

77:9 (2015) 61–77 | www.jurnalteknologi.utm.my | eISSN 2180–3722 |

Jurnal

Teknologi

Full Paper

EVALUATION OF THE VISITOR PATTERN TO

PROMOTE SOFTWARE DESIGN SIMPLICITY

Aziz Nanthaamornphong*, Rattana Wetprasit

Department of Information and Communication Technology,

Faculty of Technology and Environment, Prince of Songkla

University, Phuket Campus, Thailand

Article history

Received

2 February 2015

Received in revised form

14 September 2015

Accepted

12 October 2015

*Corresponding author

aziz.n@phuket.psu.ac.th

Graphical abstract

Abstract

Design patterns, which have been widely used by software engineering

communities, have been claimed to improve software design in previous studies.

However, there is little empirical evidence to support such a claim. Additionally, the

benefits of design patterns in software design have not been studied in sufficient

detail to date. As a result, in this study, we used empirical methods to evaluate

whether design patterns help developers improve the simplicity of software design.

In particular, we analyzed how easily a given software design was understood. We

chose the well-known Visitor pattern as the design pattern for this study. The results

suggest that the Visitor pattern could help developers improve software design

simplicity. Specifically, a class diagram with the Visitor pattern was found to be

easier to understand than a class diagram without the design pattern.

Keywords: Design patterns, empirical study, software quality

Abstrak

Corak reka bentuk, yang telah digunakan secara meluas oleh komuniti kejuruteraan

perisian, telah dituntut sebagai mampu meningkatkan reka bentuk perisian dalam

kajian sebelum ini. Walau bagaimanapun, hanya terdapat sedikit bukti empirikal

untuk menyokong tuntutan tersebut. Selain itu, manfaat corak reka bentuk dalam

reka bentuk perisian belum dikaji secara terperinci setakat ini. Oleh itu, dalam kajian

ini, kami menggunakan kaedah empirikal untuk menilai sama ada corak reka

bentuk membantu pembangun sistem meningkatkan kesederhanaan dalam reka

bentuk perisian. Khususnya, kami telah menganalisa betapa mudahnya reka bentuk

perisian yang diberikan untuk difahami. Kami memilih corak Visitor yang terkenal

sebagai corak reka bentuk untuk kajian ini. Keputusan menunjukkan bahawa corak

Visitor boleh membantu pembangun sistem meningkatkan kesederhanaan dalam

reka bentuk perisian. Secara khususnya, gambarajah kelas dengan corak Visitor

didapati lebih mudah untuk difahami daripada gambar rajah kelas tanpa corak

reka bentuk.

Kata kunci: Corak reka bentuk, kajian empirikal, kualiti perisian

© 2015 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

In the past several decades, many software

engineering studies have reported that software

design patterns improved software quality [1],

particularly for object-oriented software [2].

Researchers have studied various aspects of design

patterns, such as their characteristics, applicability,

benefits and drawbacks [3-6].

62 Aziz Nanthaamornphong & Rattana Wetprasit / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 61–73

In previous studies, design patterns were not always

found to improve software quality. For example, a

complex implementation of design patterns can

negatively impact software quality (e.g., software

maintenance, program comprehension). In addition,

although design patterns allow easy modification of

software, they are often expensive [7, 8].

Most studies also primarily considered the

implementation and maintenance phases of

software projects. Meanwhile, only a few studies

have focused on the design or early activities in the

software development process [9]. Additionally, only

a small amount of empirical evidence has been

reported to support the claim of improved simplicity

[10] when design patterns are used in software

design.

Therefore, this study examines whether Visitor

patterns help developers increase the simplicity of

their software designs. Simplicity is an important

quality attribute of a software system, particularly

object-oriented software systems. We can define the

simplicity of a software design as the degree to

which the design of a software system can be easily

understood [11]. With the Visitor design pattern, a

visitor “represents an operation to be executed on

the elements of an object structure. The Visitor allows

the developers to make a new operation without

altering the classes of the elements on which it

operates” [12]. Over the years, the Visitor pattern has

been the topic of several studies [13] but few

empirical studies were conducted to support it. We

chose to study the Visitor pattern because this

pattern is broadly used in practice and has several

design choices.

