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Graphical abstract 
 

 

Abstract 
 

In this paper a space-averaged Navier–Stokes approach was deployed to Modified 

Wavemaker Boundary condition for a numerical wave tank.  The developed model is 

based on the smoothed particle hydrodynamic (SPH) method which is a pure 

Lagrangian approach and can handle large deformations of the free surface with high 

accuracy. In this study, the large eddy simulation (LES) turbulent model was coupled 

with the weakly compressible version of the smoothed particle hydrodynamics (WCSPH) 

method to Modified Wavemaker Boundary condition for a numerical wave tank. An 

absorbing wavemaker boundary condition was developed to absorb the second 

reflecting waves from the wavemaker. The capacity of absorbing secondary reflecting 

waves and incoming waves in absorbing wavemaker was validated through 

comparisons of the numerical results with general wavemaker. 
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1.0  INTRODUCTION 
The numerical wave flume is one of the main tools to 

research problems such as wave breaking and wave-

structure interactions in coastal areas [1]. However, the 

multiple reflections of waves in traditional numerical 

flume reduce the accuracy and reliability of the 

model. Therefore, absorbing wavemaker and sponge 

layer are put forward to absorb the secondary 

reflecting waves from the wavemaker and the 

incident waves, respectively.  

Liu and Zhao (1999) developed a numerical wave 

flume based on N-S equation and the finite-element 

method, in which the open boundary used 

Sommerfeld's radialization boundary conditions and 

artificial attenuation layer, and around the incident 

boundary, a speed attenuation region was set to 

absorb secondary reflected waves [2]. Shi et al. (2004) 

set up a numerical wave flume based on the Laplace 

equation and boundary element method, in which 

waves were made by the wave-making paddle, using 

Mitsuyasu Bretschneider spectrum as the control 

signals, and the virtual wave absorbing and 

permeable layer were set at the open boundary [3].  

Xu (2010) [4] and Omidvar et al. (2012) [5] used a 

sponge layer boundary condition to absorb the wave 

reflection from the wall at the end of the open 

channel based on the SPH method. Delavari et al. 

(2014) presented a modified sponge layer boundary 

condition for a numerical wave flume based on the 

SPH scheme [6]. 

In this paper, we use WCSPH method to develop a 

numerical wave flume similar to the physical wave 

flume. An absorbing wavemaker boundary condition is 

developed to absorb the second reflecting waves 

from the wavemaker. Afterwards, Regular waves are 

generated by the wave-making paddle and 

absorbed by the sponge layer at the end boundary. 

The capacity of absorbing second reflecting waves 

and incoming waves for absorbing wavemaker and 

sponge layer is validated through comparison of the 

numerical results with general wavemaker and solid 

boundary. 
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2.0  THE NUMERICAL MODEL 
 
The continuity and Lagrangian form of N–S equations 

are as follows: 
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Where  is the density, t is the time, u


is the velocity, P 

is the pressure, g is the gravitational acceleration, 0 is 

the kinematic viscosity of laminar flow and τ is the 

Reynolds stress. 

 
2.1  The SPH Method  

 

SPH is based on integral interpolants. The fundamental 

principle is to approximately obtain any function A(r) 

by (kernel approximation): 
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Where r is the vector position; W is the weighting 

function or kernel; h is called smoothing length. This 

estimation, in discrete notation, results in the following 

function (particle approximation): 
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Where, the summation is over all the particles within 

the region of compact support of the kernel function. 

The mass and density are designate by bm and b

respectively and  hrrWW baab ,


  is the weight function 

or kernel. SPH kernel approach offers an upside 

through calculating the derivative of a function 

analytically. This makes the method more accurate in 

comparison with a method like finite difference, where 

the derivatives are calculated from neighboring points 

using the spacing between them. For the irregularly 

spaced SPH particles, this would be extremely 

complicated. The derivatives of this interpolation can 

be obtained by ordinary differentiation . 
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In the SPH conception, the motion of each particle is 

computed through interactions with the neighboring 

particles using an analytical kernel function. When the 

fluid is flowing, all terms in the N–S equations are 

formulated by particle interaction models and the 

need for a grid is obviated. SPH particles move in a 

Lagrangian coordinates and the advection in N–S 

equations is directly calculated by the particle motion 

without the numerical diffusion. Each particle can 

carry a mass m, velocity u and other properties would 

vary upon condition. The basic SPH formulations 

included in this study are summarized as follows [7]. 

