MAE (0.0520) and R (0.9705) were obtained for the 

input combination model 5. In the other hand, for the 

Indus river, the input model 6 obtained lowest value of 

the MSE (0.0000) and MAE (0.0032) and the highest R 

(0.9926) in the training phase. However, for the testing 

phase, the best MSE (0.0020) and MAE (0.0178) and R 

(0.9398) was obtained for the input combination 

model 2. 
 

Table 3 Correlation coefficients between each of sub-time series for streamflow data 

 

Data 

Discrete 

Wavelet 

Components 

Dt-1/Qt Dt-2/Qt Dt-3/Qt Dt-4/Qt Dt-5/Qt Dt-6/Qt 

Mean 

Absolute 

Correlation 

 D1 -0.0900 -0.0320 0.0670  0.0030 -0.0350 -0.0070 0.0157 

Neelum D2  0.0790 -0.2880 -0.3700 -0.1340  0.1650  0.2530 0.0492 

 D3  0.7930  0.4690 0.0080 -0.4560 -0.7700 -0.8660 0.1370 

 A3  0.2830  0.2700 0.2450  0.2200  0.1770  0.1500 0.2242 

 D1  0.1030 -0.2880 -0.3540 -0.1180  0.1200 0.2020 0.0558 

Indus D2  0.4450  0.2230 -0.0830 -0.3570 -0.5030 -0.4850 0.1267 

 D3  0.4450  0.2230 -0.0830 -0.3570 -0.5030 -0.4850 0.1267 

 A3  0.7690  0.7440  0.6830  0.5910  0.4720  0.3370 0.5993 

 

 

 
 

Figure 1 Decomposed wavelets sub-series components (Ds) of streamflow data of Neelum River 

 

 

 
 

Figure 2 Decomposed wavelets sub-series components (Ds) of streamflow data of Indus River 
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Table 4 Training and testing performance indicates of WLSSVM model 

 

Data 
 

Input 

Training  Testing 

MSE MAE R  MSE MAE R 

Neelum 

1 0.0116 0.0823 0.8238  0.0232 0.1146 0.8098 

2 0.0017 0.0303 0.9766  0.0084 0.0653 0.9463 

3 0.0014 0.0281 0.9799  0.0068 0.0595 0.9607 

4 0.0008 0.0196 0.9893  0.0105 0.0740 0.9316 

5 0.0010 0.0219 0.9862  0.0053 0.0520 0.9705 

6 0.0006 0.0168 0.9919  0.0141 0.0802 0.9019 

Indus 

1 0.0004 0.0098 0.8994  0.0026 0.0188 0.9137 

2 0.0001 0.0065 0.9624  0.0020 0.0178 0.9398 

3 0.0001 0.0056 0.9763  0.0053 0.0230 0.9050 

4 0.0001 0.0041 0.9860  0.0068 0.0251 0.7872 

5 0.0001 0.0047 0.9836  0.0076 0.0246 0.8320 

6 0.0000 0.0032 0.9926  0.0067 0.0227 0.8052 

 

 

5.0  COMPARISON OF FORECASTING MODELS  

 
Finally, in order to evaluate the efficiency of the 

proposed hybrid model, the obtained results was also 

compared with the results of LSSVM model using the 

same data. The compression has been summarized in 

the (Table 5). (Table 5) shows that the hybrid model 

WLSSVM has good performance during the testing 

phase, and outperform single model LSSVM in term of 

all the standard statistical measures. It is observed that 

the proposed model yields better result than the other 

models for both streamflow data. This result shows that 

the new input series from discrete wavelet transforms 

have significant extremely positive effect on LSSVM 

model results. 

 

Table 5 The performance results ANN, LSSVM, WANN and WLSSVM Approach during testing period 

 

Data Model MSE  MAE  R 

Neelum 

ANN 0.1467  0.1072  0.8866 

LSSVM 0.0279  0.1111  0.8470 

WANN 0.0011  0.0247  0.9735 

WLSSVM 0.0053  0.0520  0.9705 

Indus 

ANN 0.0922  0.0288  0.9195 

LSSVM 0.0085  0.0267  0.8968 

WANN 0.0015  0.0290  0.9597 

WLSSVM 0.0020  0.0178  0.9398 
 

 

6.0  CONCLUSION 
 

In this study a new method based on the WLSSVM is 

developed by combining the discrete wavelet 

transforms (DWT) and LSSVM model for forecasting 

streamflows. The monthly streamflow time series is 

decomposed at different decomposition levels by 

DWT. Each of the decompositions carried most of the 

information and plays distinct role in original time 

series. The correlation coefficients between each of 

sub-series and original streamflow series are used for 

the selection of the LSSVM model inputs and for the 

determination of the effective wavelet components 

on streamflow. The monthly streamflow time series 

data is decomposed at 3 decomposition levels (2–4–8 

months). The sum of effective details and the 

approximation component are used as inputs to the 

LSSVM model. The WLSSVM model are trained and 

tested by applying different input combinations of 

monthly streamflow data of Neelum River and Indus 

River of Pakistan. Then, LSSVM models are constructed 

with new series as inputs and original streamflow time 

series as output. The performance of the proposed 

WLSSVM model is compared to the regular LSSVM 

model for monthly streamflow forecasting. Comparison 

results indicated that the WLSSVM model is 

substantially more accurate than LSSVM model. The 

study concludes that the forecasting ability of the 

LSSVM model is found to be improved when the 

wavelet transformation technique is adopted for the 

data pre-processing. The decomposed periodic 

components obtained from the DWT technique are 

found to be most effective in yielding accurate 

forecast when used as inputs in the LSSVM model. 
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