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Abstract 
 

In a two-stage supply chain system, vendor managed inventory (VMI) policies is an 

integrating decisions between a supplier and his retailers. The supplier assumes the 

responsibility of maintaining inventory at its retailers and ensuring that they will not run out 

of stock at any moment. This paper discusses an optimization approach, considering the 

model of static demand on the inbound as well as the outbound inventory for a two-stage 

supply chain implementing VMI. In the proposed solutions for coordinating the single-

warehouse multiple-retailers (SWMR) system, retailers are first clustered to minimize the 

within-cluster travel costs and distances and are then replenished using an optimal direct 

shipping strategy satisfying some additional restrictions. 
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1.0  INTRODUCTION 
 

Vendor Managed Inventory (VMI) is an inventory 

management policy, in which the supplier assumes, 

in addition to its inbound inventory, the responsibility 

of maintaining inventory at the retailers and ensures 

that they will not run out of stock at any moment. The 

delivery times and quantities to deliver to a retailer is 

no longer done after the retailers' orders, the supplier 

determines the quantity and when the delivery takes 

place. The replenishment is thus proactive as it is 

based on the available inventory information instead 

of being reactive in response to retailers’ orders. This 

policy has many advantages for both the supplier 

and the retailers. The supplier has the possibility of 

combining multiple deliveries to optimize the truck 

loading and the routing cost. Moreover, as the 

deliveries become more uniform, the amount of 

inventory that must be held at the supplier can be 

drastically reduced. On the other hand, the retailers 

need no longer to dedicate resources to the 

management of their inventories. Also, the service 

level (i.e. product availability) increases, as the 

supplier can track inventory levels at the retailers to 

determine the precise replenishment urgency. 

The reason VMI gains more popularity is the current 

enabling technologies to monitor retailer inventories 

through an online system and cost effective manner. 

Inventory data can be made available much easier. 

However, implementing VMI does not in all cases 

lead to improved results. Failure can happen due, for 

example, to the unavailability of the necessary 

information or the inability of the supplier to make the 

right decisions. The large amount of data makes it 

extremely hard to optimize this problem. It involves 

managing inventory in supply chains and optimizing 

distribution, which are two particularly challenging 

problems. 

In this paper, we analyze the model of 

deterministic demand on a two-stage supply system 

implementing VMI. We focus the problem of 

coordinating the single-warehouse multiple-retailers 

(SWMR) system. We also consider the inventory 

routing problem (IRP) where a single warehouse 
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serves n retailers. Each retailer j faces deterministic 

demand at a constant rate dj. Inventories are kept at 

the warehouse as well as at each retailer. Whenever 

the orders are placed by the retailers, the deliveries 

are made from the warehouse with a homogenous 

fleet of vehicles of limited capacity. Then, the 

warehouse in turn places orders to an outside 

supplier to fill the orders of the retailers (see Figure 1). 

For instance, we try to consider the simplest case of 

SWMR as follows: a fixed charge is incurred whenever 

the warehouse places an order. Similarly, for each 

order placed by each retailer, a facility-dependent 

setup cost is charged. Also, there is a facility-

dependent holding cost of inventory at each facility 

in the system. In this simplest case, there is no known 

polynomial method for solving SWMR problem under 

a given information environment. So, the power-of-

two approximation of Roundy [1] is currently the best 

heuristic available.  

An approach is proposed to minimize the overall 

inventory and distribution costs of the SWMR system 

while taking into account retailers' demands at the 

supplier. The problem is attempted by repeating the 

steps described below. In the first step, retailers are 

clustered to minimize the traveled distance or 

equivalently distribution costs. Then, a direct shipping 

procedure is used to determine the optimal 

replenishment schedule for the fixed retailer groups. 

In a third step, retailers can be switched from group 

to group to again optimize the total costs by local 

search combined with a simulation. 

The remainder of this paper is organized as follows. 

Section 2 reviews the relevant literature. Section 3 

presents the integrated deterministic model for 

SWMR system and section 4 describes the proposed 

solution approach. Finally, section 5 provides 

conclusions and some direction for future research 

approach. 

 

 
 

Figure1 A two-echelon inventory system 

 

 

2.0  LITERATURE REVIEW 
 

One stream of research related to this problem is the 

single warehouse and multiple-retailers inventory 

models taking transportation cost into account. 

