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Graphical abstract 
 

 

Abstract 
 

This paper demonstrates the research results obtained from a comparison of Evolutionary 

Programming (EP) and hybrid Differential Evolution (DE) and Feed Forward Neural Network 

(FFNN) algorithms in the Real Time Strategy (RTS) computer game, namely Warcraft III. The 

main aims of this research are to: test the feasibility of implementing EP and hybrid DE into 

RTS game, compare the performances of EP and hybrid DE, and generate gaming RTS 

controllers autonomously, an issue primarily of reinforcement/troops balancing. This 

micromanagement issue has been overlooked since last decade. Experimental results 

demonstrate success with all aims: both EP and hybrid DE could be implemented into the 

Warcraft III platform, and both algorithms used able to generate optimal solutions. 

 

Keywords: RTS games, evolutionary computing, evolutionary programming, differential 

evolution, feed-forward neural network 

 

Abstrak 
 

Kertas ini menunjukkan hasil penyelidikan yang diperolehi daripada perbandingan 

Pengaturcaraan Evolusi (EP) dan kacukan Evolusi Berbeza (DE) serta algoritma Rangkaian 

Neural Suap Depan (FFNN) dalam permainan komputer Real Time Strategy (RTS), iaitu 

Warcraft III. Tujuan utama kajian ini adalah untuk: menguji kebolehlaksanaan EP dan hibrid 

DE ke dalam RTS, bandingkan prestasi EP dan hibrid DE, dan menjana autonomi pengawal 

permainan RTS, yang berkenaan dengan isu mengimbangi tentera. Isu pengurusan mikro 

ini telah diabaikan sejak sedekad lalu. Hasil kajian menunjukkan kejayaan dengan semua 

matlamat: kedua-dua EP dan hibrid DE boleh dilaksanakan ke dalam platform Warcraft 

III, dan kedua-dua algoritma yang digunakan mampu menghasilkan penyelesaian yang 

optimum. 

 

Kata kunci: Permainan komputer RTS, pengkomputeran evolusi, pengaturcaraan evolusi, 

evolusi berbeza, rangkaian neural suap depan 
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1.0  INTRODUCTION 
 

Games provided important platform for Artificial 

Intelligence (AI) research since last decade. It allows 

testing and comparison of either new or modified 

algorithms in highly complex environment. 

Conventional AI research has mainly focused on 

board games. Slowly the research emphases on 

modern video games such as Mario Bros [13], [17], First 

Person Shooting (FPS)[5], Pac-Man [25], Car Racing 

[21], Go game [24], Tower Defense games [11], and 

various Real Time Strategy (RTS) games[1], [8]. Modern 

video games provide challenging and well-defined 

problems, especially for RTS games. The challenges 

including real-time planning, decision making under 

uncertainty, opponent modeling, resource 

management, path finding, formation, etc. Most of 

the researchers develop algorithms and methods from 

the challenges tackled and are mostly focused to the 

first five challenges [9] but not the formation issue, 

particularly for Non-Player Character (NPC) formation 

design.  

NPC formation design is a crucial issue. Play with a 

weak enemy troop will distract the gamer interest. On 

the other hand, gamers will not spend their time and 

money to play an undefeatable game. The design 

should create balance and interesting environment. A 

player must be challenged at first but not 

overwhelmed and, as the player’s skill increases, the 

AI should grow and continue to challenge them. 

However, this issue has been overlooked in most of the 

RTS games.  

A number of AI methods to the design of game 

controllers have been developed. Dynamic scripting 

[18], genetic algorithm [12], case-based reasoning 

and reinforcement learning [16], fuzzy logic [14], AI 

planner [19], influence mapping [26], are some 

methods developed to tackle specific RTS game issue. 

Hybrid techniques from evolutionary computing and 

machine learning have also been applied to game 

controllers as well, whereby Evolutionary Algorithm 

(EA) used to optimize Artificial Neural Network (ANN) 

weights. The hybrid approaches had been applied to 

different game such as Mario and tower defense 

games [11], [13], [17]. Interestingly, there is a discussion 

[3] used Evolutionary Programming (EP) to solve 

formation issue in Wargus game. The research result is 

remarkable however there is no comparison study has 

been conducted. Hence, this forms the core 

motivation of this research.  

