

76:12 (2015) 119–126 | www.jurnalteknologi.utm.my | eISSN 2180–3722 |

Jurnal

Teknologi

Full Paper

SELF-EVALUATION OF RTS TROOP’S PERFORMANCE

Chin Kim Ona*, Chang Kee Tonga, Jason Teoa, Rayner Alfreda,

Wang Chengb, Tan Tse Guanc

aFaculty of Computer and Informatics, Universiti Malaysia Sabah,

Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
bSchool of Economics and Management, Qiqihar University,

China
cFaculty of Creative Technology & Heritage, Universiti Malaysia

Kelantan, Kelantan, Malaysia

Article history

Received

1 June 2015

Received in revised form

13 July 2015

Accepted

20 August 2015

*Corresponding author

kimonchin@gmail.com

Graphical abstract

Abstract

This paper demonstrates the research results obtained from a comparison of Evolutionary

Programming (EP) and hybrid Differential Evolution (DE) and Feed Forward Neural Network

(FFNN) algorithms in the Real Time Strategy (RTS) computer game, namely Warcraft III. The

main aims of this research are to: test the feasibility of implementing EP and hybrid DE into

RTS game, compare the performances of EP and hybrid DE, and generate gaming RTS

controllers autonomously, an issue primarily of reinforcement/troops balancing. This

micromanagement issue has been overlooked since last decade. Experimental results

demonstrate success with all aims: both EP and hybrid DE could be implemented into the

Warcraft III platform, and both algorithms used able to generate optimal solutions.

Keywords: RTS games, evolutionary computing, evolutionary programming, differential

evolution, feed-forward neural network

Abstrak

Kertas ini menunjukkan hasil penyelidikan yang diperolehi daripada perbandingan

Pengaturcaraan Evolusi (EP) dan kacukan Evolusi Berbeza (DE) serta algoritma Rangkaian

Neural Suap Depan (FFNN) dalam permainan komputer Real Time Strategy (RTS), iaitu

Warcraft III. Tujuan utama kajian ini adalah untuk: menguji kebolehlaksanaan EP dan hibrid

DE ke dalam RTS, bandingkan prestasi EP dan hibrid DE, dan menjana autonomi pengawal

permainan RTS, yang berkenaan dengan isu mengimbangi tentera. Isu pengurusan mikro

ini telah diabaikan sejak sedekad lalu. Hasil kajian menunjukkan kejayaan dengan semua

matlamat: kedua-dua EP dan hibrid DE boleh dilaksanakan ke dalam platform Warcraft

III, dan kedua-dua algoritma yang digunakan mampu menghasilkan penyelesaian yang

optimum.

Kata kunci: Permainan komputer RTS, pengkomputeran evolusi, pengaturcaraan evolusi,

evolusi berbeza, rangkaian neural suap depan

© 2015 Penerbit UTM Press. All rights reserved

Enemy troops

Neural
networks

Differential
Evolution

Evolutionary
Programming

Generate
DENN

solutions

Generate
EP

solutions

Comparison of
Troops’ performance
and resources used

120 Chin Kim On, et al. / Jurnal Teknologi (Sciences & Engineering) 76:12 (2015) 119–126

1.0 INTRODUCTION

Games provided important platform for Artificial

Intelligence (AI) research since last decade. It allows

testing and comparison of either new or modified

algorithms in highly complex environment.

Conventional AI research has mainly focused on

board games. Slowly the research emphases on

modern video games such as Mario Bros [13], [17], First

Person Shooting (FPS)[5], Pac-Man [25], Car Racing

[21], Go game [24], Tower Defense games [11], and

various Real Time Strategy (RTS) games[1], [8]. Modern

video games provide challenging and well-defined

problems, especially for RTS games. The challenges

including real-time planning, decision making under

uncertainty, opponent modeling, resource

management, path finding, formation, etc. Most of

the researchers develop algorithms and methods from

the challenges tackled and are mostly focused to the

first five challenges [9] but not the formation issue,

particularly for Non-Player Character (NPC) formation

design.