Examples of such studies were carried out by [2, 3, 4, 

5, 6, 7, 21]. Gallego and Simchi-Levi [8] showed that 

direct shipping policies which each vehicle visits a 

single retailer, are within 6% of optimality under 

certain restricted parameter settings. Furthermore, 

good empirical performance for the so-called 

power-of-two strategies under which each retailer is 

replenished at constant intervals, which are power-

of-two multiples of a common base planning period 

were described in [9, 10]. The effectiveness of a large 

class of policies, called zero inventory ordering (ZIO) 

policies, for the single warehouse multiple-retailers 

system was analyzed in [11]. In this class, a retailer 

receives an order when its inventory level is down to 

zero. This analysis is motivated by the observations 

that direct shipping, power-of-two policies. 

An extension of this research line is concerned with 

the integrated models, involving location-inventory 

network design that integrates the location and 

inventory decisions. Some studies on a practical 

distribution network design problem for computer 

spare parts have been reported in [12]. Their model 

takes into account the inventory cost at the various 

warehouses. Also, an analytical model was 

developed to minimize the total fixed operating costs 

and inventory holding costs incurred by warehouses, 

together with the transportation costs [13]. The model 

is solved heuristically. Shen et al. [14] and Daskin et al. 

[15] considered the case where retailers are facing 

uncertain demands following a Poisson distribution, 

and Shu et al. [16] solved the problem for general 

demand distribution.  

In all models, the inventory holding costs at the 

retailers are ignored. The model considered here 

does not consider the design issue. However, it takes 

all inventories at the warehouse as well as at the 

retailers into account. In this paper, we also take into 

account the loading and unloading costs of the 

homogenous vehicle. The VMI policy addresses the 

issue of coordinating the warehouse and retailers 

inventory replenishment activities to minimize the 

system-wide multi-echelon ordering and holding 

costs. 

 

 

3.0  DETERMINISTIC MODEL 
 

For the model development, let R be the set of 

retailers, indexed by i. Let R+=R0, where 0 

indicates the warehouse and V the set of available 

vehicle. We also define the following notations: 
 v: the fixed operating and maintenance costs 

of vehicle vV; 

 tij: the duration of a trip from retailer i R+= R0 

to retailer j R+; 

 𝜏ij: a per unit transportation cost from the 

warehouse or retailer i to retailer j; 

 0: a fixed ordering cost incurred by the 

warehouse each time it places an order; the 

ordering cost is independent of the order 

quantity; 

 j: a fixed ordering cost incurred by each retailer 

j R each time it places an order from the 
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warehouse; the fixed ordering cost is 

independent of the order quantity; 

 h0: the per unit per year inventory holding cost 

rate in warehouse 0; 

 hj: the per unit per year inventory holding cost 

rate in retailer j; 

 dj: a constant demand rate per year faced by 

retailer j; 

 T0: the replenishment interval at warehouse 0; 

 Tj: the replenishment interval at retailer j; 

 θ∆: the fixed vehicle loading and dispatching 

cost; 

 θj: the fixed unloading cost at the retailers. 

Assume that retailers are clustered and served by 

the set of vehicles v in V*, and let Rv be the set 

retailers served by vehicle v. If customer j is served by 

vehicle v, then Tv = Tj. The objective function to be 

optimized is: 

SWMR: 
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where 𝜏v= (i,j)Trip(v)𝜏ij is the total travel cost of the 

complete trip made by vehicle v, satisfying the 

restrictions that (i,j)Trip(v)tij ≤ Tv and that the total 

amount delivered to the retailers in each tour made 

by the vehicle during its trip, Trip(v), should not 

exceed the vehicle’s capacity.  

The most effective way in terms of travel distance 

to supply these retailers is to travel along the shortest 

tour that visits the warehouse and all of the retailers in 

R, or the TSP-tour through R plus the warehouse. This 

tour gives a solution for the infinite time horizon. The 

cycle time T is the time between two consecutive 

iterations of the tour. The tour cannot be restarted 

before it is finished, so the total time needed to 

complete a tour gives a lower bound on the cycle 

time. Therefore, the minimal cycle time for 

replenishing the set of retailers R in a single tour 

served by the vehicle v, denoted by Tv
min, is given by 

the following formula: 
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On the other hand, the capacity of vehicle v 

induces an upper bound on the replenishment cycle 

of the retailers it serves. The upper bound on this 

cycle time is called maximal cycle time, which is 

denoted by Tv
max. The following formula gives the 

maximal cycle time for replenishing the set of retailers 

R in a single tour by the vehicle v. 
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Where k is the capacity of the vehicle and dj is the 

demand rate of retailer j R. Obviously, a tour is only 

feasible if its minimal cycle time is not greater than its 

maximal cycle time: Tv
min ≤ Tv

max. 

