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INTELLIGENT ADAPTIVE ACTIVE FORCE CONTROL OF A
ROBOTIC ARM WITH EMBEDDED ITERATIVE LEARNING

ALGORITHMS

MUSA MAILAH1 & ONG MIAW YONG2

Abstract. The robust and accurate control of a robotic arm or manipulator are of prime im-
portance especially if the system is subjected to varying forms of loading and operating conditions.
The paper highlights a novel and robust method to control a robotic arm using an iterative learn-
ing technique embedded in an active force control strategy. Two main iterative learning algo-
rithms are utilized in the study – the first is used to automatically tune the controller gains while the
second to estimate the inertia matrix of the manipulator. These parameters are adaptively com-
puted on-line while the robot is executing a trajectory tracking task and subject to some forms of
external disturbances. No priori knowledge of both the controller gains and the estimated inertia
matrix are ever assumed in the study. In this way, an adaptive and robust control scheme is
derived. The effectiveness of the method is verified and can be seen from the results of the work
presented in this paper.
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Abstrak. Kawalan jitu dan lasak bagi satu sistem lengan robot atau pengolah adalah amat
penting terutama sekali jika sistem mengalami pelbagai bentuk bebanan dan keadaan pengendalian.
Kertas kerja ini memaparkan satu kaedah baru dan lasak untuk mengawal lengan robot
menggunakan teknik pembelajaran secara berlelaran yang dimuatkan dalam strategi kawalan daya
aktif. Sebanyak dua algoritma pembelajaran utama digunakan dalam kajian – yang pertama
digunakan untuk menala gandaan pengawal secara automatik manakala yang satu lagi pula untuk
menganggarkan matriks inersia pengolah. Kedua-dua parameter ini dihasilkan secara adaptif dan
dalam talian ketika robot sedang menjalankan tugas menjejak trajektori dalam persekitaran tindakan
daya gangguan. Dalam kajian ini, pengetahuan awal tentang kedua-dua nilai gandaan pengawal
dan anggaran matriks inersia tidak wujud. Dengan demikian, suatu skema kawalan yang jitu dan
lasak terhasil. Keberkesanan kaedah yang dicadangkan dapat ditentusahkan melalui hasil kajian
yang diperoleh dan dibentangkan dalam kertas kerja ini.

Kata kunci: Adaptif, kawalan daya aktif, pembelajaran berlelaran, matriks inersia, gandaan
pengawal

LIST OF NOTATION:

q vector of positions in joint space

θ ref, xref reference acceleration vectors in joint and Cartesian spaces
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G vector of gravitational torque
h vector of the Coriolis and centrifugal torques
H (N dimensional manipulator and actuator inertia matrix
Ia compensated current vector
Ic current command vector
IN estimated inertia matrix
It armature current for the torque motor
Kp, Kd PD controller gains
Kt motor torque constant
Td* estimated disturbance torque
Td vector of the disturbance torque
TEk current root of sum-squared positional track error, TEk = ÷S((xbar

– xk)
2

Tq vector of actuated torque
Vcut endpoint tangential velocity
x, xbar vectors of actual and desired positions respectively in Cartesian

space
x vector of the end-effector positions in Cartesian space
yk current value of the estimated parameter
yk+1 next step value of the estimated parameter
f, G and Y learning parameters (constants)

1.0 INTRODUCTION

Robot force control is concerned with the physical interaction of the robot’s end
effector with the external environment in the forms of applied forces/torques, changes
in the mass payloads and constrained elements. A number of control methods have
been proposed to achieve stable, accurate and robust performance ranging from the
classical proportional-derivative (PD) control [1] to the more recent intelligent con-
trol technique. The PD control is simple, efficient and provides stable performance
when the operational speed is low and there are very little or no disturbances. The
performance however is severely affected with the increase in speed and presence of
disturbances. Adaptive control method [2, 3] improves the stability and robustness
of the system via its adaptive feature, which enable it to operate in a wider range of
parametric uncertainties and disturbances. Nevertheless, this technique is more
commonly confined to theoretical and simulation study as it involves rigorous
mathematical manipulation and assumptions. Active force control (AFC) of a robot
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arm has been demonstrated to be superior compared to the conventional methods
in dealing with compensating a variety of disturbances [4, 5]. There is a growing
trend in robotic control to include adaptive and intelligent mechanism such as neu-
ral network, knowledge-based expert system, fuzzy logic and iterative learning algo-
rithm.