We studied how the Visitor pattern affected the

simplicity of software design. We asked subjects to

first look at two types of designs, one with the Visitor

pattern and the other without it, and then complete

questionnaires related to the designs. The designs

used were UML class diagrams, which are a de facto

standard, and their primary constructs are well

known in the software engineering community. We

developed design diagrams for two different systems,

which one of those diagrams is shown in Figure 1. We

used the task duration and correctness to compare

the simplicity of the designs and thereby determine

quantitatively whether the Visitor pattern could

improve the design simplicity. Additionally, we

conducted a survey, an empirical strategy used in

software engineering research [14], after each

experiment to increase our confidence in the

analyzed results.

The remainder of this article is organized as follows.

Section 2 provides an overview of related works.

Section 3 describes the experimental methods used

in this study. Section 4 explains the post-study, in

which the main experiment was extended. The data

analysis and its interpretation are discussed in Section

5. Section 6 outlines the validation and limitations of

this study. Finally, conclusions and future work are

described in Section 7.

Figure 1 Example of the design diagram

63 Aziz Nanthaamornphong & Rattana Wetprasit / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 61–73

2.0 RELATED WORKS

This study is related to previous studies on how design

patterns affect software quality.

The relationship between faults and design

patterns has been investigated by Mahmoud Elish

and Mawal Mohammed [15], who examined the

faults in five open-source software systems. The

researchers compared the faults between classes

that participated in the design patterns and those

that did not. The results showed an inconsistent

difference in the number of faults between the

participant and non-participant classes in the design

patterns.

Sfetsos et al. performed an empirical study to

investigate how 23 design patterns used in software

libraries and standalone applications improved

software quality [16]. In their study, software quality

was measured using QMOOD metrics. The results of

that study indicated that the Visitor patterns did not

have a positive effect on any software quality

attributes.

Sebastien J. et al. conducted an empirical study to

investigate the influence of the Visitor pattern on

program comprehension and maintenance [17]. The

study showed that the Visitor pattern only improved

modification tasks. This study is difficult to replicate

because the researchers used an eye-tracker to

measure cognitive loads while the subjects were

performing the tasks. Additionally, we believe that

the use of this eye-tracker might affect how the

subjects performed on the given tasks.

Kmomh and Gueheneuc also studied the influence

of 23 design patterns on ten different quality

attributes. Their study indicated that the design

patterns did not always improve software quality [18].

More specifically, the results showed that patterns did

not conclusively promote reusability, expandability,

and understandability. This study highlighted the

need to assess the effects of a design pattern on

other software quality attributes.

Javier Garzas et al. performed a controlled

experiment to investigate whether design patterns

could help developers easily understand and easily

modify software designs [11]. The results suggest that

more effort is required to change the design for a

diagram including design patterns than for a

diagram without design patterns.

Wendorff evaluated the advantages of design

patterns applied to large commercial software [9]

but did not study the effect of design patterns on

software quality. This study indicated that design

patterns did not necessarily enhance software

designs. Additionally, the results showed that a

design pattern could increase complexity and that

removing patterns was expensive. However, this

study only provided qualitative data.

Although several other empirical studies have

investigated the effect of design patterns on

software quality, their conclusions are not consistent.

There is also lack of additional empirical studies

analyzing the influence of design patterns on

software design. Rather than focusing on the source-

code level, as done in other studies, this study

focused on the design level.

3.0 EXPERIMENTAL SETTING

In this section, we explain the experiment used to

evaluate the influence of the Visitor pattern on the

simplicity of software design.

3.1 Hypotheses

The primary goal of this experiment was to compare

the simplicity of software designs with and without

the Visitor pattern. The primary question of this study

can be expressed as follows:

Are software designs using the Visitor pattern easier

to understand than software designs without a

design pattern?

We established the hypotheses for the proposed

experiment as follows:

 H0Time: Using the Visitor pattern in the design

does not improve the time required to

understand the design.

 H1Time: Using the Visitor pattern in the design

improves the time required to understand

the design.

 H0Easy: Using the Visitor pattern in the design

does not make it easier to understand the

design.

 H1Easy: Using the Visitor pattern in the design

makes it easier to understand the design.

 H0Eff: Using the Visitor pattern in the design

does not improve the understandability

efficiency.

 H1Eff: Using the Visitor pattern in the design
improves the understandability efficiency.

