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Abstract 
 

In this paper, a dynamic model equation of the RazakSAT® class satellite three flexible 

solar panels for three-dimensional dynamic studies is developed based on the coupling 

deformation field. In the model, each solar panel is flexible and attached to the satellite 

body via a fixed joint where the assumption of Euler-Bernoulli beam is applied for the 

solar panels. Lagrange and assumed mode method are used to develop the dynamic 

model of the RazakSAT® multi-body system. A comprehensive model of flexible satellite 

has been provided in ANSYS environment as a reference when simulating the 

theoretical response generated by MATLAB to show that the coupling effect on the 

characteristics of the flexible sub system while undergoing rigid-body rotational motion. 
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Abstrak 
 

Kertas kerja ini, persamaan model dinamik kelas RazakSAT® satelit dengan tiga panel 

solar fleksibel untuk tiga dimensi dihasilkan berdasarkan gandingan ubah bentuk objek. 

Model tersebut memaparkan sifat-sifat panel solar yang fleksibel dan dipasangkan 

pada badan satelit dengan sendi tetap di mana andaian Euler-Bernoulli diaplikasikan 

pada ciri-ciri fleksibel panel solar. Kaedah Lagrange dan “Assumed Mode Method” 

digunakan untuk menghasilkan model dinamik sistem serba badan RazakSAT®. Perisian 

ANSYS digunakan untuk menghasilkan data-data getaran panel solar yang akan 

digunakan sebagai rujukan terhadap kesimpulan daripada simulasi yang dijana oleh 

oleh MATLAB semasa badan satelit menjalani putaran pada pusat gravity jasad satelit.   

 

Kata kunci: RazakSAT, flesibel, satellit 

 

© 2015 Penerbit UTM Press. All rights reserved 

  

 
 
1.0  INTRODUCTION 
 

Responding to the ever increasing demand of 

complexity of space mission, modern day spacecraft 

are often designed to carry deployable appendages 

such as the solar panels, booms or antennas, which 

are flexible in nature. The development of model of 

rotating multi-body systems have been done mainly 

for the design of satellite attitude control where by 

understanding of the attitude behavior becomes a 

priority and is performed via numerical analysis and 

computer simulation [1]. The satellite mathematic 

model included the interaction between the rigid 

structures and flexible components. Establishment of 

the model is a difficult task to accomplish due to the 

involvement of complex dynamics characterized by 

nonlinearities and strong coupling between flexible 

and rigid modes which is pointed out in [2], the 

increasing size, flexibility, and dynamic complexity, 

coupled with competing demands for greater 

precision and autonomy, continue to hinder our ability 

to model these systems sufficiently. In addition to that, 

the modern engineering technology is leading to 

more demanding operational requirement, such as 
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high speed rotation and large angular motion, great 

precision and pointing accuracy, which have posed 

serious difficulties for all currently advocated control 

design methodologies [3].  

Researchers in paper [4-9] have confined the 

research on the boundary of planar motion of a 

satellite body and rotation about the normal axis. 

Study on planar motion is crucial as it helps overcome 

most of the obstacles in modeling of a three-

dimensional motion model, which facilitates the use of 

simple models, such as the Euler-Bernoulli beam, and 

mode summation procedure. The planar model and 

mode summation procedure have been commonly 

used in developing a flexible satellite model for 

adaptive control [4] and control design based on the 

Lyapunov stability theory [5]. Publication [6] had 

touched on the application of active control method 

to reduce vibration in the planar motion via a 

piezoelectric and is determined by using the Euler-

Bernoulli model. Vibration control on a planar model is 

illustrated in [7]. In order to simulate the vibration of 

solar panels, the mode summation procedure is used 

in [7]. The dynamic model of the satellite can be 

obtained from a real satellite or laboratory setup [8-9]. 

In [8], experiment of an attitude control of a satellite 

with an L-shaped appendage was done in a 

laboratory setup. The control motion of the satellite 

was planar, and the L-shaped appendage in the 

plane with the rotational motion. The measurement 

and control of the vibratory motion of the flexible 

appendage is done by attaching infrared sensors and 

a piezoceramic actuator to the L-shaped 

appendage [9].  

