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Abstract 
 

The main purpose of this work is to study the dynamic effects of a piezoelectric 

accelerometer in an active vibration control system. The analysis is focused on the 

stability based on Nyquist stability criterion. This is done by deriving the overall open-

loop system transfer function for a single-degree-of-freedom system which includes 

the sensor dynamics into the equation. The polar plot results show that the system is 

only unconditionally stable for acceleration, but is conditionally stable for velocity 

and displacement feedback control.   

 

Keywords: Piezoelectric accelerometer, active vibration control, Nyquist stability 

 

Abstrak 
 

Tujuan utama kerja ini ialah untuk mengkaji kesan dinamik meter pecut piezoelektrik 

dalam sistem kawalan getaran aktif. Analisa difokuskan kepada kestabilan 

berdasarkan kriteria kestabilan Nyquist. Ini dilakukan dengan menerbitkan rangkap 

pindah bagi keseluruhan sistem gelung buka untuk darjah kebebasan tunggal yang 

mengandungi dinamik penderia ke dalam persamaan. Plot kutub yang terhasil 

menunjukkan sistem hanya stabil tak bersyarat bagi kawalan suap balik pecutan, 

tetapi stabil bersyarat bagi kawalan suap balik halaju dan sesaran. 

 

Kata kunci: Meter pecut piezoelektrik, kawalan getaran aktif, kestabilan Nyquist 

 

© 2015 Penerbit UTM Press. All rights reserved 

  

 

 
1.0  INTRODUCTION 
 

In recent years, active vibration control has attracted 

significant amount of attention because of the 

advantages of this method in reducing vibration of 

mechanical system over the conventional approach 

[1-4]. Basically, it consists of three main components 

which are sensor, controller and actuator. The sensor is 

used to measure the vibration signal. Meanwhile, the 

function of the electrical controller is to give command 

to the actuator. The command signal from the 

controller to the actuator is based on the sensor 

measurement input. Thus, the actuator will generate a 

secondary force such that it can cancel or reduces the 

excitation force of the vibration by the principle of 

destructive interference [5]. 

However, the active vibration control has potential in 

instability issue [5, 7]. This is mainly due to its electronic 

instrumentations, as well as the dynamics of applied 

actuator and sensors. For this reason, the main scope of 

this work is to study the dynamic effect of a sensor 

particularly piezoelectric accelerometer in determining 

the stability of active vibration control system. This 

analysis will be based on the Nyquist stability criterion, 

where the overall open-loop transfer function of the 

system will be derived. Three different control strategies, 

namely acceleration, velocity and displacement 

feedback control will be considered.  As a result, simple 

formulae will be derived to determine the frequency at 
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which the system becomes unstable, and also the 

maximum gain that could be applied to each system. 

These formulae will give insight into how the dynamics 

of piezoelectric govern the instabilities. 

 

 

2.0 THEORETICAL MODEL OF ACTIVE 
VIBRATION CONTROL SYSTEM 
 

Consider a vibrating mechanical system is being 

supported by an isolator with stiffness and damping as 

shown in Figure 1. Initially, the active control is off 

(secondary force, fs=0) such that the primary force, fp 

which is subjected to the mechanical system can be 

derived as 

 
                                        (1) 

 

where C is the system’s damping, K is the system’s 

stiffness, and E is the displacement of the system’s mass, 

M. 

Based on (1), the mechanical system transfer function 

can be expressed as 

 

                                                    (2) 

 

 

 

      

Figure 1 Single-degree-of-freedom model of active vibration 

isolation system 

 

 

By considering piezoelectric accelerometer as the 

sensor in this study, its basic mechanical model can be 

assumed as a single-degree-of-freedom of a mass-

spring-damper system as shown in Figure 2. Note that, 

its vibration measurement is based on the relative 

displacement, z=y-x of piezoelectric mass, Ms to the 

base on which it is attached.  

 

 
     

 Figure 2 Mechanical model of piezoelectric accelerometer 

Therefore, by applying Newton’s second law of motion, 

the equation of motion of the mass, Ms can be written 

as 

 

                  ( ) ( ) 0s s sM y C y x K y x                              (3) 

 

where Ms is the sensor mass, Ks is the sensor stiffness 

and Cs is the sensor damping. 