We used a one-sided alternative hypothesis

because the Visitor pattern can be considered

worthwhile if it can produce better results than the

non-design pattern version. In other words, the Visitor

pattern should only be used if it can improve the

software design. The empirical evidence obtained in

this study should prove or refute the hypotheses

detailed above.

3.2 Independent Variables

Based on the hypotheses detailed in Section 3.1, we

identify the following independent variable:

 Software Design. There were four different

designs on two different systems, two of

which used a Visitor pattern (VP) and two of

which did not (NP).

We developed four design diagrams, which were

presented via UML class diagrams. These class

diagrams were built on two different software

systems: a reporting module in an entertainment

store and a patient behavior information system in a

64 Aziz Nanthaamornphong & Rattana Wetprasit / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 61–73

hospital. The details of these designs and their class

diagrams are shown in Appendix A. We named the

entertainment store system and the hospital system

“System A” and “System B” respectively. Note that

Figure 1 and Figure 9 show the VP and NP versions of

System A, respectively, and Figure 10 and Figure 11

show the VP and NP versions of System B. We

decided to develop these two system designs

ourselves because other available systems, such as

JHotDraw and Eclipse, would be too complex for the

subjects participating in this study. Additionally, we

wanted to ensure that the selected systems only use

the Visitor pattern.

3.3 Dependent Variables

The dependent variables of this experiment included

the following:

 Time. We measured the time (minutes) the
subjects spent answering the six questions
related to the software design.

 Correctness. This variable was the score

assigned to quantify the correctness of the

subject's answers. We established a specific

score for each question. All questions were

open-ended, so the grading was determined

based on specific keywords expected in the

answers. Answers containing these keywords

received the assigned score, and those

without these keywords received a score of

zero. The questions were carefully

constructed by two authors so that the

scoring was straightforward and

unambiguous.

 Efficiency. Simplicity was measured by how

easily the designs were understood. A design

was considered easier to understand if the

subjects could obtain a high score in a

shorter period of time. The efficiency was

obtained by dividing each subject’s score by

the time spent answering the question.

We measured the design simplicity as the correctness

and time required because we believed that the

subjects would only be able answer a question

correctly and quickly if the design being evaluated

were easy to understand. Although some subjects

might answer correctly by guessing, this was fairly

unlikely [19]. We chose the efficiency as another

important measure because it is the measure most

frequently used by software engineers in the software

development process. Appendix B shows the details

of the questionnaire used in this study. Two

questionnaires (Questionnaire A and B) were used,

where Questionnaire A asked the subjects about

diagrams 1 and 2, and Questionnaire B asked

questions about diagrams 3 and 4. In each

questionnaire, each subject had to note the time at

which he/she began to perform the given task and

the time at which he/she finished the task.

3.4 Subjects

A total of 24 subjects participated in the experiment.

These subjects were undergraduate students enrolled

in a software engineering class taught by one of the

authors.

3.5 Experimental Procedure

In this experiment, each subject completed tasks for

both treatments: VP and NP. This experiment was

designed such that each subject performed the tasks

on both design versions according to a repeated-

measures design. The dependent variables of each

subject’s performance were repeatedly measured

after the subject completed the task for each

software design version in the experiment. Exposing

each subject to both treatments allowed us to

reduce inter-subject differences, which can be

appear as random error in the subject scores.

We assigned the 24 subjects into four balanced

groups, as shown in Figure 2. To minimize the order

effect, which describes how the order of performing

Figure 2 Experiemental setting

65 Aziz Nanthaamornphong & Rattana Wetprasit / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 61–73

Table 2 Descriptive statistics and t-Test results

Variables

Visitor Pattern Non-Pattern

t
Degree of
Freedom

Sig. (p-
value)

Effect Size

Mean
Standard
Deviation

Mean
Standard
Deviation

Time (min) 11.43 1.08 12.23 0.80 2.391 23 0.025 0.82

Correctness 3.96 1.16 2.63 1.44 2.844 23 0.009 1.02

Efficiency 0.35 0.12 0.22 0.13 -2.939 23 0.007 1.04

a task affects the dependent variable, each subject

had to answer the questions on two different class

diagrams designed for different systems. For

example, the subjects in G1 answered the questions

based on the NP version for System A and the VP

version for System B.