RazakSAT® has applied the rigid model as the key 

model in the controller design. However, in the case 

of high-speed and long range motion, the protruding 

solar panels would produce the flexible phenomena 

due to the elastic deflection, and traditional rigid 

dynamic analysis can hardly deal with this 

phenomenon. Traditional modeling adopts small 

deformation assumption in structural dynamics, which 

assumes that the transverse deformations at any point 

in the beam are negligible. In this paper, a dynamic 

equation of a RazakSAT® class satellite three flexible 

solar panels for three-dimensional dynamic studies is 

developed based on the coupling deformation field. 

Normal planar environment is unable to 

accommodate the dynamics of RazakSAT® due to the 

nature of the design whereby the panels are 

appended on an angle to the principle axis. 

Compared with finite element method utilized in the 

references [10, 12] for studying the dynamic 

characteristic, the assumed mode method adopted 

here has the property of simplicity, especially 

applicable to controller design.  

 

 

 

 

 

 

2.0  FLEXIBLE MODEL 

 
RazakSAT® is composed of a multi-body configuration 

of a rigid body appended with three flexible solar 

panels. The satellite executes flexible behavior 

contributed by the vibratory motion of the solar 

panels. The nature of the fix-free arrangement joint of 

the solar panels is idealized into cantilever beams, and 

is subjects to rotational and vibrational motion. The 

presence of flexible behavior in the dynamics makes 

the basic Newton Law undesirable. Hence, the 

“Rayleigh-Ritz Assumed Mode Method”, is applied 

instead to obtain the model. Unlike the rigid model 

derived in section 2, it initiates with the expression of 

the total energy of the satellite system which 

comprised of both kinetics and potential energy. The 

schematic diagram of RazakSAT® satellite’s rigid hub 

and the three elastic appendages is illustrated in 

Figure 1. The three solar panels appended on the rigid 

hub are given the notation of 1 to 3 as shown in Figure 

1. The global Cartesian axis is based on the principle 

axis of the satellite is whereby the torque is applied 

along it and is termed Roll (φ), Pitch (θ) and Yaw (ψ). 

In the case of RazakSAT®, the torque is generated by 

four unit of reaction wheels which are configured in a 

tetrahedron array. The local axes of the solar panel 

are denominated as x, y and z and is located at point 

Oi’(ai, bi, ci). 
 

 
Figure 1 RazakSAT® diagram 

 

 

The total energy of the system equates to the 

summation of the total kinetic and potential energy. 

Kinetic Energy, T may be obtained as described in (1), 

whereby I is the moment of inertia of the rigid center 

hub of the satellite, �̇�  is the angular speed of the 

satellite body, while, 𝜌𝑖  and �̅�𝑖  is the mass per unit 

volume of solar panel,  and velocity of unit mass of the 

appendage respectively. These variables are 

embodied with the notation i which will represent the 

identity of each panel present in the satellite model 

where in RazakSAT® case, i=1 to 3. 
 

1

2
{Iθ̇2 +∑ρi [∫ ∫ ∫ �̅�𝐢 ∙ �̅�𝐢

Li

0

dxdydz

wi1
2

−
wi
2

zi

0

]  

3

i=1

} = 𝐓 (1) 
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The matrix �̅�𝒊 is obtained as in (2). 

 

 

 

 

�̅�𝐢 = [

V̅φi

V̅θi
V̅ψi

] = [𝐹𝑖] ∙ [

φ̅̇ × Rai

θ̅̇y × Rbi

ψ̅̇z × Rci

] + [
0
u̇i
0
] (2) 

 

Where variable �̇�𝑖  represents the lateral elastic 

displacement of the solar panel with time t and 

distance x measured from the point Oi’. Assuming that 

the deflection is small, notation �̇�𝑖 may be expressed 

in (3). 

 
ui = zi,uk (3) 

  

Based on the Euler-Bemouli assumption, the potential 

energy of the system is 

 

U =∑∫ EiIiz̈i,u
2dx

Li

0

3

i=1

 (4) 

 

Where, EiIi is the uniform flexural rigidity of the 

appendage, and z̈i,u is the second partial derivative 

of zi,u with respect to 𝑥𝑖. 

2.1  Transformation Matrices 

 

The non-parallel alignment of the local axes of the 

solar panels to the global axis is required to be tended 

to prior to the development of the dynamic model. 

Introduction of sets of matrices termed “translational 

matrix” is crucial to give the sense of relation between 

the local and the global axis for it has major 

implication in the final mathematical model. 