By assuming the vibrating body (base) and the 

corresponding response are in harmonic motion, such 

that respectively given by 

 
                                                                    (4) 

                                                                       (5) 

 

and substituting (4) and (5) into (3) will give 

 
                                                    (6) 

 

Then, the relative motion from (6) can be simplified 

further to obtain 
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                               (7) 

 

Since, 2

o os X a  is the base acceleration’s magnitude, the 

accelerometer transfer function can be given by 

 

                                             (8) 

 

Note that, the main function of active vibration control 

is to modify the system response in terms of effective 

mass, damping and stiffness of the mechanical system 

[5]. For example, by using acceleration feedback 

control the effective mass of the mechanical system 

could be modified. Meanwhile, velocity feedback and 

displacement feedback control is used to adjust the 

effective damping and effective stiffness of the 

mechanical system respectively. Thus, the typical 

command signal from the controller can be expressed 

as 

 

                                                         (9) 

 

where ga is the acceleration control gain,  gv is velocity 

control gain, and gd is displacement control gain. In this 

case, the velocity signal can be found by integrating 

the acceleration signal from the accelerometer. 

Meanwhile the displacement signal can be determined 

by double integration of the acceleration signal. 
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3.0  SYSTEM STABILITY 
 

Figure 3 shows the equivalent block diagram of 

vibration control by feedback control system as 

presented in Figure 1. The mechanical response can be 

expressed as 

 

                        
                       (10) 

 

 
 

Figure 3 Equivalent block diagram of vibration control 

 

 

It shows that, the secondary excitation Fs(s) results 

from the controller transfer function H(s), sensor transfer 

function S(s) and the mechanical response E(s), which 

is Fs(s)=H(s)S(s)E(s). It means that, the controller H(s) will 

generate large secondary excitation force Fs(s) to 

cancel the primary excitation Fp(s), if the response E(s) 

is large, and vice-versa. 

Based on the block diagram of Figure 3, the closed 

transfer function of E(s)/Fp(s) can be obtained such as 

 

                                         (11) 

 

where s=jω is substituted in (11) in order to transform 
the equation into frequency response function (FRF). 

By assuming that the plant G(s), sensor S(s) and 
controller H(s) are individually stable, the stability of the 
closed loop system is assured provided the polar plot of 
the open-loop frequency response does not encircle 
the Nyquist critical point   (-1,0) which corresponds to the 
Nyquist stability criterion [6]. It is clear that from (11) the 
open-loop FRF, G(jω)S(jω)H(jω) plays an important role 

in the system stability.  For example, if the open-loop 
gain is unity at any frequency ωc, but there is also  1800 

open-loop phase shift, so that at  ω=ωc 

 

                                                  (12) 

 

Therefore, the system will become unstable since 

, where the mechanical response is 

approaching infinity at ω=ωc. This is indirectly, 

associated with the open-loop frequency response 

passing through the critical point (-1,0) at the frequency 

ωc. The stability analysis can be clearly seen by plotting 

the Nyquist or polar plot, which is based on the open-

loop transfer function G(jω)S(jω)H(jω). 

Accordingly, the system open-loop transfer function can 

be expressed in non-dimensional frequency as 

 

       (13) 

 

In this equation, the plant non-dimensional frequency is 

given by Ω=ω/ωn and sensor non-dimensional 

frequency is Ωs=ω/ωns, where ωns is the sensor natural 

frequency. In order to generalize this equation into 

simpler terms, α is introduced. It is the ratio between 

sensor natural frequency, ωns with plant natural 

frequency ωn, which is given by 

 

                                                                              (14) 

 

By substituting (14) into (13), results 

 

 (15) 

 

 

Therefore, the stability for each of acceleration, velocity 

and displacement feedback control can be derived as 

the following; 

 

3.1  Acceleration Feedback Control 

 

In the case of acceleration feedback control, both of gv 

and gd is set to zero such that (15) can be written as 

  

     (16) 

 

Based on the Nyquist stability criterion, the system is 

unstable if the open-loop frequency response encircles 

the critical point (-1,0). In order to identify system stability, 

the crossing point of the open-loop transfer function on 

the real axis is determined by separating (16) into real 

and imaginary parts respectively as 

 