NPC formation design is a crucial issue. Play with a

weak enemy troop will distract the gamer interest. On

the other hand, gamers will not spend their time and

money to play an undefeatable game. The design

should create balance and interesting environment. A

player must be challenged at first but not

overwhelmed and, as the player’s skill increases, the

AI should grow and continue to challenge them.

However, this issue has been overlooked in most of the

RTS games.

A number of AI methods to the design of game

controllers have been developed. Dynamic scripting

[18], genetic algorithm [12], case-based reasoning

and reinforcement learning [16], fuzzy logic [14], AI

planner [19], influence mapping [26], are some

methods developed to tackle specific RTS game issue.

Hybrid techniques from evolutionary computing and

machine learning have also been applied to game

controllers as well, whereby Evolutionary Algorithm

(EA) used to optimize Artificial Neural Network (ANN)

weights. The hybrid approaches had been applied to

different game such as Mario and tower defense

games [11], [13], [17]. Interestingly, there is a discussion

[3] used Evolutionary Programming (EP) to solve

formation issue in Wargus game. The research result is

remarkable however there is no comparison study has

been conducted. Hence, this forms the core

motivation of this research.

In this research, the EP algorithm is designed and

implemented. The result will be compared with hybrid

Differential Evolution (DE) and Feed-Forward Neural

Network algorithm (FFNN) for solving formation issue in

the Warcraft III platform; one of the famous half-open

source RTS game. The optimization algorithm is used to

tune the weights of the individuals whilst the FFNN is

used to decide on what kind of possible combination

of units are to be spawned during gameplay. This is not

happen in EP. EP decides the number of units to be

spawned without additional guidance.

In this study, a custom map is created in the Warcraft

III. There are two teams of units used during gameplay:

(1) opponent/enemy: a larger group of randomized

units and (2) our AI controller: a group of AI units

generated from the hybrid DE or EP. Both hybrid DE

and EP will be challenged at first with the opponent,

as the performance improved, both AI controllers will

be challenged. The final results would represent (1) the

shortest time the AI used to defeat the enemy force,

(2) the maximum remaining AI units after the battle,

and (3) the challenge results.

The remainder of this writing is organized as follows.

In section 2.0, the methodology representation will be

discussed. This includes the hybrid DE, EP, and an

overview of the Warcraft III editor. Then, the

experimental setting is presented in section 3.0. It also

covers the evaluation function used for both EP and

hybrid DE. Furthermore, the results and discussions are

included in sections 4.0 and this writing will be

concluded with conclusions and future works in

section 5.0.

2.0 METHODOLOGY

2.1 EP Algorithm

EP is a paradigm of EAs. It is similar as Genetic

Programming but the conventional structure is fixed to

be optimized. Later design is not limit to fixed structure

or representation and hence it is becoming harder to

distinguish from evolutionary strategies [7]. EP involves

very low computational cost and this makes EP

standouts from other techniques. Most EAs involved

more than one operator. But, EP main distinct

operation is mutation and this causing no swapping

process (crossover operator) between the individuals

[7]. As typical EA, EP involves reproduction, mutation

and selection.

2.2 Hyrbid DE Algorithm

DE is originally designed by Storn and Price and later

there are various versions of modification [22]. In this

research, the conventional DE is used and the

algorithm is hybrid with neural cognition for solving

gaming problems.

The hybrid DE algorithm involves FFNN. DE is almost

similar as EAs. It may involve reproduction, crossover

operation, mutation operation and selection.

However, it is differs to EAs as three vectors are used in

the optimization. Hence, DE is highly advantages for

searching larger spaces of candidate solutions. DE

optimizes problem by maintaining candidate solutions

and creating new solutions by combining existing ones

according to its formulae. Initially, there are three

vectors involved; a main parent and two supporting

vectors. In the crossover process, new gene will be

generated majority from the main vector combining

a uniform probability between two supporting vectors.