Assuming the power-of-two inventory stationary 

policy, in which each retailer is replenished at equally 

distant time intervals which are power-of-two 

multiples of a common base planning period, TB. In 

the absence of the travel and vehicle capacity 

restrictions on Tv, Roundy [1] showed that the convex 

programming relaxation of (1) approximates the 

optimal solution value to 98% accuracy.  

If we also assume that (hj–h0) > 0 for every retailer j, 

we can summarize the main results of Roundy [1] as is 

done in [17] for the basic model single-warehouse 

multiple-retailers (SWMR): The solution of (1) is a lower 

bound on the average cost of any feasible inventory 

control policy, and the solution can be rounded off 

to obtain a feasible integer-ratio policy with a cost 

within 98% of the minimum of (1). Such a policy can 

be computed in O(nlog(n)) time (see the algorithm 

below). Furthermore, in the solution to (1), the 

retailers can be divided into three groups: G, L, and 

E.  

For retailers in G, the replenishment interval is given 

by: 
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For retailers in L, the replenishment interval is given 

by: 

 

 
  0

0

ˆ
2

ˆ T
dhh

T
v

v

Rj jj

Rj jj

v

v 











 
 

 

Finally, for retailers in E, the replenishment interval is 

the same as that at the warehouse and given by: 
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If we start from a feasible partition (Rv)vV* of 

retailers, that satisfies Tv
min = (i,j)Trip(v)tij ≤ Tv

max defining 

the smallest cycle obtained from the total amount 

delivered to the retailers served during each sub-tour 

made by the vehicle. We can determine the optimal 

values for each vehicle v, as follows: 

 

(2) 

(3) 

(4) 

(5) 

(6) 
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To complete the procedure we need to develop 

an algorithm that determines the optimal feasible 

partition of retailers. This can be achieved by means 

of a combined solution method for SWMR problem 

combined with any effective heuristic for the vehicle 

routing problem. In this paper, the constrained 

vehicle routing problem (VRP) is solved using a 

constructive local search procedure that maintains 

for each vehicle the condition Tv
min = (i,j)Trip(v)tij ≤ 

Tv
max on its cycle time. 

 

 

4.0  SOLUTION APPROACH 
 

For the solution of the complete SWMR problem, 

firstly, we adapted the algorithm proposed by [1] to 

minimize inventory cost and determine the possible 

retailers set partitions G, E, L. Then, we use a saving 

heuristic algorithm to solve the constrained VRP 

problem for elements in E to cluster retailers as much 

as possible with the objective of minimizing 

transportation cost.  

 

4.1  Roundy's Algorithm 

 

In the first step, we adapted the algorithm proposed 

by [1] to solve the SWMR problem. The objectives are 

to minimize inventory cost and determine the 

possible retailers set partitions G, E and L. Before the 

paper by [1], most researchers attacked this problem 

by restricting themselves to special policies such as 

nested policy and stationary policy. A policy is 

stationary if the order intervals are constant for each 

facility. A policy is nested if a facility orders every time 

any of its immediate suppliers does. Unfortunately, he 

showed that the effectiveness of an optimal nested 

policy can be arbitrarily close to zero and a nested 

policy may have a rather poor cost performance. 

The effectiveness is defined as the ratio of the 

optimal value and the heuristic value of the 

objective function.  

Therefore, Roundy [1] introduced two types of 

policies, namely, the integer-ratio policy and the 

power-of-two policy. An integer-ratio policy 

presented how to compute the average costs. This 

policy is a stationary policy in which the order interval 

of each facility in the system is an integer multiple of 

a base planning period, TB. The power-of-two policy is 

a subset of integer-ratio policy that each facility 

orders at a power-of-two multiple of a base planning 

period, TB. He showed that for multi-retailer inventory 

model, the average cost of the optimal power-of-

two policy is within 6% of the average cost of any 

feasible policy. This result has made power-of-two 

policies very attractive. The complexity of both the 

policies developed by [1] is O(n log n), where n is the 

total number of retailers.  