In this paper, an iterative learning technique acting as an adaptive mechanism is
used together with the AFC strategy to control a rigid two-link horizontal planar
robotic arm. The scheme is in fact an extension to the works described in [6, 7]
where the effectiveness and practicality of the scheme applied to a two-link planar
arm has been clearly demonstrated in the study. It is the objective of the proposed
study to demonstrate the additional adaptive feature of the control scheme employ-
ing two iterative learning algorithms. The first is used to automatically and adaptively
tune the controller gains while the second one to compute the estimated inertia
matrix of the robot arm both without any prior knowledge of the controller and
inertial parameters.

The paper is structured as follows. The first part presents a description of the
problem statement and the fundamentals of both the AFC and iterative learning
control technique. The integration of the iterative learning algorithms and AFC
applied to a manipulator is then demonstrated in the form of a simulation study.
Consequently, an analysis and discussion of the results obtained are presented.
Finally, a conclusion is derived and the direction for future works outlined.

2.0 PROBLEM STATEMENT

AFC is a force control strategy originated by Hewit [4, 8] and is primarily designed
to ensure that a system remains stable and robust even in the presence of known or
unknown disturbances. In AFC, the system mainly uses the estimated or measured
values of a number of identified parameters to effect its compensation action. In this
way, we can reduce the mathematical complexity of the robotic system, which is
known to be highly coupled and non-linear.

The main drawback of AFC is the acquisition of the estimated inertia matrix that
is required by the AFC feed-forward loop. Previous methods greatly rely on either
perfect modeling of the inertia matrix, crude approximation or the reference of a
look-up table. Obviously, these methods require the prior knowledge of the esti-
mated inertia matrix. Although the methods are quite effective to implement, they
lack in systematic approach and flexibility to compute the inertia matrix. Thus, a
search for better ways to generate efficiently suitable estimated inertia matrix is
sought. If a suitable method of estimating the inertia matrix can be found, then the
practical value of implementing AFC scheme is considerably enhanced. Obviously,
intelligent methods are viable options and should be exploited to achieve the objec-
tive as already discussed in [6, 7]. Another common problem that is associated with
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a classical control system is the tuning of the controller gains in order to achieve
good and stable performance. While there are some other adaptive techniques used
to solve this difficulty, the more common approach is through heuristic means.
Here, another novel technique is proposed that is simple, effective and readily em-
bedded into the main active force control strategy to control the robot arm.

The basic idea of the proposed scheme is to generate both the PD controller gains
(Kp and Kd) and the estimated inertia matrix (IN) of the arm in the AFC controller
continuously, automatically and on-line using suitable learning algorithms as the
arm is commanded to execute a prescribed task accurately even in the presence of
disturbances. Given suitable initial conditions of these parameters and as the robot
arm starts to perform the desired task, the iterative learning algorithms (ILA1 and
ILA2) will compute the next value of the parameters from the current input value
based on the resulting track error and suitable learning constants. Figure 1 is a
graphic representation showing the mechanism of the proposed control scheme.
Note that ILA1 and ILA2 use different types of learning algorithms to compute the
required parameters.

As time increases, the learning mechanism causes the track error to gradually
converge approaching zero datum and the process is iteratively repeated until a
small and acceptable error margin is achieved. Consequently, the Kp, Kd and IN
are said to have been optimized and having appropriate values to be effectively
used by the system.

Figure 1 Mechanism of the Proposed Control Scheme
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In the following sections, the fundamentals of both AFC and iterative learning
methods are briefly highlighted so that a better understanding of the overall control
scheme can be derived.