The uniform mutation process will be accompanied

after the crossover. As DE is combined with FFNN, the

121 Chin Kim On, et al. / Jurnal Teknologi (Sciences & Engineering) 76:12 (2015) 119–126

FFNN plays important role for deciding the number of

units to be spawned.

The FFNN [2] is the simplest form of ANN. Thus, it is

widely used as ease to design and implement as well

as low computational cost. Initially, FFNN consists of

weights and the weights could be represented in

input, hidden and output layers. The sum of the

products of the weights and the inputs is calculated in

each node. The neuron fires from the input to hidden

layer. The activated value will be further fired from the

hidden to output layer. Figure 1 shows the flow chart

of hybrid DE.

Figure 1 Flowchart of Hybrid DE

2.3 Warcraft III Editor

Warcraft III is a RTS game released by Blizzard

Entertainment in its Warcraft game series. This platform

has been widely used for research purpose [4], [15],

[20], [23]. The Warcraft III provides easier customization

(allow editing, modifying and including new

features/components), user friendly environment, and

interesting interfacing design [10]. Thus, it has been

chosen as the test bed in most RTS gaming research.

World Editor comes together with Warcraft III and it

allows map customization and programming scripting.

The World Editor also provides readily building and

units. It allows resetting or modifying building’s or unit’s

properties. The programming task is carried out using

open source software, namely JassCraft

programming language. Detail info related to

Warcraft III could be found in their official web site [27].

3.0 EXPERIMENTAL SETTING

Both of the EP and Hybrid DE share some general

experimental settings. Each experiment involves 10

runs. The termination conditions are: (1) when no foods

remained in the gameplay, (2) simulation time

reached 180 seconds, and (3) reached a maximum of

200 generations. Both algorithms share a same fitness

function. Detail discussion of the fitness function is

accessible in Section 3.4. The uniform mutation

operator is involved and the rate is 0.02.

3.1 Gameplay Setting

In the game, the troops in an army are members of

four possible races, each with different strengths and

weaknesses. However, in this research, only the

Human race was considered as it has the highest

armor skill. We believe that the evolved Human

controller would simply defeat other races during the

gameplay even though it has never been evolved

against other races.

The Human race consists of 13 different types of

units: Peasant, Footman, Rifleman, Knight, Spell

Breaker, Mortar Team, Priest, Sorceress, Siege Engine,

Flying Machine, Gryphon Raider, Dragonhawk Raider

and Militia. The Knight is the toughest ground unit with

extremely high hit point and armor levels. The Gryphon

Raider is an air unit with the highest attack damage

and the Mortar Team is a ground unit having the

highest siege attack damage. Footman, Knight and

Mortar Team units are limited for ground attack.

Hence, the combination of units rather than their

number is the key to winning the game. In this

research, only eight unit types were used during the

experimentation. The Peasant, Priest, Sorceress, Siege

Engine and Militia units were rejected due to having

extremely low hit point, armor and attack damage.

Our preliminary experimentation results showed that

the inclusion of these weak units would slow down the

optimization processes.

A customized map is designed. The AI-units

spawned at the bottom centre of the map whilst the

enemy unit is positioned opposite to the AI-unit. All

units will be ordered to march to the centre of the

map and the units will automatically fight and attack

the enemy once the attack range is within the

visualization area of the units. Figure 2 shows the

designed customized map.

122 Chin Kim On, et al. / Jurnal Teknologi (Sciences & Engineering) 76:12 (2015) 119–126

Figure 2 Custom map

Food is the main key in the game since different units

hold some foods (capacity). In the experiment, the

EP’s and hybrid DE’s are given 200 foods, 100 for each.

The randomized enemy holds 120 foods. It is not an

easy task in defeating a troop with larger foods.

3.2 EP’s Setting

In this research, the (μ + μ) survivor selection is used;

each parent generates an offspring. The EP’s

chromosome representation is formed by eight pairs

of integer array. Each pair represents the type of unit

and the number of units to be spawned. Table 1 shows

the chromosome representation.