Now, we discover in more detail the solution 

procedure introduced by [1]. Firstly, we assume that 

no shortage or backlogging is permitted. Without loss 

of generality, replenishment is assumed to be 

instantaneous. Moreover, let us assume that the base 

planning period, TB, is fixed which is one hour and 

that only power-of-two policies are employed. The 

order interval of each facility in the system is a 

power-of-two multiple of TB. 

 

Case 1: Retailer Order Interval Greater than 

Warehouse Order Interval. 

 

When determining the total average costs of the 

system, if T0 ≤ Tj, the warehouse places an order for 

retailers j at the same time when retailer j make an 

order. Therefore, no inventory of product j is held at 

the warehouse, and the only costs to consider are 

those incurred at the retailer j. So, the average total 

costs to retailer j is: 

jjj
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Case 2: Retailer Order Interval Less than Warehouse 

Order Interval. 

If T0 ≤ Tj, the warehouse orders T0dj for retailer j every 

T0. Both the warehouse and retailer j carry inventories 

in this case. The system inventory of product j is the 

sum of the inventory of product j at retailer j and the 

inventory at the warehouse. Therefore, the average 

inventory total costs to retailer j is: 
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So, given T0 and Tj , we can calculate the total 

average costs to retailer j, c(T0; Tj), is: 
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As a result, the formula for solving the problem of 

the SWMR system with the objective function of 

minimizing total average cost at both the warehouse 

and retailers is given below: 


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Subject to 

T0 =2k0 TB    (12) 

Tj =2kj TB    (13) 

 

Constraints (12) and (13) restrict the retailer and 

warehouse reorder intervals to satisfy the power-of-

two policy. So, we solve the relaxed problem where 

the power-of-two constraints (12) and (13) are 

ignored. By definition, 𝜏’j is the optimal solution to 

cj(Tj) and 𝜏j is the optimal solution to gj(Tj), it is easy to 

verify that 𝜏’j ≤ 𝜏j . Both c(T) and c(T0; Tj) are convex in 

(7) 

(8) 

(9) 

(10) 

(11) 
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T0, and the optimal solution to the relaxed problem, 

given T0, as follows: 

  𝜏'j   if T0  < Tj  

                             T0   if 𝜏'j  ≤  T0  ≤ 𝜏 j          (14) 

  𝜏 j   if 𝜏 j  < T0 

 

 

4.2  A Close Optimal Power-of-Two Policy 

 

In the second step, we adapted the algorithm 

developed by [18]. They considered only a feasible 

power-of-two policies multiples of the base order 

interval (TB). From this algorithm we can determine 

the possible set partitions of retailers in G, E and L. 

Firstly, they started by letting T0 be a power-of-two 

policy, the proposed method finds the corresponding 

optimal power-of-two policy, Tj , for each retailer j, 

and calculates the corresponding total average 

costs of the system. Then, they increased T0 to the 

next power-of-two period until the total average 

costs of the system increases at which point the 

optimal power-of-two policy is found (see Figure 2). 

The optimal power-of-two solution, t'j and tj , are 

used instead of 𝜏'j and 𝜏j because the proposed 

method only considers the power of-two policies. By 

definition, Tj =2kjTB and Tj =2mjTB are the optimal power-

of-two solutions to cj(Tj) and gj(Tj), respectively. The 

optimal power-of-two solutions t'j and tj, is obtained 

by rounding the solution to the power-of-two multiple 

of TB. 

This algorithm has proven that for a given T0, the 

optimal power-of-two policy is given by: (See more 

detailed algorithm in [18]. 

 

  t'j   if T0  < Tj  

T0   if t'j  ≤  T0  ≤ tj          (15) 

  tj    if tj   < T0 

 

Based on (15), and the fact that c(T) is convex T0, 

they proposed an iterative heuristic that monitors the 

changes in total average costs if policy Ti is used 

instead of policy Tj. Define tmin = min{ t'j : j = 1, ,n} and 

tmax = min{ tj : j = 1, , n} , the heuristic for SWMR system 

that exploits (15) is summarized as follows: 

 

SWMR Heuristic proposed by [18]: 

Step 0: Calculate  t'j and tj for j=1,…,n. Find tmin = min{ 

t'j: j=1,…,n} and tmax = max{ tj: j=1,…,n}. Let j = 0, T0 = 

tmin, T0={Ø}, and c(T0) = ∞. 