3.0 ACTIVE FORCE CONTROL AND ITERATIVE LEARNING
CONCEPTS

3.1 Active Force Control (AFC)

It has been shown that disturbances can be effectively eliminated via the compensat-
ing action of the AFC strategy [4, 9]. The detailed mathematical analysis of the AFC
scheme can be found in [9]. The paper will only highlight the essentials of the AFC
applied to control a robotic manipulator arm. Figure 2 shows a schematic of this
scheme.

Figure 2 The AFC Scheme Applied to a Robot Arm

In AFC, it is essential that we obtain the physical measurements of the joint accel-

eration (θ ) of the arm and the actuated torque (Tq) using accelerometer and torque
sensor respectively as can be seen in Figure 2. Next, the estimated inertia matrix of
the arm (IN) has to be appropriately identified by suitable means. In this way, we
could estimate the disturbance torques Td*, based on the measured or estimated
values of the variables. A mathematical expression to represent this is as follows:

Td* = Tq − IN θ (1)

Eq. (1) can be further simplified as

Td* = Kt It − IN θ (2)
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where

Tq = Kt It (3)

In this case, instead of measuring the torque directly, we measure the torque
current It and then multiply it with the torque constant Kt which of course gives
the value of the required actuated torque. While the measurement part is obvious,
the inertial parameter can be obtained using a number of methods such as crude
approximation, reference of a look-up table or intelligent means using neural
network and iterative learning algorithms [6]. The last method was chosen and imple-
mented in the paper.

In addition to the above, a PD controller employing resolved motion acceleration
control (RMAC) as described in [9] which can improve the overall performance of
the control scheme is included. RMAC is governed by the following equation:

d pK Kref bar bar barx x x - x x - x= + ( )+ ( ) (4)

Eq. (2) is then transformed into θ ref by means of inverse Jacobian manipulation
to be fed forward into the AFC control loop. The controller gains in Eq. (4) are
adaptively obtained via the iterative learning algorithm.

3.2 Iterative Learning

One of the early proposer of the iterative learning method applied to robotic control
is Suguru Arimoto who proposes a number of learning algorithms and at the same
time provides analytical proof for their convergence, stability and robustness [10,
11]. Arimoto et al. has shown that the track error effectively converges to zero with
the increase in time via the iterative learning scheme applied to the control of robot
arm. A slightly modified learning algorithm [6] to suit our application is employed.
In this study, the following learning rules are adopted:

yk+1 = yk + (f + G d/dt) TEk (5i)

yk+1 = yk + (f  + G d/dt + Y ∫ dt) TEk (5ii)

In the study, the estimated inertia matrix IN is substituted in place of y in Eq. (5i)
while the controller gains, Kp and Kd are similarly substituted in Eq. (5ii). Since the
learning parameters are represented in the form of ‘proportional’ (f ) and ‘derivative’
(G ) constants for the first case, the algorithm is conveniently described as a PD-type
learning algorithm as shown in Figure 3i. The other algorithm which contains an
additional ‘integral’ (Y ) term shall be described as a PID-type learning algorithm
(Figure 3ii).
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3.3 The Proposed Control Scheme

Figure 4 shows how the PD and PID-type learning algorithms are incorporated into
the system. It is obvious that two PID-type algorithms were implemented in ILA1
while a PD-type was used instead in ILA2 as shown in Figure 4. The integration of
both the AFC scheme and the iterative learning algorithms making it the core of the
proposed scheme is also shown. From the figure, it is obvious that the iterative
learning algorithms are easily and readily embedded into the overall control scheme
with the track error vector TE serving as the input to the learning algorithms section
while the gains (Kp and Kd) and the estimated inertia matrix (IN) are treated as the
outputs. Consequently, a simulation study of the above scheme was performed
considering various loading conditions and changes in the robotic parameters.