Each subject performed the given tasks by

answering six questions for the NP design and six

questions for the VP design. All subjects answered the

same questions. Each of the four groups answered

the questions from Questionnaire A (Q-A) and

Questionnaire B (Q-B) based on the diagram

numbers, as shown in Table 1. Questionnaire A was

designed to ask questions related to System A, and

Questionnaire B was designed to ask questions

related to System B. We developed each class

diagram such that it contained sufficient information

to answer the questions. The subjects were asked

specific questions related to classes that appeared in

the class diagram.

During the experiment, we allowed the subjects to

refer to their textbooks or notes. The first author also

instructed the subjects to notify the researcher if they

had any trouble understanding the questions. We

organized the room as though the subjects were

taking an exam; thus, the subjects were separated

spatially by empty seats, preventing them from

talking to each other. Additionally, the subjects could

not leave the room without permission.

We ran a pilot study before the complete

experiment to validate and verify the proposed

experimental method. We selected six subjects who

were not involved in the real experiment to

participate in the pilot study. We asked the subjects

to follow the experimental procedure detailed

above. The pilot study allowed us to determine how

well the subjects performed the given tasks. We then

evaluated the preliminary results of the pilot study in

terms of whether the questionnaires were understood

and whether the answers were sufficient for analysis.

We then revised the questionnaire based on the

results of the pilot study.

4.0 POST-STUDY

To better understand other factors that might affect

the experimental results; we conducted a survey of

the subjects two weeks after they finished the given

tasks. This section describes this additional study.

We sent each subject a survey that included

questions regarding the following aspects of the

primary experiment:

1) Knowledge of the UML class diagram. To

ensure that all subjects were familiar with UML

class diagram notation (e.g., box, line), we

asked the subjects whether they had ever

used a UML class diagram.

2) Ease of reading each diagram. These

questions were posed to investigate whether

the layout of given diagrams impacted the

subject’s task performance.

3) Experience with the Visitor pattern before the

experiment. We believe that subjects with

experience with the pattern would perform

differently than those without such experience.

4) Confidence in their answers. These questions

were posed to ensure that the subjects

provided answers without guessing.

Table 1 Questionnaire distribution

Group No. No. of

Subjects

Q-A Q-B

1 6 Diagram#2 Diagram#3

2 6 Diagram#1 Diagram#4

3 6 Diagram#1 Diagram#3

4 6 Diagram#2 Diagram#4

66 Aziz Nanthaamornphong & Rattana Wetprasit / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 61–73

We used a self-developed questionnaire technique

that included two different formats: dichotomous

Yes/No answers and self-assessment items that used

a five-point scale. Appendix C presents the survey

questions. We distributed the survey via email along

with the given tasks, including the questions and

diagrams. To ensure that the survey questions were

comprehensible and valid with respect to the study

construct, we asked experts to evaluate the

proposed survey questions. We then refined the

questions based on feedback. After the verification

process, we made the survey available on the web,

where it could be accessed via a URL. Finally, we

distributed the URL via email. We also posted a

reminder in the News section of the department

website.

5.0 RESULTS AND DISCUSSION

This section presents the results based on data

obtained from the experiment. The measurements of

the ease of understanding the design using the Visitor

pattern were the correctness, time spent, and the

efficiency of the subjects. Regarding the correctness,

the subjects received one point for a correct answer

and zero points for an incorrect answer. The task time

is the time that the subject required to complete the

questions. Thus, the efficiency is the number of

correct answers divided by the task time.
After the experiment was complete, we received

the questionnaires from all 24 subjects. Each subject
responded to all of the questions in both
questionnaires. Therefore, the quantity of data
collected was sufficient for analysis. Once we
obtained the results, we performed a descriptive
analysis of the data. Table 2 presents the main
descriptive statistics for the experiment.

Figure 3 Distribution of spent time in minutes

Figure 4 Distribution of correctness

Figure 5 Distribution of efficiency

Figure 6 The easiness of the diagram’s layout

67 Aziz Nanthaamornphong & Rattana Wetprasit / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 61–73

The results of the experiment showed that less time
was spent on the VP questionnaire than the NP
questionnaire. When using the Visitor pattern, the
subjects also answered the questions 50.5% more
accurately (means: 3.95 for VP and 2.63 for NP,
corresponding to a positive difference of 1.33), and
the efficiency was improved by 60.3% (means: 0.35
for VP and 0.22 for NP, corresponding to a positive
difference of 0.13).