In this research, the EP algorithm is designed and 

implemented. The result will be compared with hybrid 

Differential Evolution (DE) and Feed-Forward Neural 

Network algorithm (FFNN) for solving formation issue in 

the Warcraft III platform; one of the famous half-open 

source RTS game. The optimization algorithm is used to 

tune the weights of the individuals whilst the FFNN is 

used to decide on what kind of possible combination 

of units are to be spawned during gameplay. This is not 

happen in EP. EP decides the number of units to be 

spawned without additional guidance. 

In this study, a custom map is created in the Warcraft 

III. There are two teams of units used during gameplay: 

(1) opponent/enemy: a larger group of randomized 

units and (2) our AI controller: a group of AI units 

generated from the hybrid DE or EP. Both hybrid DE 

and EP will be challenged at first with the opponent, 

as the performance improved, both AI controllers will 

be challenged. The final results would represent (1) the 

shortest time the AI used to defeat the enemy force, 

(2) the maximum remaining AI units after the battle, 

and (3) the challenge results.  

The remainder of this writing is organized as follows. 

In section 2.0, the methodology representation will be 

discussed. This includes the hybrid DE, EP, and an 

overview of the Warcraft III editor. Then, the 

experimental setting is presented in section 3.0. It also 

covers the evaluation function used for both EP and 

hybrid DE. Furthermore, the results and discussions are 

included in sections 4.0 and this writing will be 

concluded with conclusions and future works in 

section 5.0.  

 

 

2.0  METHODOLOGY 
 

2.1  EP Algorithm 

 

EP is a paradigm of EAs. It is similar as Genetic 

Programming but the conventional structure is fixed to 

be optimized. Later design is not limit to fixed structure 

or representation and hence it is becoming harder to 

distinguish from evolutionary strategies [7]. EP involves 

very low computational cost and this makes EP 

standouts from other techniques. Most EAs involved 

more than one operator. But, EP main distinct 

operation is mutation and this causing no swapping 

process (crossover operator) between the individuals 

[7]. As typical EA, EP involves reproduction, mutation 

and selection.   

 

2.2  Hyrbid DE Algorithm 

 

DE is originally designed by Storn and Price and later 

there are various versions of modification [22]. In this 

research, the conventional DE is used and the 

algorithm is hybrid with neural cognition for solving 

gaming problems.  

The hybrid DE algorithm involves FFNN. DE is almost 

similar as EAs. It may involve reproduction, crossover 

operation, mutation operation and selection. 

However, it is differs to EAs as three vectors are used in 

the optimization. Hence, DE is highly advantages for 

searching larger spaces of candidate solutions. DE 

optimizes problem by maintaining candidate solutions 

and creating new solutions by combining existing ones 

according to its formulae. Initially, there are three 

vectors involved; a main parent and two supporting 

vectors. In the crossover process, new gene will be 

generated majority from the main vector combining 

a uniform probability between two supporting vectors. 

The uniform mutation process will be accompanied 

after the crossover. As DE is combined with FFNN, the 
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FFNN plays important role for deciding the number of 

units to be spawned.  

The FFNN [2] is the simplest form of ANN. Thus, it is 

widely used as ease to design and implement as well 

as low computational cost. Initially, FFNN consists of 

weights and the weights could be represented in 

input, hidden and output layers. The sum of the 

products of the weights and the inputs is calculated in 

each node. The neuron fires from the input to hidden 

layer. The activated value will be further fired from the 

hidden to output layer. Figure 1 shows the flow chart 

of hybrid DE. 

 

 
 

Figure 1 Flowchart of Hybrid DE 

 

 

2.3  Warcraft III Editor 

 

Warcraft III is a RTS game released by Blizzard 

Entertainment in its Warcraft game series. This platform 

has been widely used for research purpose [4], [15], 

[20], [23]. The Warcraft III provides easier customization 

(allow editing, modifying and including new 

features/components), user friendly environment, and 

interesting interfacing design [10]. Thus, it has been 

chosen as the test bed in most RTS gaming research. 

World Editor comes together with Warcraft III and it 

allows map customization and programming scripting. 