Step 1: Choose Tj according to condition (16). Let Tj={ 

T0, T1,…, Tn} and calculate c(Tj) using (11). If Δ(Tj, Tj-1) < 

0, go to step 2. Otherwise, stop, and the best power-

of-two policy is T*= Tj-1. 

Step 2: If T0 < tmax, set j=j+1, T0 = 2 T0 and go to step 1. If 

T0= tmax, it means that the optimal To falls in the region 

[tmax, ∞]. Since for any T0 > tmax, the optimal Tj, for all j, 

remains the same. Therefore, given the optimal Tj, for 

all j, T0 can be found by first minimizing (11) with 

respect to T0 and then rounding the solution such 

that
B

k

BoB

k TkTTT 2222 1  . Stop.  

  
Figure 2 Steps of the algorithm, Chu and Leon (2008) 

 

4.3  A Saving Heuristic Algorithm 

 

In the next step, we use a saving heuristic algorithm 

developed by [19] to solve the constrained VRP 

problem. This algorithm is based on a saving 

concept. The purpose of this algorithm is to select the 

retailers that will be included in a route by grouping 

them into a cluster. The saving algorithm finds pairs of 

retailers that are beneficial in a route and links as 

many of the pairs as possible. The objective is to find 

a solution which minimizes the total transportation 

costs. Moreover, the solution must satisfy the 

restrictions that every retailer is visited exactly once, 

where the demanded quantities are delivered, and 

the total demand on every route must be within the 

vehicle capacity restriction. The transportation costs 

are specified as the cost of driving from the 

warehouse to any other point of the retailers. The 

costs are not necessarily identical in the two 

directions between two given points. 

Clarke and Wright [19] published an algorithm for 

the solution of that kind of vehicle routing problem. 

This saving algorithm is an exchange procedure that 

was originally developed for the VRP. The algorithm 

has been designed for VRP is characterized as 

follows. From the warehouse product must be 

delivered in given quantities to given retailers. For the 

transportation of the product a number of vehicles 

are available, each with a certain capacity with 

regard to the quantities. Every vehicle that is applied 

in the solution must cover a route, starting and 

ending at the warehouse. 

Clarke and Wright [19] method is a heuristic 

algorithm, and therefore it does not provide an 

optimal solution to the problem with certainty. The 

method does, however, often yield a relatively good 

solution. The basic savings concept expresses the 

cost savings obtained by joining two routes into one 

route as illustrated in Figure 3, where point 0 

represents the warehouse and point i; j represent 

retailers. 

 

Tj = 

Tj = 
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Figure 3 Illustration of the savings concept 

 

 

Figure 3(a) shows the initial solution consists of a 

separate route to each of the retailers i and j. Then, 

routes in the solution are combined pairwise in order 

to obtain a better solution as illustrated in Figure 3(b). 

Because the transportation costs are given, the 

savings that result from driving the route in Figure 3(b) 

instead of the two routes in Figure 3(a) can be 

calculated. Therefore, the total transportation cost 

Da in Fig. 3(a) is: 

 

Da = C0i + Ci0 + C0 j + Cj0   (16) 

Equivalently, the transportation cost Db in figure 3(b) 

is: 

Db = C0i + Cij  + Cj0   (17) 

 

By combining the two routes, one obtains the savings 

Sij: 

Sij = Ci0 + C0j - Cij    (18) 

 

 

The savings Sij indicate that it is attractive with 

regard to costs, to visit retailers i and j on the same 

route such that retailer j is visited immediately after 

retailer i. There are two versions of the savings 

algorithm, a parallel and a sequential version. In the 

parallel version of the algorithm, the merge yielding 

the largest saving is always implemented, whereas 

the sequential version keeps expanding the same 

route until this is no longer feasible. 

In the first step of this saving heuristic algorithm, the 

savings for all pairs of retailers are calculated and all 

possible pairs of retailers are sorted in descending 

order of the savings. Next, from the top of the sorted 

list of retailer pairs with the largest saving, one pair of 

retailers is considered at a time. Then, when a pair of 

retailers i - j is considered, the two routes that visit i 

and j are combined. If this can be done without 

deleting a previously established direct connection 

between two retailer pairs, and if the total demand 

on the resulting route does not exceed the vehicle 

capacity. So, in the sequential version one must start 

a new from the top of the list every time a 

connection is established between a pair of retailers, 

while the parallel version only requires one pass 

through the list. 