The fluid in a standard SPH formulation is treated as 

compressible, allowing the use of an equation of state 

to determine fluid pressure, rather than solving another 

differential equation. However, the compressibility is 

adjusted to decelerate the speed of sound so that the 

time step in the model (based on the speed of sound) 

is reasonable. Changes in the fluid density are 

calculated as: 
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 (6) 

in preference to using a weighted summation of mass 

terms. This is because the latter would result in an 

artificial density decrease as fluid interfaces are 

approached. As stated above, the fluid in the 

standard SPH formulation is considered as a weakly 

compressible fluid, facilitating the use of an equation 

of state to determine fluid pressure, which is much 

faster than solving an equation such as the Poissons 

equation. The following expresses the relationship 

between pressure and density by Tait's equation of 

state [8]: 
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Where  is 7 ,  B is  /0

2

0c , 0 is 1000 kg/m3 the 

reference density, and 0c is  0c , the speed of sound 

at the reference density. The pressure gradient term in 

symmetrical form is expressed in SPH notation as 
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The laminar stress term simplifies to [9]: 
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Where baab rrr


 , baab uuu


 ; being kr


and ku


 the 

position and the velocity corresponding to particle k (a 

or b) and 0 is the kinetic viscosity of laminar flow (

sm /101 26 ). 

SPS is deployed to represent the effects of turbulence 

in Sub-Particle Scales [1]. This model improves the 

accuracy of SPH, owing to the fact that it preferably 

predicts the natural action better than the classical 

artificial viscosity given by Monaghan(1992) [7]. The 

eddy viscosity assumption is often used to model the 

SPS stress tensor using Favre-averaging (for a 

compressible fluid): 

2
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Where
ij is the sub-particle stress tensor, 

   SlCSt .,min
2

  is the turbulence eddy viscosity, k is 

the SPS turbulence kinetic energy, CS is the 

Smagorinsky constant (0.12), CI = 0.0066, l is the 

particle-particle spacing  2
1

2 ijijSSS  and 
ijS  the 

element of SPS strain tensor. Therefore, the momentum 
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conservation equation can be written in SPH notation 

as: 
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Kernel function has a significant role in SPH method, for 

analytical particles demarcate the affected area. In 

this study, the Quintic function is used, which is 

generally employed and proposed by Wendland, [10]: 
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Where d is 
24/7 h  in 2D,  

316/21 h in 3D and hrR /  . 

In this research, the Predictor-Corrector algorithm 

described by Monaghan (1989) was used in numerical 

simulations with a time step
5105 t s [11]. This time 

step is small enough to fulfill the Courant condition and 

to control the stability of force and viscous terms [7]. 

The pressure field of the particles exhibits large pressure 

oscillations, although the dynamics from SPH 

simulations are generally realistic. Efforts have been 

made to overcome this problem by several 

approaches including correcting the kernel [12, 13] 

and developing an incompressible solver. One of the 

most straightforward and computationally least 

expensive methods is to apply a filter to the density of 

the particles and re-assign a density to each particle 

[14]. 

The Moving Least Squares (MLS) approach, which 

was firstly developed by (Dilts, 1999) [15] and 

successfully applied by Colagrossi, Landrini (2003) [14] 

and Panizzo (2004) [16], was used for the current 

modeling approach.  

This is a first-order correction so that the variation of 

a linear density field can be exactly reproduced: 
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The corrected kernel is evaluated as follows: 
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where the correction vector   is given by 
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with the matrix A
~

 being given by 
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The method is applied every 30 time steps.  

 

 

2.2  Boundary and Initial Conditions 

 

In the SPH model, identification and tracking of free 

surfaces can always be simply conducted by particles. 

In the computational domain no special treatment 

was applied on free surface particles. In fact, the main 

advantage of the method is that free surface is 

modeled naturally using the SPH method. For this 

modeling, the boundary is described by a set of 

discrete boundary particles. As described in Gómez-

Gesteira and Dalrymple (2004) [17], fixed solid 

boundaries such as the sea bottom, a plane slope and 

a submerged breakwater were built with two parallel 

layers of fixed boundary particles set in a staggered 

manner. For a complete description of the mechanism 

refer to [18]. The upstream open boundary is the 

incident wave boundary. It is modeled by a numerical 

wave maker composed of wall particles. The wave 

maker moves periodically during the computation. 

In this research the initial velocity of the fluid 

particles was considered as zero and fluid particles 

were initially placed on a Cartesian grid with 

dx=dz=0.008 m. An initial density of 0  was assigned for 

particles based on hydrostatic pressure when the 

pressure is calculated from the equation of state. So, 

density of a particle (located at depth z) must be 

calculated taking in account the water column height 

as follow: 
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in which, H is the depth of the tank and z is the 

distance between the particle and the bottom [19].  