The World Editor also provides readily building and 

units. It allows resetting or modifying building’s or unit’s 

properties. The programming task is carried out using 

open source software, namely JassCraft 

programming language. Detail info related to 

Warcraft III could be found in their official web site [27]. 

3.0  EXPERIMENTAL SETTING 
 

Both of the EP and Hybrid DE share some general 

experimental settings. Each experiment involves 10 

runs. The termination conditions are: (1) when no foods 

remained in the gameplay, (2) simulation time 

reached 180 seconds, and (3) reached a maximum of 

200 generations. Both algorithms share a same fitness 

function. Detail discussion of the fitness function is 

accessible in Section 3.4. The uniform mutation 

operator is involved and the rate is 0.02. 

 

3.1  Gameplay Setting 

 

In the game, the troops in an army are members of 

four possible races, each with different strengths and 

weaknesses. However, in this research, only the 

Human race was considered as it has the highest 

armor skill. We believe that the evolved Human 

controller would simply defeat other races during the 

gameplay even though it has never been evolved 

against other races.  

The Human race consists of 13 different types of 

units: Peasant, Footman, Rifleman, Knight, Spell 

Breaker, Mortar Team, Priest, Sorceress, Siege Engine, 

Flying Machine, Gryphon Raider, Dragonhawk Raider 

and Militia. The Knight is the toughest ground unit with 

extremely high hit point and armor levels. The Gryphon 

Raider is an air unit with the highest attack damage 

and the Mortar Team is a ground unit having the 

highest siege attack damage. Footman, Knight and 

Mortar Team units are limited for ground attack. 

Hence, the combination of units rather than their 

number is the key to winning the game. In this 

research, only eight unit types were used during the 

experimentation. The Peasant, Priest, Sorceress, Siege 

Engine and Militia units were rejected due to having 

extremely low hit point, armor and attack damage. 

Our preliminary experimentation results showed that 

the inclusion of these weak units would slow down the 

optimization processes.  

A customized map is designed. The AI-units 

spawned at the bottom centre of the map whilst the 

enemy unit is positioned opposite to the AI-unit. All 

units will be ordered to march to the centre of the 

map and the units will automatically fight and attack 

the enemy once the attack range is within the 

visualization area of the units. Figure 2 shows the 

designed customized map.  
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Figure 2 Custom map 

 

 

Food is the main key in the game since different units 

hold some foods (capacity). In the experiment, the 

EP’s and hybrid DE’s are given 200 foods, 100 for each. 

The randomized enemy holds 120 foods. It is not an 

easy task in defeating a troop with larger foods. 

 

3.2  EP’s Setting 

 

In this research, the (μ + μ) survivor selection is used; 

each parent generates an offspring. The EP’s 

chromosome representation is formed by eight pairs 

of integer array. Each pair represents the type of unit 

and the number of units to be spawned. Table 1 shows 

the chromosome representation. 

 
Table 1 Chromosome Representation for EP 

 

Chromosome 

Representation 
Unit Types 

1 Footman 

2 Rifleman 

3 Knight 

4 Mortar Team 

5 Spell Breaker 

6 Gryphon Raider 

7 Flying Machine 

8 Dragonhawk Raider 

 

 

3.3  Hybrid DE’s Setting 

 

The hybrid DE’s experimental setting is slightly different 

compared to EP as FFNN is involved in the DE. The 

input layer consists of 8 + 1 neurons (number of 

opponent unit by type plus one bias neuron). The 

hidden layer involves 17 + 1 neurons (number of 

hidden neurons plus one bias neuron). There are eight 

neurons in the output layer. The output neurons 

represent the number of units by types to be spawned. 

A binary sigmoid is used during the learning process. 

The uniform crossover operator is used with a rate of 

0.7. 

 

3.4  Evaluation Function 

 

The evaluation function involved maximizing 

remaining foods after each match. The process 

means maximizing the number of units survives in any 

gameplay. Only stronger group of army will retain on 

the ground. This objective function will guide the 

controllers to spawn stronger combination of units.  

F1 = FU1 – FE1     (1) 

where F1 represents the fitness value of an individual. 

FUl represents the remaining foods of proposed AI units 

(either EP’s or hybrid DE’s controller). FEl is representing 

remaining food of opponent units. F1 yield a positive 

value if the controller wins the match. Otherwise, it 

generates negative value. Table 2 below shows the 

summary of the experimental setting. 
 