Figure 3 shows the distribution of the task time; the
median for VP was approximately 11.5 minutes,
which is lower than the median for NP. This result is in
agreement with the correctness results, shown Figure
4, in which the median for VP was approximately 4.
Similarly, the median efficiency for VP, shown in Figure
5, is 0.35. These values suggest that the design with
the Visitor pattern was easier to understand.

Next, we examined whether these differences

were statistically significant. We analyzed the
hypotheses tests using a t-test with a significance
level of 0.05. The last four columns in Table 2 show the
statistical results for the hypothesis testing of the
dependent variables. Note that we also measured
the effect size of the statistical analysis with using the
Cohen’s d method, which is often used in controlled
experiments [20].

H0Time - When the Visitor pattern was used in the
software design, a significantly shorter task time (p-
value = 0.025, < 0.05) was observed. Therefore, we
concluded that the null hypothesis H0Time could be
rejected. Regarding the effect size, the calculated d
value (d=0.82, large) indicated a high practical
significance. Thus, we concluded that the Visitor
pattern reduced the time spent answering the
questions on the software designs.

H0Easy - The difference in the number of the correct
answers was statistically significant (p-value = 0.009 <
0.05). Thus, we could reject the null hypothesis H0Easy.
The effect size (d = 1.02, large) also suggested a high
practical significance. Consequently, we concluded
that the software design using the Visitor pattern was
easier to understand than the design without any
pattern.

H0Eff - The difference in efficiency was also

statistically significant (p-value = 0.007 < 0.05).
Therefore, the null hypothesis H0Eff could be rejected.
The effect size (d=1.04, large) also indicated a high
practical significance. Therefore, the design diagram
with the Visitor pattern improved the
understandability efficiency.

Figure 7 The confidence of Questionnaire-A

Figure 8 The confidence of Questionnaire-B

Figure 9 Correlation between time spent and experience

68 Aziz Nanthaamornphong & Rattana Wetprasit / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 61–73

In the post-study, we received survey answers from
all 24 subjects. The survey shows that subjects had
used the UML class diagram prior to the experiment.
Thus, the notation in the diagrams should not have
influenced the subjects’ performance during the
experiment. Furthermore, we analyzed the effect of
the diagram layout and the pattern presentation. All
the subjects responded that the layout of each
diagram was either easy or very easy to understand
(Figure 6). These results conform to the two following
questions, which asked the subjects to rate their
confidence in their answers given during the
experiment. Figure 7 and 8 summarize the responses
to these questions. Overall, the subjects were
confident in their answers; therefore, we exclude
these questions from the proposed analysis.

For the statistical analysis, we used the Spearman
rank-order correlation, which is a non-parametric
statistic, to measure the strength and direction of the
association between the variables, including 1) the
task time and the subject’s experience and 2) the
correctness and the subject’s experience. We only
analyzed the results for the Visitor pattern group
because we believed that the subject’s experience
should influence the tasks based on the design
patterns.

Figure 9 shows the correlation between the time
spent on the Visitor pattern diagrams and the
subject’s experience. Based on the statistical analysis,
we found a strong, significant correlation (rs = -0.48, p
= 0.018) between the time spent and the subject’s
experience. This evidence implies that as experience
increases, the time spent on the given tasks
decreases. Conversely, the subjects who had little
experience might spend much more time on the
given tasks.

However, no significant correlation was found
between the correctness and experience level (rs =
0.49, p = 0.822), which is shown in Figure 10. Thus,
experience likely does not affect the correctness.
Note that Figure 9 and 10 do not include the answer
“Used in a real industry project” because none of the
subjects gave this response.

6.0 THREATS TO VALIDITY

Construct Validity. The construct validity is a

generalization of the experimental results to the

concept behind the experiment. The ease of

understanding the design was measured by the task

time, correctness, and efficiency, which are

commonly used in empirical and comprehension

studies in software engineering [8]. The data

collected from the questionnaires might be

inaccurate due to errors made by the subjects; for

example, the subjects might not have noted the real

start and end times in the questionnaires despite

being instructed on how to complete the

questionnaires. Additionally, in this experiment, we

did not ask experts to evaluate the questionnaires;

thus, it is possible that some questions were

ambiguous, which could influence the subjects’

answers. However, the information obtained from the

pilot study was used to minimize this problem.