Illustration in Figure 2 depicts the φ - θ plane of the 

satellite. Observable from Figure 2, solar panels 1 to 3 

are configured with 90, -30 and 210 degree 

respectively. The transformation matrices are as 

shown in (5) – (7).  

 

 
Figure 2 φ - θ plane 

 

 

Appendage 1, F1 = [
0 1 0
1 0 0
0 0 1

] (5) 

  

Appendage 2, F2 = [
cos (−30˚) sin (−30˚) 0

−sin (−30˚) cos (−30˚) 0
0 0 1

] (6) 

  

Appendage 3, F3 = [
cos (210˚) sin (210˚) 0

−sin (210˚) cos (210˚) 0
0 0 1

] (7) 

 

 

2.1  Identifying Vector Position 

 

The vector position, R describes the relative position of 

the point mass along the flexible component of the 

satellite (Solar Panel) towards the center of the point 

of executed rotation. The vector position for each axis 

is shown in section 1 to 3. 

2.1.1  Local Panel y-z Plane 

 

Assume that the rotation of the satellite is orthogonal 

to the plane of y-z as shown in Figure 3. Rotation in this 

manner is parallel to the local x axis of the panel. The 

vector position due to this axis of rotation, Rai is given 

by the (8). The variable c defines vertical offset of the 

panel from the center of rotation and 𝑦𝑖  is the 

horizontal distance along the panel while zi represent 

the vertical distance z axis along of the panel. 

 
Rai = (yi)j + (c + zi + ui)k                   i = 1,2,3 (8) 

 

 

 

 

 

 

 
Figure 3 y-z plane 

 

 

2.1.2  Local Panel x-z Plane 

 

Plane x-z of the solar panel of the satellite is as shown 

in Figure 4. The variable ‘a’ represents the horizontal 

distance between the center of rotation of the 

satellite to the appending edge of the solar panel. 

Parameter “xi” represents the position of a measured 

point mass element with reference to the edge of the 

rigid hub along solar panel’s x axis. Vector position Rbi 

gives the vector position of the point on the 

appendage relative to the axis of rotation. The vector 

of vertical elastic displacement (elastic deformation) 

measured perpendicular to the axis x is represented 

210˚ 

30˚ 
φ 

θ 

y 

z 

Rai 

zi 

c 

O 

Pi 
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by ui and the point mass of the solar panel along the 

z axis is termed zi. Therefore, the vector position Rbi is 

given by 

 
Rbi = (a + xi)i + (c + zi + ui)k          i = 1,2,3 (9) 

 

 

 

 

 

 
Figure 4 x-z plane 

 

 

2.1.3  Local Panel x-y Plane 

 

The vector position Rci is derived from Figure 5 which 

depicts the local x-y plane of one of the solar. In z axis 

rotation, the panels execute negligible flexible 

behavior. Hence, Rci, the vector position of any point 

in the appendage form relative to the body reference 

is as shown in (10). The vector “xi” represents the 

position of a measured mass element along solar 

panel’s xi axis. 

 
Rci = (a + xi)i + (yi)j           i = 1,2,3 (10) 

 

 
Figure 5  x-y  plane 

 

 

Obtained vector position of the 3 local axes, (8) – 

(10) are required to obtain the dynamics of the system 

which present in energy equation of (1) – (4). Section 

C contains details of the proceeding derivation, 

initiated by assuming that only 𝜑 axis is being applied 

with torque.  

 

2.2  Energy Equations 

 

Obtaining the total energy equation with respect to 𝜑 

torque application involves the kinetic and the 

potential energy. To obtain the kinetic energy due to 

the torque, substitute (2) – (10) into (1), and leads to 

(11). The variable D is the angle of appending of the 

panels which are 90, -30 and 210 for i = 1, 2 and 3 

respectively. 

 

2Tφ = Iφ̇
2 +∫ ∫ ∫ ∑ρi[A]dxdydz

3

i=1

Li

0

wi1
2

−
wi
2

zi

0

 (11) 

 

 

Where, 

 

A = [
φ̇2(c + zi + zi,u)

2

+{yiφ̇ cos(Di) + zi,u − (a + x)φ̇sin (Di)}
2] (12) 

 

2.3  Discretization 

 

A new assumed equation as in (13) is introduced in 

order to discretize the energy equation. The lateral 

displacement, zi,u  at any point on the solar panel  is 

the product of a mode shape function, and a 

harmonic time function: 

 

zi,u(x, t) =∑qi(t)∅i(x)

n

i=1

 (13) 

 

Variable ∅𝑖(𝑥) is the mode shape, while 𝑞𝑖(𝑡) is the 

modal generalized coordinate for the i-th mode, and 

n denotes the number of modes included in the 

approximation. The mode shape function for the 

appendage is obtained from [13] as shown below in 

(14) and (15). 