Table 2 Summary of experimental setting 

 

Descriptions/ 

Operators 
EP Setting 

Hybrid DE 

Setting 

Number of 

experiments 

10 10 

Termination 

condition 

200 200 

Crossover operator Uniform Uniform 

Crossover rate - 0.7 

Mutation operator Uniform Uniform 

Mutation rate 0.02 0.02 

AI-units food 100 100 

Enemy food 120 120 

Number of input 

neurons 

- 8 + 1(bias) 

Number of hidden 

neurons 

- 17 + 1(bias) 

Number of output 

neurons 

- 8 

Activation function - Binary sigmoid 

Termination 

condition for each 

match 

0 foods / 180 

seconds 

0 foods / 180 

seconds 

Type of neural 

network 

- Feed-forward 

 

 

4.0  RESULTS AND DISCUSSIONS 
 

4.1  Optimization Results 

 

Figure 3 shows the experimental result obtained from 

one of the evolutionary run. The EP’s controller 

generated lots of ground units at the beginning. The 

controller lost during early stage of the gameplays as 

the combination of units was too weak against the 

opponent troop. Most of these combinations involved 

big number of mortal team with massive riflemen and 

a few footmen and knights. In Warcraft III, mortal team 

is a unit that comes with low hit points and low armour 

but equipped with long range and high attack 

damage that is almost similar as a rifleman. Although 

they are very powerful, they are weak in defence and 

hence a group of knights or footmen are required as 

defender or protector. Nevertheless, the troops 
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generated by EP were very weak against the 

opponent troop as the opponent generated better 

combination of units.  

In the 12th generation, the EP’s controller was 

improved as it spawned a group of flying units 

combined with a few knights for defeating its 

opponent and it obtained high fitness score. Then, the 

EP’s controller continued to adjust the involvement of 

knights and hence generated fluctuation fitness 

scores. Until the 34th generation, the EP’s controller 

finally learned to remove all the knights and spent all 

resources to spawn a combination of troops formed 

only by flying units. The combination included gryphon 

raiders, flying machines and dragonhawk raiders. In 

later generations, the EP’s controller started to spawn 

less flying machine and replaced with gryphon raiders 

or dragonhawk raiders that would help to obtain 

higher fitness score. This process continued until end of 

the optimization process.  

 

 
 
Figure 3 One of the EP’s Optimization results – the 6th 

evolutionary run 

 

 

Figure 4 presents the experimental result obtained 

from one of the DE’s evolutionary run. The graph shows 

the DE controller obtained low fitness scores on the first 

half of the evolutionary runs. The DE’s controller 

generated a combination of troops consists of 

majority knights or mortal teams and very few mortar 

teams or riflemen or footmen in the early phases. Such 

combination suffers a great lost as the troops were 

weak against flying units such as gryphon raider or 

dragonhawk raider. Until 105th generation, the DE’s 

controller included flying units in the troop. The troop 

was formed with mostly gryphon raiders and very few 

flying machines. The DE’s controller won the games 

afterward and obtained high fitness scores. Such 

solution helped the DE’s controller in gaining high 

fitness score. 

 

 

 
 
Figure 4 One of the DE’s Optimization results – the 9th 

evolutionary run 

 
 

4.2  Testing Results 

 
Ten tests had been conducted for both EP and DE 

controllers. The results showed all generated 
controllers were able to win all of the game tests. EP 
controllers generated few combinations of troops. The 
combinations of troops involved: 

 

• Majority of gryphon raiders, very few flying 

machines. 

• Majority of gryphon raiders, very few spell 

breakers. 

• Majority of gryphon raiders, very few 

dragonhawk raiders. 

• Majority of dragonhawk raiders, some 

gryphon raiders and few flying machines. 

• Majority gryphon raiders, some knights and 

few riflemen. 
 
The solution provided by DE controllers for all test 

turned to one last solution although all generated 
initial controllers were different. The generated DE 
controllers proposed 15 gryphon raiders and two flying 
machines. 