     (17)   

 

      (18) 

 

Then, by equating the imaginary part in (18) to zero, the 

critical frequency can be found to occur at Ω=0 and 

    s s s         . By substituting the critical 

frequency into real part term in (17), the first crossing 

point is found at the origin, and the second crossing 

point is on the positive real axis (assume gaMs/MKs=1). This 

result is illustrated in the polar plot simulations of Figure 4. 
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Figure 4 Polar plot of acceleration feedback control with 
different values of ζ and ζs 

 

 

In general, by including the sensor dynamics into the 

open-loop transfer function, the polar plot will have two 

loops, instead of single loop that corresponds to the 

plant dynamics [7].  Note that, the extra loop in Figure 

4 represents the sensor dynamics. Yet, it is observed that 

the system is stable, since there is no crossing point on 

the negative real axis with the variation values of ζ and 

ζs. From here, it can be understood that, the shape and 

size of the plot will change due to effect of changing 

the values of the damping ratios. For example in Figure 

4(b), with a smaller value of sensor damping ratio that is   

ζ < ζs the size of the bottom plot that corresponds to the 

sensor dynamics will become bigger. In contrast, when 

ζs is larger, its size will become smaller as shown in Figure 

4(c). 
 

 
 

Figure 5 Polar plot of acceleration feedback control with 

different values of α 

 

 

The effect of the variation of α is presented in Figure 5. 

It is clear that, the system still manages to retain its 

stability. By having higher value of α, the polar plot will 

be closer to the theoretical plot [7]. However, by 

decreasing the value of α, the polar plot will start to 

rotate in a clockwise direction. Hence, the crossing 

point on positive real axis will increase but the system is 

still in stable condition because there is no crossing on 

negative real axis. This clearly shows that, the effect of 

sensor dynamics in the frequency response of a single-

degree-of-freedom system with acceleration feedback 

control is unconditionally stable. 

 

3.2  Velocity Feedback Control 

 

In the case of velocity feedback control, both of ga and 

gd is set to zero such that (15) can be expressed as  

 

      (19) 

 

where the real and imaginary part can be separated as 

 

    (20) 

   (21) 

 

Following the same procedure as described earlier in 

section A, three critical frequencies which are at Ω=0,1 

and α are determined. From this result, it can be 

identified that at Ω=0 the crossing point is at the origin. 

Meanwhile, at Ω=1 (assume  4ζgvMs/CKs=1) the crossing 

point is on the positive real axis which is given by 

 

                      (22) 

 

In contrast, at  Ω=α (assume 4ζgvMs/CKs=1) the crossing 

point is on the negative real axis, which can be written 

as 

                     (23) 
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Figure 6 Polar plot of velocity feedback control with ζ=0.5, 

ζs=0.01 and α=100 

 

 

For clarity the following parameters are chosen, 

(ζ=0.5, ζs=0.01, α=100) in the polar plot of Figure 6. It is 

clear that the system is conditionally stable, since there 

is crossing point on the negative real axis, that 

represents the crossing at the critical frequency, Ω=α. In 

fact, the crossing point is due to the dynamic effect of 

the sensor. 

 

 
Figure 7 Graph of maximum gain value (dB) of velocity 

feedback control (ζ=0.1) with variations of ζs and α 

 

 

Since the system is conditionally stable, the main 

concern is to determine its maximum possible gain. The 

maximum gain gv_max can be found from the formula 

 

                  
 _ max 2
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Re ( ) ( )( ( )
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G j S j H j




  

                    (24) 

 

where Re2{G(jΩ)S(jΩ)H(jΩ)} is the negative real axis 

crossing point. From this formula, a graph as shown in 

Figure 7 is plotted to represent the relationship of 

maximum gain value with α. In this graph, the plant 

damping ratio is set to be constant as ζ=0.1 and with 

variation of ζs. It is observed that the maximum gain 

value (dB) is linearly dependent on α. This relationship 

can be determined mathematically by simple 

algebraic manipulation from (24) and (23), to obtain 

                                                                   (25) 

which shows the maximum gain in velocity feedback 

control is proportional to ζs and α. 