 

∅i(x) = Cn {
(cos βnx − cosh βnx)

+α(sin βnx − sinh βnx)
} (14) 

 

Where, 

 

α =
(sin βnL − sinh βnL)

(cos βnL + cosh βnL)
 (15) 

 

The Cn represents the arbitrary constant and 𝛽𝑛 is 

obtained from the assumed boundary condition of 

the deforming structure which is the solar panel. In this 

case, the boundary condition of the solar panel is a 

fixed-free configured beam and may be obtained 

through the following (16).  

 
cos βnL +cosh βnL + 1 = 0 (16) 

 

x 

z 

Rbi 

a 

ui 

O 

Pi 

y 

x 

Rci 
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While, Cn can be obtained through normalization of 

the mode shape function to range between 0 to 1. 

Hence, Cn chosen must gives   

 

∫ (∅i(x))
2
dx

1

0

= 1 (17) 

 

However, the mode shape function is orthogonal in 

the following condition 

 

∫ ∅i(x)∅j(x)dx
1

0

= 0           when i ≠ j (18) 

 

Incorporate the assumed equation, (13) into total 

kinetic energy and potential energy would yield (19) – 

(21). 

 

Tφ =
1

2
Iφ̇2 +

1

2
∫ ∫ ∫ ∑ρi[B]

3

i=1

dxdydz
Li

0

wi1
2

−
wi
2

zi

0

 (19) 

Where, 

 

B = [
φ̇2(c + zi + qi∅i)

2

+{yiφ̇ cos(Di) + qi∅i − (a + x)φ̇sin (Di)}
2] (20) 

Uφ =∑∫ EiIi∅̈i
2
qi
2dx

Li

0

3

i=1

 (21) 

 

      From here, the final dynamics may be obtained by 

using the Lagrange Equation for four generalized 

coordinates represented by Aj (j=1,2,3,4),  which are 

the angular rotation φ and elastic motion qi for i=1,2,3 

represented by the 3 solar panels. 

 
d

dt
(
∂T

∂Ȧj
) −

∂T

∂Aj
+
∂U

∂Aj
= Q (22) 

 

Q represents the generalized forces of the system. 

Substitute (19) and (21) into (22) and the 

mathematical modal equation for the satellite for 𝜑 

axis torque application is obtained. 

{
 
 

 
 [Iφ +∫ ∫ ∫ ∑ρi[H1]dxdydz

3

i=1

Li

0

wi
2

−
wi
2

zi

0

] φ̈ 

+∑[ρi∫ ∫ ∫ [H2} dxdydz
Li

0

wi
2

−
wi
2

zi

0

] q̈i

3

i=1 }
 
 

 
 

= τφ 
(23) 

 

and 

 

∑{

[H2]φ̈

+[H3]q̈i
+[H4]qi

}

3

i=1

= 0 (24) 

where, 

 

H1 = [

(c + zi + qi∅i)
2

+yi
2cos 2(Di)

+(a + x)2sin2(Di)

] (25) 

H2 = 𝑦𝑖 cos(𝐷𝑖) ∅i − (𝑎 + 𝑥)sin (𝐷𝑖)∅i (26) 

H3 = ρi∫ ∫ ∫ ∅ni∅mi

Li

0

dx dy dz

wi
2

−
wi
2

zi

0

 
(27) 

H4 =

[
 
 
 
 
 ∫ EiIi∅̈ni∅̈mi

Li

0

dx

−ρi∫ ∫ ∫ φ̇2∅ni∅mi

Li

0

dx dy dz

wi1
2

−
wi
2

zi

0 ]
 
 
 
 
 

 (28) 

 

 

3.0  DYNAMIC SIMULATION 
 

MATLAB toolbox, SIMULINK is chosen to perform the 

simulation on the model and ANSYS is used to verify 

the model. The simulation is done based on the 

assumption that there is no external disturbance 

existed, and that the attitude maneuvering is done on 

1 axis at a time, while the other 2 axis remain constant. 