Table 1 Chromosome Representation for EP

Chromosome

Representation
Unit Types

1 Footman

2 Rifleman

3 Knight

4 Mortar Team

5 Spell Breaker

6 Gryphon Raider

7 Flying Machine

8 Dragonhawk Raider

3.3 Hybrid DE’s Setting

The hybrid DE’s experimental setting is slightly different

compared to EP as FFNN is involved in the DE. The

input layer consists of 8 + 1 neurons (number of

opponent unit by type plus one bias neuron). The

hidden layer involves 17 + 1 neurons (number of

hidden neurons plus one bias neuron). There are eight

neurons in the output layer. The output neurons

represent the number of units by types to be spawned.

A binary sigmoid is used during the learning process.

The uniform crossover operator is used with a rate of

0.7.

3.4 Evaluation Function

The evaluation function involved maximizing

remaining foods after each match. The process

means maximizing the number of units survives in any

gameplay. Only stronger group of army will retain on

the ground. This objective function will guide the

controllers to spawn stronger combination of units.

F1 = FU1 – FE1 (1)

where F1 represents the fitness value of an individual.

FUl represents the remaining foods of proposed AI units

(either EP’s or hybrid DE’s controller). FEl is representing

remaining food of opponent units. F1 yield a positive

value if the controller wins the match. Otherwise, it

generates negative value. Table 2 below shows the

summary of the experimental setting.

Table 2 Summary of experimental setting

Descriptions/

Operators
EP Setting

Hybrid DE

Setting

Number of

experiments

10 10

Termination

condition

200 200

Crossover operator Uniform Uniform

Crossover rate - 0.7

Mutation operator Uniform Uniform

Mutation rate 0.02 0.02

AI-units food 100 100

Enemy food 120 120

Number of input

neurons

- 8 + 1(bias)

Number of hidden

neurons

- 17 + 1(bias)

Number of output

neurons

- 8

Activation function - Binary sigmoid

Termination

condition for each

match

0 foods / 180

seconds

0 foods / 180

seconds

Type of neural

network

- Feed-forward

4.0 RESULTS AND DISCUSSIONS

4.1 Optimization Results

Figure 3 shows the experimental result obtained from

one of the evolutionary run. The EP’s controller

generated lots of ground units at the beginning. The

controller lost during early stage of the gameplays as

the combination of units was too weak against the

opponent troop. Most of these combinations involved

big number of mortal team with massive riflemen and

a few footmen and knights. In Warcraft III, mortal team

is a unit that comes with low hit points and low armour

but equipped with long range and high attack

damage that is almost similar as a rifleman. Although

they are very powerful, they are weak in defence and

hence a group of knights or footmen are required as

defender or protector. Nevertheless, the troops

123 Chin Kim On, et al. / Jurnal Teknologi (Sciences & Engineering) 76:12 (2015) 119–126

generated by EP were very weak against the

opponent troop as the opponent generated better

combination of units.

In the 12th generation, the EP’s controller was

improved as it spawned a group of flying units

combined with a few knights for defeating its

opponent and it obtained high fitness score. Then, the

EP’s controller continued to adjust the involvement of

knights and hence generated fluctuation fitness

scores. Until the 34th generation, the EP’s controller

finally learned to remove all the knights and spent all

resources to spawn a combination of troops formed

only by flying units. The combination included gryphon

raiders, flying machines and dragonhawk raiders. In

later generations, the EP’s controller started to spawn

less flying machine and replaced with gryphon raiders

or dragonhawk raiders that would help to obtain

higher fitness score. This process continued until end of

the optimization process.