 

4.3  Statistics Analysis and Comparison of 

Reinforcement 

 

Table 3 below shows all of the controllers obtained 

positive maximum fitness scores. It means all of the 

generated controllers can defeat their opponents 

and won the games. Table 3 also shows the 

generated DE’s controllers obtained highest average 

maximum fitness score, 60.2 score compares to EP’s 

controllers which obtained 49.6 average maximum 

fitness scores. Furthermore, DE’s controllers obtained 

very low standard deviation compared to EP’s 

controllers, 1.40 versus 3.63 respectively. It happened 

probably the generated DE’s controllers always 

converged into a single solution that performed similar 

results in most of the evolutionary runs.  That means the 

solutions found by the DE’s controllers are stronger and 

highly survivable after gameplays. 
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Table 3 Comparison of fitness scores 

 

Test set 
EP DE 

Avg  Max Min Avg  Max Min 

1 
3.84 56 -66 24.8

9 

58 -61 

2 
17.20 48 -55 26.3

8 

60 -61 

3 
28.96 45 -63 23.2

2 

60 -59 

4 
20.59 52 -57 35.5

5 

58 -55 

5 
32.66 48 -48 17.9

3 

61 -65 

6 
31.28 49 -67 12.4

6 

60 -58 

7 34.80 48 -19 6.62 61 -64 

8 
28.21 51 -65 31.8

7 

62 -65 

9 29.02 45 -58 4.20 62 -71 

10 
-3.12 54 -55 17.8

1 

60 -64 

Average 
22.34 49.6 -55.3 20.0

9 

60.2 -62.3 

Standard 

Deviation 
11.75 3.63 

14.0

9 

10.2

9 
1.40 4.50 

 

 

The generated EP’s controllers produced two 

commonly used combinations: (1) gryphon raiders + 

flying machines + dragonhawk raiders (This solution 

showed EP’s controllers generated all flying units 

during the gameplays), and (2) gryphon raiders + 

knights+ riflemen (This solution showed the controllers 

learned to spawn some knights as defender and 

utilized remained resources to spawn a few riflemen to 

attack from a far distance). This reveals the generated 

EP’s controllers learned to spawn different type of 

troops to eliminate the opponents.  

In other case, the generated DE’s controllers only 

spawned flying units such as gryphon raiders, flying 

machines and very unlikely dragonhawk raiders in the 

troop. It happened as the DE’s controllers found that 

spawning stronger units in a gameplay could 

generate higher fitness score. The possible solutions 

suggested by EP’s and DE’s controllers are tabulated 

in Table 4. 

 
Table 4 Possible Solutions Obtained in EP’s And DE’s 

Gameplays 

 

Solutions EP DE 

Common 

combination 

gryphon 

raiders + 

flying 

machines +  

dragonhawk 

raiders 

gryphon 

raiders + 

knights + 

riflemen 

gryphon 

raider + 

flying 

machines 

Possible 

solution 

8 gryphon 

raiders + 7 

Flying 

machines + 7 

dragonhawk 

raiders. 

12 gryphon 

raiders + 3 

knights +1 

rifleman 

15 

gryphon 

raiders + 2 

flying 

machines 

 

Table 5 show the resources consumed and time 

required to spawn the combination of troops 

proposed by EP’s and DE’s controllers. Table 5 clearly 

shows there were 5620 gold, 1780 woods and 1252 

seconds were required for spawning a group of units 

consisting 8 gryphon raiders, 7 flying machines and 7 

dragonhawk raiders. The other solution found by the 

EP’s controller utilized 5540 gold, 1740 woods, and 

1246 seconds for spawning 12 gryphon raiders with 3 

knights and 1 rifleman. For the DE’s controller, it used 

5600 gold, 1880 woods, and 1346 seconds for 

spawning 15 gryphon raiders with 2 flying machines. 
 