Additionally, in the open-ended questionnaires, the

researchers might have introduced a bias in favor of

certain responses.

Internal Validity. Internal validity refers to the

presence of other factors that might have an effect

on the variables. Three common problems may have

arisen during the experiment. First, the subjects might

not have followed the prescribed process and

instructions. Second, the subjects might not have

been motivated to complete the questionnaires.

However, we believe that these two problems were

not serious because the questionnaires were part of

an in-class assignment. Third, the subjects might have

become fatigued because of the number of tasks

that they were required to complete. However, we

also do not believe that this fatigue effect was a

serious problem because the maximum time allotted

to complete the tasks was 30 minutes. Regarding the

subject’s knowledge of software domains, the

designs were from different domains, but the

Figure 10 Correlation between correctness and experience

69 Aziz Nanthaamornphong & Rattana Wetprasit / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 61–73

researchers, as instructors of this course, knew that

the subjects were generally familiar with these

designs. Thus, knowledge of the domain did not

affect the internal validity of this study. However, we

did not completely address certain threats to the

validity of this experiment. First, we did not assess the

experience of the subjects on the Visitor pattern and

their knowledge of UML prior to the experiment.

Second, we did not carefully consider the class

diagram layout, which might affect the ease of

understanding the design represented in the

diagrams. We mitigated these threats by conducting

a survey inquiring about those concerns after the

experiment. Although the subjects answered the

survey after they finished the experiment, the answers

should still represent their real knowledge as

accurately as a survey conducted before the

experiment would have. Thus, the results of the post-

survey are likely similar to those of a pre-survey or pre-

examination.

External Validity. To assess this type of validity, we

considered the generalizability of the proposed

study. Because the subjects in this experiment were

students, the results might not be applicable to the

software industry because students likely have less

experience than professionals. Ideally, professionals

would obtain equal or higher scores in shorter time

periods than students would. Comparing the

proposed design diagrams to industrial design

diagrams, the proposed design diagrams are

somewhat smaller and simpler. An additional study

with professionals on real software designs might help

us mitigate these threats. Additionally, we only used

a t-test analysis to analyze the results, but the power

of this significance test may be inconclusive.

7.0 CONCLUSION

The primary goal of this study was to evaluate
whether the Visitor pattern promotes design
simplicity. We quantified simplicity using measures of
correctness, time and efficiency. We hypothesized
that the Visitor pattern would have an effect on the
software design only if these measures were
significantly changed.

The experiment showed that a design with the
Visitor pattern was easier to understand than a
design without it. The differences between the use
and non-use of the Visitor pattern were statistically
significant with regard to correctness, time, and
efficiency.

We also found that the Visitor pattern improved the
design simplicity. Designers who decide to use the
Visitor pattern in a specific context may consider
using the Visitor pattern in future designs. Other
experiments are required to verify the results of this
study and extend these results to other design
patterns.

In the future, we will replicate this empirical study to
increase the external validity (i.e., using professionals
instead of students, asking different questions,

analyzing the complexity and layout of the design
diagrams). We would also like to study the influence
of the combination of design patterns. The primary
goal of this future study will be to investigate the
interactions of two or more design patterns in the
same software design, as a real software design
might contain many design patterns. For example,
we will combine the Visitor pattern with other design
patterns, such as the Abstract Factory pattern, the
Singleton pattern or the Decorator pattern. Such
combinations might reveal the effect of the
interaction produced by each design pattern on the
ease of understanding a given design. We also look
forward to measuring the ease of understanding a
design pattern via software metrics, which relates to
the ease of understanding a given software design.

Finally, we believe that good software designs will
directly help software engineers improve software
quality. We also plan to study the effect of design
patterns on other software quality attributes, such as
modifiability, testability, and security.

Acknowledgement

The authors gratefully thank all participants in the
experiment. All feedbacks from the 8th Malaysian
Software Engineering Conference (MySEC) were
extremely valuable.

References

[1] Venners, B. 2005. How to Use Design Patterns A

Conversation with Erich Gamma, Part I. [Online]. From:

http://www.artima.com/lejava/articles/gammadp.html.

[Accessed on 7 September 2015].