Figure 3 One of the EP’s Optimization results – the 6th

evolutionary run

Figure 4 presents the experimental result obtained

from one of the DE’s evolutionary run. The graph shows

the DE controller obtained low fitness scores on the first

half of the evolutionary runs. The DE’s controller

generated a combination of troops consists of

majority knights or mortal teams and very few mortar

teams or riflemen or footmen in the early phases. Such

combination suffers a great lost as the troops were

weak against flying units such as gryphon raider or

dragonhawk raider. Until 105th generation, the DE’s

controller included flying units in the troop. The troop

was formed with mostly gryphon raiders and very few

flying machines. The DE’s controller won the games

afterward and obtained high fitness scores. Such

solution helped the DE’s controller in gaining high

fitness score.

Figure 4 One of the DE’s Optimization results – the 9th

evolutionary run

4.2 Testing Results

Ten tests had been conducted for both EP and DE

controllers. The results showed all generated
controllers were able to win all of the game tests. EP
controllers generated few combinations of troops. The
combinations of troops involved:

• Majority of gryphon raiders, very few flying

machines.

• Majority of gryphon raiders, very few spell

breakers.

• Majority of gryphon raiders, very few

dragonhawk raiders.

• Majority of dragonhawk raiders, some

gryphon raiders and few flying machines.

• Majority gryphon raiders, some knights and

few riflemen.

The solution provided by DE controllers for all test

turned to one last solution although all generated
initial controllers were different. The generated DE
controllers proposed 15 gryphon raiders and two flying
machines.

4.3 Statistics Analysis and Comparison of

Reinforcement

Table 3 below shows all of the controllers obtained

positive maximum fitness scores. It means all of the

generated controllers can defeat their opponents

and won the games. Table 3 also shows the

generated DE’s controllers obtained highest average

maximum fitness score, 60.2 score compares to EP’s

controllers which obtained 49.6 average maximum

fitness scores. Furthermore, DE’s controllers obtained

very low standard deviation compared to EP’s

controllers, 1.40 versus 3.63 respectively. It happened

probably the generated DE’s controllers always

converged into a single solution that performed similar

results in most of the evolutionary runs. That means the

solutions found by the DE’s controllers are stronger and

highly survivable after gameplays.

124 Chin Kim On, et al. / Jurnal Teknologi (Sciences & Engineering) 76:12 (2015) 119–126

Table 3 Comparison of fitness scores

Test set
EP DE

Avg Max Min Avg Max Min

1
3.84 56 -66 24.8

9

58 -61

2
17.20 48 -55 26.3

8

60 -61

3
28.96 45 -63 23.2

2

60 -59

4
20.59 52 -57 35.5

5

58 -55

5
32.66 48 -48 17.9

3

61 -65

6
31.28 49 -67 12.4

6

60 -58

7 34.80 48 -19 6.62 61 -64

8
28.21 51 -65 31.8

7

62 -65

9 29.02 45 -58 4.20 62 -71

10
-3.12 54 -55 17.8

1

60 -64

Average
22.34 49.6 -55.3 20.0

9

60.2 -62.3

Standard

Deviation
11.75 3.63

14.0

9

10.2

9
1.40 4.50

The generated EP’s controllers produced two

commonly used combinations: (1) gryphon raiders +

flying machines + dragonhawk raiders (This solution

showed EP’s controllers generated all flying units

during the gameplays), and (2) gryphon raiders +

knights+ riflemen (This solution showed the controllers

learned to spawn some knights as defender and

utilized remained resources to spawn a few riflemen to

attack from a far distance). This reveals the generated

EP’s controllers learned to spawn different type of

troops to eliminate the opponents.

In other case, the generated DE’s controllers only

spawned flying units such as gryphon raiders, flying

machines and very unlikely dragonhawk raiders in the

troop. It happened as the DE’s controllers found that

spawning stronger units in a gameplay could

generate higher fitness score. The possible solutions

suggested by EP’s and DE’s controllers are tabulated

in Table 4.