The detailed steps of the Clarke and Wright [19] 

algorithm for the solution of VRP are as follows: 

Step 1: Compute the savings , Sij = Ci0 + C0j - Cij , of 

combining every possible pair of retailers I and j. 

Step 2: Order the savings Sij in a decreasing order. 

Step 3: Starting at the top of the list does the 

following. 

 

Parallel version 

 

Step 4: If a given link result in a feasible route 

according to the constraints of the VRP. Then 

append this link to the solution. If not, reject the link. 

Step 5: Try the next link in the list and step 4 is 

repeated until no more links can be chosen. 

 

Sequential version 

 

Step 4: Find the first feasible link in the list, which can 

be used to extend one of the two ends of the 

currently constructed route. 

Step 5: If the route cannot be expanded further, 

terminate the route. Choose the first feasible link in 

the list to start a new route. 

Step 6: Step 4 and 5 are repeated until no more links 

can be chosen. 

 

4.4  An Improvement Heuristic Algorithm 

 

An improvement algorithm begins with an arbitrary 

solution and ends up in a local minimum where no 

further improvement is possible. An improvement 

heuristic is proposed that can be applied to an 

existing solution at any time to improve the solution 

quality. The improvement heuristic consists of 

removing and re-inserting a route. The route is 

inserted into the existing distribution patterns of the 

solution, both in a separate tour and in the existing 

tours, and the cheapest alternative is kept. If a route 

ends up in the same position as before, the solution is 

restored and no improvement is found. If the route 

ends up in a different position, it means that the 

solution has improved. So, routing plans with lower 

costs can then be obtained using improvement 

heuristics that try to apply elementary modifications 

to the current solution. 

The best known improving heuristics for VRP are the 

edge exchange heuristics. The 2-opt exchange is a 

very simple, yet very useful, improvement heuristic. It 

involves exhaustively considering exchanges of two 

retailers in different routes. The 2-opt exchange 

method is a local search heuristic was introduced by 

[20] consists of eliminating two edges and 

reconnecting the two resulting paths in order to 

obtain a new tour (see Figure 4). The 2-opt 

procedure for the VRP is given: 

Step 1: Let T be the current tour. 

Step 2: For every node i = 1; 2 , , n: Examine all 2-opt 

moves involving the edge between i and its 

successor in the tour. If the move reduces total cost 

of the route, implement it and then choose the best 

such 2-opt move and update T.  

Step 3: If no improving move could be found, then 

stop. 
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Figure 4 A basic arc interchange in the 2-opt procedure 

 

 

5.0  CONCLUSION 
 

Managing inventory and routing in a supply network 

is a very challenging optimization problem. In this 

paper, we propose a global solution approach for a 

two-stage supply chain implementing vendor 

managed inventory (VMI). We focus the problem of 

coordinating the single-warehouse multiple-retailers 

(SWMR) system. The SWMR is a simple form of supply 

chain where retailers draw required material from a 

single warehouse to satisfy their given individual 

demands. The warehouse in turn places orders to an 

outside supplier to fill the orders of the retailers. 

An approach is proposed to minimize the overall 

inventory and distribution costs of the SWMR system 

while taking into account retailers' demands at the 

supplier. The approach is based on some effective 

algorithms for inventory and routing sub-problems. In 

particular, the algorithm to solve the SWMR problem, 

proposed by [1], and adapted the method by [18] 

and [19] for the solution of that kind of vehicle routing 

problem (VRP), are taken advantage of in our 

approach. The complex component in the proposed 

approach is still the VRP sub-problem which is 

heuristically solved in this paper. 

Further research approach will consist of adapting 

the existing method and solution to some numerical 

experiments and to the real life application 

problems, including a large set of retailers, driving-

time restrictions for the vehicles and their drivers, 

delivery time windows at the retailers, heterogeneous 

vehicle fleets, multiple warehouses, and multiple 

products. Finally, the basic assumption of constant 

demand rates is not always valid. Therefore, it is 

worthwhile to investigate how the approach can be 

extended to explicitly take some demand variability 

into account. We will be extending the approach 

developed by [17] and [18] for the stochastic case in 

the future research.  
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