 

2.3  Numerical Wave Flume 

 

A 2-D non-reflection numerical wave flume is 

established with SPH method, and an absorbing 

wavemaker boundary condition and wave absorption 

boundary are present. The validity of the numerical 

model was verified through comparison of the 

numerical results with general wavemaker and solid 

boundary. 

Base on linear wave-making theory, a paddle 

wavemaker with simple harmonic motion with 

amplitude PA , and angular frequency ω, that the 

equilibrium position is origin, can generate a linear 

wave in a flume, and the wave surface η is 
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where 



120                               Amin Mahmoudi et al. / Jurnal Teknologi (Sciences & Engineering) 78:8 (2016) 117–123 

 

 

  
  khkh

kh
C

22sinh

12cosh2
0




  (21) 

  
  hkhk

hk
C

nn

n

n
22sin

12cos2




  

(22) 

                                                                                                                                                    

where h  is water depth, x  is the distance from 

wavemaker. 

In this equation, the wave number k satisfies the 

following formula, 

  0tanh. 2 kdkg  (23) 

and  
nk   is the  nth root of the equation below, 

  0tan. 2 dkgk nn
 (24) 

To absorb the secondary reflecting waves from the 

wave maker, an additional wave maker displacement 

aX  is added on the original displacement
pX . Then, 

the displacement of the absorbing wavemaker is  
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The final expression of the velocity of the paddle can 

be obtained as  
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where   is phase difference, 

p  is the wave surface 

generated by
pX , m  is the wave surface that 

measured in front of the wave maker, and 





1n

nCD

[20].  

To absorb the wave reflection from the wall at the end 

of the open channel, an exponential damping zone is 

placed over a distance of at least a wavelength. In 

the damping zone, the velocity of fluid particles will be 

damped as 

   ]exp1[ 000 xxxUU    (27) 

 

where U is fluid velocity, is a coefficient, equal to 2.0; 

0x is the damping zone length, 
0x  is the damping 

zone starting point, 00 xLx    and L is the channel 

length [4].  

 

 

3.0  VALIDATION 
 

In order to verify the capacity of absorbing secondary 

reflecting waves from the wavemaker in numerical 

wave tank, the layout of an example is shown in Figure 

1. The incident regular wave height is 0.08m, period is 

1.5 s and solid wall is set as the right boundary of the 

flume.  

 

 
Figure 1 Layout of computational domain 

 

 

To verify the capacity of absorbing secondary 

reflecting waves from the wavemaker in numerical 

wave tank using SPH method, the variations of the 

wave surface at different locations of the wave tank 

were compared with the values of a general wave 

maker. 

Figure 2 shows the time series of the wave surface 

at different monitoring points in the wave flume 

generated by absorbing wavemaker and general 

wavemaker. The figure shows that the time series of 

the wave surface at the monitoring points with the 

absorptive wave maker keep stable. The reflecting 

waves from flume is absorbed by the absorptive 

wavemaker, and stationary wave superposed by 

incident wave and reflected wave from the end wall 

can be observed. The wave height of the stationary 

wave is 2 times of the incident one. But at node points 

(x =6.68m), the wave height is small. However, the 

second reflecting waves from the wavemaker are 

obvious at the monitoring points by using the general 

wavemaker, and the wave height is increasing 

gradually. At node points, the variation of wave 

surface is greater and makes the variation of wave 

shape unstable. 
 

 
Figure 2 Comparison of wave surface with absorbing 

wavemaker and general wavemaker at different monitoring 

points in the flume 
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To verify the absorbing properties of the sponge layer, 

a sponge layer is set before the end of the wave 

flume. Figure 3 shows the layout of the computational 

domain, in which the incident regular wave height is 

0.09m, period is 1.2s and the length of the damping 

zone is 3 m (i.e., about 1.5 times of the wave length). 

 

 
Figure 3 Layout of computational domain 

 

 
Figure 4 shows the time series of the wave surface 

at different monitoring points in the wave flume. This 

figure indicates that the waves can be effectively 

absorbed using the defined sponge layer.  

 

 

 
Figure 4 Comparison of wave surface with and without 

sponge layer at different monitoring points in the flume 

 

 
In order to verify the performance of the 

developed numerical wave flume, the laboratory 

experimental results of Mahmoudi (2014) was used 

[21]. Figure 3 shows general layout and important 

parameters of their experimental work. A regular wave 

with a height H =0.067 m and period T =1.2 sec was 

used. 