Table 4 Possible Solutions Obtained in EP’s And DE’s

Gameplays

Solutions EP DE

Common

combination

gryphon

raiders +

flying

machines +

dragonhawk

raiders

gryphon

raiders +

knights +

riflemen

gryphon

raider +

flying

machines

Possible

solution

8 gryphon

raiders + 7

Flying

machines + 7

dragonhawk

raiders.

12 gryphon

raiders + 3

knights +1

rifleman

15

gryphon

raiders + 2

flying

machines

Table 5 show the resources consumed and time

required to spawn the combination of troops

proposed by EP’s and DE’s controllers. Table 5 clearly

shows there were 5620 gold, 1780 woods and 1252

seconds were required for spawning a group of units

consisting 8 gryphon raiders, 7 flying machines and 7

dragonhawk raiders. The other solution found by the

EP’s controller utilized 5540 gold, 1740 woods, and

1246 seconds for spawning 12 gryphon raiders with 3

knights and 1 rifleman. For the DE’s controller, it used

5600 gold, 1880 woods, and 1346 seconds for

spawning 15 gryphon raiders with 2 flying machines.

Table 5 Resources required for spawning selected troop from

generated EP’s and DE’s controllers

Resources/

Algorithms
EP DE

Total Gold

used

4270 (to

spawn unit) +

1350

(technology

expenses) =

5,620 gold

4,300 (to

spawn unit) +

1240

(technology

expenses) =

5,540 gold

4,380 (to

spawn unit) +

1220

(technology

expenses) =

5,600 gold

Total

Woods

used

980 (to

spawn unit) +

800

(technology

expenses) =

1,780 woods

1050 (to

spawn unit) +

690

(technology

expenses) =

1,740 woods

1110 (to

spawn unit) +

770

(technology

expenses) =

1,880 woods

Total Foods 59 51 47

Time

required (s)

647 (to

spawn unit) +

605(technol

ogy build

time) =

1,252s

701 (to

spawn unit) +

545(technol

ogy build

time) =

1,246s

701 (to spawn

unit) + 645

(technology

build time) =

1,346s

Unit Level 5 5 5

Technolog

y required

Lumber mill

(180 gold +

60s), Keep

(320 gold +

210 woods +

140s), Castle

(360 gold +

210 woods +

140s),

Gryphon

Aviary (140

gold + 150

woods + 75s)

Arcane

Vault (130

gold + 30

woods + 60s)

Lumber mill

(180 gold +

60s), Keep

(320 gold +

210 woods +

140s), Castle

(360 gold +

210 woods +

140s),

Gryphon

Aviary (140

gold + 150

woods +

75s),

Blacksmith

(140 gold +

60 woods +

70s),

Barracks (160

gold + 60

woods + 60s)

Lumber mill

(180 gold +

60s), Keep

(320 gold +

210 woods +

140s), Castle

(360 gold +

210 woods +

140s),

Gryphon

Aviary (140

gold + 150

woods + 75s),

Blacksmith

(140 gold + 60

woods + 70s),

Workshop

(140 gold, 140

woods, 60s)

Unit

spawned

8 gryphon

raiders + 7

Flying

machines + 7

dragonhawk

raiders.

12 gryphon

raiders + 3

knights +1

rifleman

15 gryphon

raiders + 2

flying

machines

125 Chin Kim On, et al. / Jurnal Teknologi (Sciences & Engineering) 76:12 (2015) 119–126

As a summary, both EP and DE controllers utilized less

than 5700 gold. However, the total woods used by DE

controller were slightly higher compared to EP

solutions. The EP controllers required more foods

compared to DE controller. The time required for

spawning DE solution was slightly higher compared to

EP. It happened as the DE solution involved higher

level of technology during gameplay. Hence, in term

of resources management, the generated EP solutions

performed better compared to the generated DE’s

controllers.

5.0 CONCLUSION AND FUTURE WORKS

In term of fitness score, the experimental results

showed all of the generated controllers could

generate good solutions to defeat a larger and

stronger group of opponent. The DE’s controller

obtained highest fitness score and lowest standard

deviation value compared to the generated EP’s

controllers.