Table 5 Resources required for spawning selected troop from 

generated EP’s and DE’s controllers 

 

Resources/ 

Algorithms 
EP DE 

Total Gold 

used 

4270  (to 

spawn unit) + 

1350 

(technology 

expenses) = 

5,620 gold 

4,300  (to 

spawn unit) + 

1240 

(technology 

expenses) = 

5,540 gold 

4,380  (to 

spawn unit) + 

1220 

(technology 

expenses) = 

5,600 gold 

Total 

Woods 

used 

980 (to 

spawn unit) + 

800 

(technology 

expenses) = 

1,780 woods 

1050 (to 

spawn unit) + 

690 

(technology 

expenses) = 

1,740 woods 

1110 (to 

spawn unit) + 

770 

(technology 

expenses) = 

1,880 woods 

Total Foods  59 51 47 

Time 

required (s) 

647 (to 

spawn unit) + 

605(technol

ogy build 

time) = 

1,252s 

701 (to 

spawn unit) + 

545(technol

ogy build 

time) = 

1,246s 

701 (to spawn 

unit) + 645 

(technology 

build time) = 

1,346s 

Unit Level 5 5 5 

Technolog

y required 

Lumber mill 

(180 gold + 

60s), Keep 

(320 gold + 

210 woods + 

140s),  Castle 

(360 gold + 

210 woods + 

140s), 

Gryphon 

Aviary (140 

gold + 150 

woods + 75s) 

Arcane 

Vault (130 

gold + 30 

woods + 60s) 

Lumber mill 

(180 gold + 

60s), Keep 

(320 gold + 

210 woods + 

140s),  Castle 

(360 gold + 

210 woods + 

140s), 

Gryphon 

Aviary (140 

gold + 150 

woods + 

75s), 

Blacksmith 

(140 gold + 

60 woods + 

70s), 

Barracks (160 

gold + 60 

woods + 60s) 

Lumber mill 

(180 gold + 

60s), Keep 

(320 gold + 

210 woods + 

140s), Castle 

(360 gold + 

210 woods + 

140s),  

Gryphon 

Aviary (140 

gold + 150 

woods + 75s), 

Blacksmith 

(140 gold + 60 

woods + 70s), 

Workshop 

(140 gold, 140 

woods, 60s) 

Unit 

spawned 

8 gryphon 

raiders + 7 

Flying 

machines + 7 

dragonhawk 

raiders. 

12 gryphon 

raiders + 3 

knights +1 

rifleman 

15 gryphon 

raiders + 2 

flying 

machines 
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As a summary, both EP and DE controllers utilized less 

than 5700 gold. However, the total woods used by DE 

controller were slightly higher compared to EP 

solutions. The EP controllers required more foods 

compared to DE controller. The time required for 

spawning DE solution was slightly higher compared to 

EP. It happened as the DE solution involved higher 

level of technology during gameplay. Hence, in term 

of resources management, the generated EP solutions 

performed better compared to the generated DE’s 

controllers. 
 

 

5.0  CONCLUSION AND FUTURE WORKS 
 

In term of fitness score, the experimental results 

showed all of the generated controllers could 

generate good solutions to defeat a larger and 

stronger group of opponent. The DE’s controller 

obtained highest fitness score and lowest standard 

deviation value compared to the generated EP’s 

controllers.  

In other perspective, both EP’s and DE’s controllers 

included stronger and higher level of units such as 

gryphon raider, dragonhawk raider and knights in the 

gameplay. It means in term of troop’s performance, 

the solutions found by EP’s and DE’s controllers 

provided low defensive in the early stage of the 

gameplay. Furthermore, the process of preparing 

sufficient resources to spawn high level of units is time 

consuming and highly complex during each 

gameplay. Hence, the solutions provided are 

extremely risky and costly in practice.  

As a conclusion, there is no significant different 

between the generated EP’s and DE’s controllers in 

the testing phase. Both algorithms used could 

generate the required gaming controllers. The 

generated controllers were capable to win all tests. 

However, the generated DE’s controllers could 

eliminate the opponent units faster and there were 

more units remained after each match. The testing 

results showed all generated controllers were too 

superior to be defeated and this is not a good 

practice as no player want to play an undefeatable 

game.  

As future works, probably applying different type of 

evolutionary computing techniques such as multi-

objectives optimization algorithms, incremental 

evolution, interactive evolution and hybrid different 

type of neural networks might be an alternative 

solution.  

In the extended works we designed and 

implementing the Pareto-Differential Evolutionary 

algorithm. The results will be compared with the EP 

and hybrid DE data. The suggested Pareto-Differential 

Evolutionary algorithm has been proven to be superior 

in designing simulated robot controllers [6]. 
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