Figure 3(i) A PD-type Learning Algorithm
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Figure 4 A Schematic of the Proposed Control Scheme
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It is important to note that throughout the study, only the diagonal elements of the
estimated inertia matrix IN (a 2 × 2 square matrix) were considered. For conve-
nience, the inertia terms are denoted as IN11 = IN1 and IN22 = IN2. The off-diagonal
terms, IN12 and IN21 are disregarded since it has been shown in [9] that this cou-
pling term may be ignored by the AFC strategy.

4.0 MATHEMATICAL MODEL OF THE ROBOT ARM

The dynamic model or the general equation of motion of a robot manipulator [12]
can be described as follows:

Tq = H(q)θ  + h (q, θ ) + G(q) + Td (6)

Figure 5 A Representation of a Rigid Two-Link Planar Arm
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Figure 5 shows a representation of a rigid two-link horizontal planar manipulator
under study. The gravitational term can be ommitted here since the arm is assumed
to move in a horizontal plane. Thus, the dynamic model is reduced to

Tq = H(q)θ  + h (q, θ ) + Td (7)

5.0 SIMULATION

Simulation work was performed using the MATLAB and SIMULINK software
packages. Figure 6 shows the SIMULINK block diagram of the proposed scheme.

5.1 Simulation Parameters

The following parameters were used in the simulation study.

Robot parameters:

Link length: l1 = 0.25 m l2 = 0.2236 m

Link mass: m1 = 0.25 kg m2 = 0.2236 kg

Payload mass: mpl = 0.01 kg

Figure 6 A SIMULINK Representation of the Control Scheme
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Actuator parameter:

Motor torque constant: Kt = 0.263 Nm/A

Iterative learning parameters:

ILA 1:

Proportional term: f = 350 (Kp), 250 (Kd)

Derivative term: G = 250 (Kp), 250 (Kd)

Integral term: f = 450 (Kp), 450 (Kd)

ILA 2:

Proportional term: f = 0.0175

Derivative term: G = 0.00008

Other parameters:

Sampling time: 0.01 s

Initial conditions of
parameters to be computed: IN1 = IN2 = 0 kgm2

Kp = Kd = 0

Endpoint tangential velocity: Vcut = 0.5 m/s

Kt is derived from the actual data sheet for a dc torque motor [13] considered in the
study. Note that the learning constants for the learning algorithms were heurestically
assumed prior to the actual simulation study. Simulation was performed taking into
account specific introduced disturbance to test the system’s robustness.

5.2 The Prescribed Trajectory

The prescribed trajectory considered in the simulation study is a circular path. It
serves as the reference trajectory that the arm should accurately track via the
control strategy. The trajectory coordinates in Cartesian space can be described as
follows:

x1 = 0.25 + 0.1 sin (Vcut t/0.1) (8)

x2 = 0.1 + 0.1 cos(Vcut t/0.1) (9)

5.3 Loading Conditions

In the process of investigating the effectiveness and robustness of the system, three
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different loading conditions were considered. The performance study was performed
under the following conditions:

a. The system is free from any external disturbance.
b. A constant force of magnitude 30 N is acting horizontally at the end of the

second link.
c. A constant disturbance torque of magnitude 10 Nm is acting at each joint.

6.0 Results and Discussion

The trajectory track performance of the arm under the three different operating and
loading conditions are depicted in Figure 7 through Figure 12. It is evident that in
the first two cycles, the trajectories of the arm are highly distorted in all the three
cases. Nevertheless, as time progresses, the performance rapidly improved as can be
seen from the superior trajectory track performance at the later stage when the
learning is said to be completed. Figure 10 through Figure 12 show that the
trajectories tracked in the last two cycles resemble the desired one with only small
deviations. The effectiveness of the iterative learning process is clearly demonstrated
in Figure 13 through Figure 15 where the large initial track error rapidly converges
to near zero datum in all the three cases as time increases. The fast convergence of
the track error to values under 0.001 m margin within 4 s of operation signifies the
excellent learning capability of the algorithm. In other words, the control system is
able to give robust performance in less than three cycle period (one cycle period is
equivalent to the time taken by the end effector to describe a complete reference
circular trajectory; one cycle period = 1.257 s) with the end-point velocity, Vcut =
0.5 m/s. Considering a circular path trajectory of 0.2 m in diameter, the error value
of 0.001 m corresponds to about 0.5% deviation from the desired trajectory.