In other perspective, both EP’s and DE’s controllers

included stronger and higher level of units such as

gryphon raider, dragonhawk raider and knights in the

gameplay. It means in term of troop’s performance,

the solutions found by EP’s and DE’s controllers

provided low defensive in the early stage of the

gameplay. Furthermore, the process of preparing

sufficient resources to spawn high level of units is time

consuming and highly complex during each

gameplay. Hence, the solutions provided are

extremely risky and costly in practice.

As a conclusion, there is no significant different

between the generated EP’s and DE’s controllers in

the testing phase. Both algorithms used could

generate the required gaming controllers. The

generated controllers were capable to win all tests.

However, the generated DE’s controllers could

eliminate the opponent units faster and there were

more units remained after each match. The testing

results showed all generated controllers were too

superior to be defeated and this is not a good

practice as no player want to play an undefeatable

game.

As future works, probably applying different type of

evolutionary computing techniques such as multi-

objectives optimization algorithms, incremental

evolution, interactive evolution and hybrid different

type of neural networks might be an alternative

solution.

In the extended works we designed and

implementing the Pareto-Differential Evolutionary

algorithm. The results will be compared with the EP

and hybrid DE data. The suggested Pareto-Differential

Evolutionary algorithm has been proven to be superior

in designing simulated robot controllers [6].

Acknowledgement

This work has been partly supported by the Exploratory

Research Grant Scheme (ERGS) project funded by the

Ministry of Higher Education, Malaysia under Grants

No. ERGS0045-ICT-1-2013.

References

[1] Bakkes, S., Kerbusch, P., Spronck, P., and van den Herik, J.

2007. Automatically Evaluating the Status of an RTS Game.

Proceedings of the Annual Belgian-Dutch Machine

Learning Conference. 143-144.

[2] Baptista, D. and Morgado-Dias, F. 2013. A Survey of Artificial

Neural Network Training Tools. Neural Computing and

Applications. 23(3-4): 609-615.

[3] Ch’ng, S. H., and Teo, J. 2012. Online Evolution of Offensive

Strategies in Real-time Strategy Gaming. IEEE Congress on

Evolutionary Computation. 1-8.

[4] Chambers, C., Feng, W. C., Feng, W. C., and Saha, D. 2005.

Mitigating Information Exposure to Cheaters in Real-Time

Strategy Games. Proceedings of the international

workshop on Network and operating systems support for

digital audio and video. 7-12.

[5] Chang, K. T., Ong, J. H., Teo, J., and Chin, K. O. 2011. The

Evolution of Gamebot for 3D First Person Shooter (FPS). IEEE

The Sixth International Conference on Bio-Inspired

Computing: Theories and Applications. 21-26.

[6] Chin, K.O., and Teo, J. 2010. Evolution and Analysis of Self-

Synthesized Minimalist Neural Controllers for Collective

Robotics using Pareto Multi-objective Optimization. IEEE

World Congress on Computational Intelligence. 2172-2178.

[7] Eiben, A. E., and Smith, J. E. 2003. Introduction to

Evolutionary Computing. Springer Science & Business

Media.

[8] Gagné, A. R., El-Nasr, M. S., and Shaw, C. D. 2011. A Deeper

Look at the Use of Telemetry for Analysis of Player Behavior

in RTS Games. Entertainment Computing–ICEC. 247-257.

[9] Hagelback, J., and Johansson, S. J. 2010. A Study on

Human like Characteristics in Real Time Strategy Games. In

IEEE Symposium Computational Intelligence and Games

(CIG). 139-145.

[10] Isberg, J. 2004. Using Interactive Computer Games for AI

Research. Master Thesis. Lund University.

[11] Leow, C. L., Gan, K. S., Tan, T. G., Chin, K. O., Alfred, R., and

Anthony, P. 2013. Self-Synthesized Controllers for Tower

Defense Game using Genetic Programming. IEEE 2013

International Conference on Control System, Computing

and Engineering (ICCSCE'2013). 487-492.