 

 

 
Figure 5 Comparison of computed water surface elevations 

by SPH with experimental data at different monitoring points 

in the flume 

 

 
The observed differences between the numerical 

and experimental results can be quantified by means 

of two statistical parameters. 
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where "Var" is the variable that has to be considered 

and the superscripts refer to experimental or numerical 

values. The first parameter,
r

A , represents the relative 

amplitude of both signals, in such a way that a perfect 

agreement between the experimental and numerical 

data would result in 1
r

A . On the other hand, the 

second parameter,
d

P , is the phase difference 

between both signals, a perfect agreement would 

result in 0
d

P .  

Table 1 summarizes the values of 
r

A  and 
d

P

obtained for the WCSPH (present model) and 

experimental data of Mahmoudi (2014). Both statistical 

parameters show a satisfactory agreement between 

the numerical and experimental solutions. 

 

Table 1 Statistical parameters 
r

A and 
d

P for the WCSPH 

(present model) and experimental data of Mahmoudi (2014) 

 

 x=1.3 m x=6.4 m 

r
A  0.952 1.051 

d
P  0.643 0.351 

RMSE 0.014 0.0095 

 

 

In this paper, in order to validate the developed 

numerical model, other experimental data set was 

used. 

 

 



122                               Amin Mahmoudi et al. / Jurnal Teknologi (Sciences & Engineering) 78:8 (2016) 117–123 

 

 

3.1 Wave Propagation over Impermeable Trapezoidal 

Sea Wall 

 

In order to simulate the periodic wave propagation 

over impermeable trapezoidal sea wall on plane bed, 

the laboratory experimental results of Li et al. (2004) 

was used [22]. Figure 6 shows general layout and 

important parameters of their experimental work. The 

computational domain covering a sea wall was 6.3 m 

long and 1.0 m high. A regular wave with a height H 

=0.16 m and period T =2.0 sec was used. 

 

 
Figure 6 Schematic of the numerical flume and sloping sea 

wall for wave breaking [22] 

 

 

The WCSPH approach with LES modeling was used 

to investigate regular wave propagation over a 

smooth impermeable sea wall. For a quantitative 

evaluation of the SPH computations with LES modeling, 

the computed water surface elevations at two 

gauging stations are shown in Figures 7 and 8. The 

experimental and numerical data of Li et al. [22] are 

also included in the figures. Li et al. used a time-implicit 

cell-staggered approximately factored VOF finite 

volume approach for solving the unsteady 

incompressible N–S equations based on the non-

uniform Cartesian cut-cell grids. Meanwhile, the effects 

of turbulence were addressed by using both static and 

dynamic sub-grid scale (SGS) LES turbulence models in 

their formulations. As shown in Figures 7 and 8, WCSPH 

results are better agree with experimental data than 

those of Li et al. [22]. This good agreement is mainly 

attributed to the fact that the free surface is 

accurately tracked by the particles without numerical 

diffusion in the SPH approach. 

 

 
 

Figure 7 Comparison of computed water surface elevations 

by SPH with experimental and numerical data of Li et al. [22] 

for WG2 (x=2.02 m) 

 

 
 

Figure 8 Comparison of computed water surface elevations 

by SPH with experimental and numerical data of Li et al. [22] 

for WG3 (x=3.81 m) 

 

 

Table 2 summarizes the values of 
r

A  and 
d

P

obtained for the WCSPH (present model) and 

numerical data of Li et al. [22]. Although both 

statistical parameters show a satisfactory agreement 

between the numerical and experimental solutions, 

however, the numerical model results show to be more 

accurate when using the WCSPH method.  

 

Table 2 Statistical parameters 
r

A and 
d

P for the WCSPH 

(present model) and numerical data of Li et al. [22] 

 
 

 SPH method Li et al. (2004) 

 
for WG2 

(x=2.02 m) 

for WG3 

(x=3.81 m) 

for WG2 

(x=2.02 m) 

for WG3 

(x=3.81 m) 

r
A

 
0.986 0.93 1.183 1.098 

d
P

 
0.1698 0.215 0.3796 0.658 

 
 

4.0  CONCLUSION 
 

This paper established a numerical wave flume with 

SPH method. An absorbing wavemaker and a 

damping zone are set in the model to eliminate the 

influence of secondary reflecting waves from the 

wave maker and to absorb the incoming waves at the 

end of flume. The comparison of the numerical model 

results and the ordinary numerical model wave maker 

and solid wall boundary shows that the model can 

absorb waves efficaciously, and this provides a basic 

program for the study on the interaction between 

waves and structures. 
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