 

3.3  Displacement Feedback Control 

 

In the case of displacement feedback control, both of 

ga and gv is set to zero such that (15) can be expressed 

as  

 

        (26) 

 

where its real and imaginary part may be written as   

     (27) 

     (28) 

 

By applying the same procedure as described earlier, 

the system has critical frequency at Ω=0 and 

    s s s         . By replacing each of these 

critical frequency into (28), which results crossing point 

at the origin and negative real axis. In this case, the 

system is said to be conditionally stable. However, it does 

not have significant effect on the system stability, 

because the negative crossing point is occurred at 

extremely small negative value as shown in Figure 8. 

 

 
 

Figure 8  Polar plot of displacement feedback control with 

ζ=0.05, ζs=0.01 and α=10 

 

 

The parameters in Figure 8 are set as the following 

(ζ=0.05, ζs=0.01 and α=10) for clarity purpose. The 

crossing point on the negative real axis can be clearly 

seen by enlarging the area of the crossing point as 

shown in Figure 9. It is obvious, the crossing point is 

occurred at very small negative value. 
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Figure 9  Zoom of real axis crossing point in Figure 8 

 

 

By applying the same approach as described in 

section 3.2, the graph of the maximum gain value for 

displacement feedback control is plotted in Figure 10. 

From the graph, it can be seen that the relationship 

between maximum gain value with at low frequency is 

nonlinear when α<100 for the plotting line of ζs=0.01. In 

this case, at higher frequency where α>100, the linear 

relationship between maximum gain (dB) with α can be 

determined as 

 

                                                                  (29) 

In general, based on the derived maximum gain value 

in (29), the displacement feedback control has its 

maximum gain value which is proportional to ζ and α, 

but inversely proportional to ζs. 
 

 
Figure 10  Graph of maximum gain value (dB) of displacement 

feedback control (ζ=0.1) with variations of ζs and α 

 

 

4.0   DISCUSSIONS 
 

The result from this analysis is presented in the Table 1. 

For comparison purpose, the Nyquist stability analysis 

with and without sensor dynamic are presented 

together. In general, all of the feedback controller 

types are unconditionally stable without including the 

sensor dynamics into the system overall transfer 

function. However, the Nyquist stability results are slightly 

changed by including the sensor dynamics into the 

system transfer function. Only acceleration feedback 

control is maintained with the unconditionally stable 

result for both cases. However the stability for velocity 

and displacement feedback control is conditionally 

stable, by including the sensors dynamic into the overall 

system transfer function.  

The result for velocity feedback control significantly 

shows that, the crossing point on the negative real axis 

is mainly caused by the sensor dynamic. The maximum 

gain for this system is given by 
_max 2v sg   .This shows the 

important role of the sensor damping ratio and the 

large separation between sensor and plant natural 

frequency in determining the system stability. The 

maximum gain is increased when the sensor damping 

ratio is increased. The same result also true for increasing 

α that represents the increment of separation between 

sensor and plant natural frequency. 

The result also shown, that the system stability is 

conditionally stable for displacement feedback control 

with sensor dynamic. However, it does not have 

significant effect on the system stability, since the 

crossing point on the negative real axis is occurred at 

absolutely very small value. 

 
Table 1 Results of analysis 

 

Control 

Strategies 

Nyquist stability 

analysis without 

sensor dynamics 

Nyquist stability 

analysis with sensor 

dynamics 

Acceleration 

feedback 

Unconditionally 

stable 

Unconditionally 

stable 

Velocity 

feedback 

Unconditionally 

stable 

Conditionally stable, 

with  

Displaceme

nt feedback 

Unconditionally 

stable 

Conditionally stable, 

with  

 

 

5.0  CONCLUSIONS 
 

The stability of a single-degree-of-freedom active 

vibration isolation system which is based on Nyquist 

stability criterion has been investigated by including the 

dynamics of piezoelectric accelerometer into the 

open-loop transfer function of the system. Three 

different control strategies which are acceleration, 

velocity and displacement feedback control has been 

considered. Simple formulae have been derived which 

give insight on the frequency at which the system 

become unstable, and the maximum gain that can be 

applied to each system. It has shown that the system is 

only unconditionally stable for acceleration, but is 

conditionally stable for velocity and displacement 

feedback control. 
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