[12] Miles, C., and Louis, S.J. 2006. Towards the Co-Evolution of

Influence Map Tree Based Strategy Game Players. In IEEE

Symposium on Computational Intelligence and Games. 75-

82.

[13] Ng, C. H., Niew, S. H., Chin, K. O., and Teo, J. 2011. Infinite

Mario Bross AI using Genetic Algorithm. IEEE Conference on

Sustainable Utilization and Development in Engineering

and Technology. 85-89.

[14] Ng, P. H. F., Li, Y., and Shiu, S. C. K. 2013. New Fuzzy Integral

for the Unit Maneuver in RTS Game. In Pattern Recognition

and Machine Intelligence. 256-261.

[15] Niu, B., Wang, H. B., Ng, P. H. F., and Shiu, S. C. K. 2009. A

Neural-Evolutionary Model for Case-Based Planning in Real

Time Strategy Games. IEA/AIE. 291-300.

[16] Ontanon, S. 2012. Case Acquisition Strategies for Case-

Based Reasoning in Real-Time Strategy Games. Twenty-Fifth

International FLAIRS Conference.

[17] Pedersen, C., Togelius, J., and Yannakakis, G. N. 2009.

Modeling Player Experience in Super Mario Bros. In IEEE

Symposium on Computational Intelligence and Games.

132-139.

126 Chin Kim On, et al. / Jurnal Teknologi (Sciences & Engineering) 76:12 (2015) 119–126

[18] Ponsen, M., Spronck, P., Munoz-Avila, H., and Aha, D. W.

2007. Knowledge Acquisition for Adaptive game AI.

Science of Computer Programming. 67(1): 59-75.

[19] Rogers, K., and Andrew, S. 2014. A Micromanagement Task

Allocation System for Real-Time Strategy Games.

Computational Intelligence and AI in Games, IEEE

Transactions on. 6(1): 67-77.

[20] Sheldon, N., Girard, E., Borg, S., Claypool, M., and Agu, E.

2003. The Effect of Latency on User Performance in

Warcraft III. Proceedings of the 2nd workshop on Network

and system support for games. 3-14.

[21] Shi, J. L., Tan, T. G., Teo, J., Chin, K. O., Alfred, R., and

Anthony, P. 2013. Evolving Controllers for Simulated Car

Racing Using Differential Evolution. Asia-Pacific Journal of

Information Technology and Multimedia. 2(1): 57-68.

[22] Storn, R. and Price, K. 1995. Differential Evolution: A Simple

and Efficient Adaptive Scheme for Global Optimization

over Continuous Spaces. International Computer Science

Institute, Berkeley. Technical Report No. TR-95-012.

[23] Szczepanski, T., and Aamodt, A. 2009. Case-Based

Reasoning for Improved Micromanagement in Real-Time

Strategy Games. Proceedings of the Workshop on Case-

Based Reasoning for Computer Games, 8th International

Conference on Case-Based Reasoning. 139-148.

[24] Tan, K. B., Teo, J., Chin, K. O., and Anthony, P. 2012. An

Evolutionary Multi-objective Optimization Approach to

Computer Go Controller Synthesis. PRICAI 2012: Trends in

Artificial Intelligence Lecture Notes in Computer Science,

7458: 801-806.

[25] Tan, T. G., Teo, J., Chin, K. O., and Anthony, P. 2012. Pareto

Ensembles for Evolutionary Synthesis of Neurocontrollers in

a 2D Maze-based Video Game. Applied Mechanics and

Materials. 3173-3177.

[26] Uriarte, A., and Ontañón, S. 2012. Kiting in RTS Games Using

Influence Maps. Eighth Artificial Intelligence and

Interactive Digital Entertainment Conference.

[27] Warcraft III, 2008. [Online]. From:

http://www.blizzard.com/us/war3/. [Accessed on 24

November 2013].