The initial condition for the satellite is assumed to be 

constant. The input of the torque application is an 

impulse signal that shows sudden disturbance in the 

system as shown in the Figure 6. The three solar panels 

appended to the rigid hub is identical, hence they 

inherent the similar specification. 

 

 
 

Figure 6 Impulse Input 

 

 

The system parameters and maneuver 

specifications are listed in Table 1. 

 
Table 1 System specification 

 

Description Symbol Value 

Length of the panel L 0.818 m 

Height of the panel z 0.020 m 

Width of the panel W 0.567 m 

Distance O to P (x axis) A 0.491 m 

Distance O to P (z axis) C 0.456 m 

Weight per unit volume of 

panel 
Ρ 1040 Kg/m3 

Young's Modulus of panel E 3.6 GPa 
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The displacement on the tip of the flexible panels for 

panel 1, 2 and 3 due to the application of the input 

torque to the satellite models are illustrated in Figures. 

7 and 8 since the response of panel 2 and 3 are 

identical. 

 

 
 

Figure 7 Tip displacement of Panel 1 

 
 

Figure 8  Tip displacement of Panel 2 and 3 

 

 

As shown, the results from the satellite in Figures 7 

and 8, the simulation of the MATLAB based on 

dynamic model and ANSYS which is based on finite 

element analysis are consistent with each other. 

Hence, the model is applicable on the basis that both 

simulation methods coincide with minor differences. 

However, further refinement of the dynamic to suit the 

actual physical world may be applied by including 

additional factors such as the axial deformation, 

vibration due to the centripetal effect and external 

interferences. Study on the impulse input onto the 

system is crucial as to determine the flexibility behavior 

of the system when exposed to such disturbances. 

Neglecting the damping effect, when the impulse 

torque is applied on the system, the flexible panels 

undergo a harmonic motion. These harmonic motion 

may seemed harmless to the system, but in reality, 

high precision is a must in space mission as every error 

that exists may pose hazard to the system itself. In the 

case of satellite imaging (as what RazakSAT® was build 

for), having these slight vibration may render the 

captured image useless ranging from image quality 

degradation [14]. 

4.0  MODAL ANALYSIS 
 

The bending vibration of the satellite panels is 

governed by (24). The structure of the panel along the 

x axis remains constant. Hence, the equation may be 

rewritten in a dimensionless form. To achieve this, the 

following assumptions of dimensionless variables are 

introduced. 

 

τ =
t

T
 (29) 

ξ =
x

L
 (30) 

µ =
q

L
 (31) 

γ = Tφ̇ (32) 

where T is obtain as follow [15], 

 

T =
ρL4

EI
 

(33) 

Incorporating these equations into (24) while 

neglecting the input torque, one obtain, 

 
Mµ̈ + Kµ = 0 (34) 

Where the two dots over the µ is the double differential 

of µ with respect to non-dimensional time, τ and 

 

M = ∫ ζmiζnidξ
1

0

 
(35) 

K = ∫ ζmi,ξξζni,ξξdξ
1

0

− γ2∫ ζmiζni

1

0

dx (36) 

Where ζmi is a function of ξ and is similar to the function 

ϕmi. Hence, From equation (34), an eigenvalue 

problem for the bending vibration of a the solar panel 

can be formulated by assuming that the µ is harmonic. 

 

 
 

Figure 9 Natural frequency variation 
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The variations of natural frequency due to the 

different angular velocity are shown in Figure 9. The 

lowest four vibration modes are plotted. Observable 

from the figure, the dimensionless natural frequencies 

increase as the constant dimensionless angular speed 

is increased. As the dimensionless angular speed 

increases, the slope of the trajectory becomes steeper 

in an exponential form. Avoiding torque that is 

capable of generating frequency similar to the 

natural frequency is important to avoid large 

amplitude harmonic motion that may disorientated 

and disrupt the satellite system.  

 

 

5.0  CONCLUSION 
 

A dynamic equation of a RazakSAT® class satellite 

three flexible solar panels for three-dimensional 

dynamic studies is developed based on the coupling 

deformation field. A comprehensive model of the 

flexible satellite considering solar panels as flexible, 

finite element panels is provided in an ANSYS 

environment as reference when comparing the 

dynamic models. However in slight differences 

between the two simulations provides a room for 

further refinement of the dynamic model such as the 

stiffening of the panels due to the centrifugal force 

due to the fact that the panels are appended with an 

offset to the axis of rotation.  
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