Figure 7 The Trajectory
of the Arm in the First Two
Cycles (no disturbance)

Figure 8 The Trajectory
of the Arm in the First Two
Cycles (A = 30 N)

Figure 9 The Trajectory
of the Arm in the First Two
Cycles (Td = 10 Nm)
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Figure 10 The Trajectory
of the Arm in the Last Two
Cycles (no disturbance)

Figure 11 The Trajectory
of the Arm in the Last Two
Cycles (A = 30 N)

Figure 12 The Trajectory of
the Arm in the Last Two Cycles,
(Td = 10 Nm)
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The iterative learning algorithms applied at the RMAC section (PD controller)
adaptively compute the controller gains Kp and Kd as the robot operates in task
space. Figure 16 through Figure 18 show the patterns generated against time. The
initial part of the graphs shows a quick non-linear transient response followed by
almost a straight and linear pattern having positive gradient. The characteristics of
the computed values can be attributed to the nature of the learning algorithm itself.
On top of that, the computed value produces only positive definite value since it is
a function of the track error (in the study, this error is assigned to be positive defi-
nite). The gradient of the curves are however influenced by the learning constants,
f, G and Y as already discussed in the previous study [6]. A good choice of these
learning parameters is essential to ensure excellent control performance. The types
of disturbances also affect the gradient of the slope; the constant force and the
disturbance torques applied to the system produce steeper slopes because of their
larger initial track errors.

The other learning algorithm employed to approximate the estimated inertia matrix
of the arm (IN) via the AFC controller produces results as shown in Figure 19
through Figure 21. The graphs exhibit curves, each of which is characterized by a

Figure 13 The Trajectory
Track Error (no disturbance)

Figure 14 The Trajectory
Track Error (A = 30 N)
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Figure 15 The Trajectory
Track Error (Td = 10 Nm)
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steep slope at the initial stage. At the intermediate stage, it negotiates a sharp bend
and towards the end of the simulation period produces a positive gradual incremen-
tal slope. It should be noted that the diagonal terms, IN1 and IN2 of the inertia
matrix IN are in fact having the same numerical values since they both have identi-
cal initial conditions. In other words, a single curve shown in Figure 19 through
Figure 21 actually signifies two inertial parameters of exactly the same quantity that
are computed by the control algorithm. It can be deduced that the computed values
at the later stage of the simulation period have ‘optimized’ the parameter and thus
having appropriate values that are effectively used by the proposed control scheme.
These curve patterns once again show that the system exhibits excellent ‘all-round'
performances under various operating conditions even in the presence of distur-
bances considering the relatively very small track error generated by the system
towards the end of the simulation period.

7.0 CONCLUSION

The proposed control scheme has been shown to give excellent trajectory track
control performances by generating the required estimated parameters via the itera-

Figure 19 The Estimated
Inertia Matrix (no disturbance)

Figure 20 The Estimated
Inertia Matrix (A = 30 N)

Figure 21 The Estimated
Inertia Matrix (Td = 10 Nm)
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Figure 16 The Controller
Gains (no disturbance)

Figure 17 The Controller
Gains (A = 30 N)

Figure 18 The Controller
Gains (Td = 10 Nm)
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tive learning algorithms. Both the PD-controller gains and the estimated inertia ma-
trix are successfully computed signifying that the the AFC and iterative learning
algorithms combine readily to yield robust and effective characteristics even under
the influence of the applied disturbances. A distinct feature of the control scheme is
that the learning process is accomplished automatically, continuously and on-line
and at a fast rate while the robot is performing the task. The fast convergence of the
trajectory track errors to acceptable marginal values within a reasonable period
indicates that the learning mechanism is effectively taking place as predicted and
that the parameters are identified and optimized. Further investigation of the system
performance employing the proposed control scheme should take into account the
stopping criteria necessary to ensure the systematic convergence of the computed
values.
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