[2] Beck, K., R. Crocker, G. Meszaros, J. Vlissides, J. O. Coplien,

L. Dominick, and F. Paulisch. 1996. Industrial Experience

with Design Patterns. The 18th International Conference

on Software Engineering. Berlin, Germany. 25-30 March.

103-114.

[3] Prechelt, L., B. Unger-Lamprecht, M. Philippsen, and W. F.

Tichy. 2002. Two Controlled Experiments Assessing the

Usefulness of Design Pattern Documentation in Program

Maintenance. IEEE Transactions on Software Engineering.

28(6): 595-606.

[4] Aversano, L., G. Canfora, L. Cerulo, C. Del Grosso, and M.

D. Penta. 2007. An Empirical Study on the Evolution of

Design Patterns. The 6th Joint Meeting of the European

Software Engineering Conference and the ACM SIGSOFT

Symposium on the Foundations of Software Engineering.

Cavat near Dubrovnik, Croatia. 3-7 September 2013. 385-

394.

[5] Mak, J. K. H., C. S. T. Choy, and D. P. K. Lun. 2004. Precise

Modeling of Design Patterns in UML. The 26th International

Conference on Software Engineering. Scotland, UK. 23-28

May 2004. 252-261.

[6] Ng, T. H., S. C. Cheung, W. K. Chan, and Y. T. Yu. 2006.

Work Experience versus Refactoring to Design Patterns: A

Controlled Experiment. The 14th ACM SIGSOFT

International Symposium on Foundations of Software

Engineering. Oregon, USA. 5-11 November 2006. 12-22.
[7] Prechelt, L., B. Unger, W. F. Tichy, P. Bro ̈ssler, and L. G.

Votta. 2001. A Controlled Experiment in Maintenance

Comparing Design Patterns to Simpler solutions. IEEE

Transactions on Software Engineering. 27(12): 1134-114.

[8] McNatt, W. and J. Bieman. 2001. Coupling of Design

Patterns: Common Practices and Their Benefit. The 25th

http://www.artima.com/lejava/articles/gammadp.html

70 Aziz Nanthaamornphong & Rattana Wetprasit / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 61–73

Annual International Conference on Computer Software

and Application. Illinois, USA. 8-12 October 2001. 574-579.

[9] Wendorff, P. 2001. Assessment of Design Patterns During

Software Reengineering: Lessons Learned from a Large

Commercial Project. The 5th European Conference on

Software Maintenance and Reengineering. Libson,

Portugal. 14-16 March 2001. 77-84.

[10] Zhang C. and D. Budgen. 2012. What Do We Know about

the Effectiveness of Software Design Patterns? IEEE

Transactions on Software Engineering. 38(5): 1213-1231.
[11] Garza ́s, J., F. Garćıa, and M. Piattini. 2009. Do Rules and

Patterns Affect Design Maintainability? Journal of

Computer Science and Technology. 24(2): 262-272.

[12] Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1995.

Design Patterns: Elements of Reusable Object-Oriented

Software. Boston, Massachusetts, USA. Addison-Wesley

Longman Publishing Co., Inc.

[13] Palsberg, J. and C. B. Jay. 1998. The Essence of the Visitor

Pattern. The 22nd International Conference on Computer

Software and Applications. Vienna, Austria. 19-21 August

1998. 9-15.

[14] Wohlin, C., P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell,

and A. Wesslén. 2000. Experimentation in Software

Engineering: An Introduction. MA, USA. Kluwer Academic

Publishers.

[15] Elish, M. and M. Mohammed. 2015. Quantitative Analysis

of Fault Density in Design Patterns: An Empirical Study.

Information and Software Technology. 66(2015): 58-72.

[16] Sfetsos, P., A. Ampatzoglou, A. Chatzigeorgiou, I.

Deligiannis, and I. Stamelos. 2014. A Comparative Study

on the Effectiveness of Patterns in Software Libraries and

Standalone Applications. The 9th International

Conference on Quality of Information and

Communications Technology. Guimaraes, Portugal. 23-26

September 2014. 145-150.

[17] Jeanmart, S., Y. G. Gueheneuc, H. Sahraoui, and N.

Habra. 2009. Impact of the Visitor Pattern on Program

Comprehension and Maintenance. The 3rd International

Symposium on Empirical Software Engineering and

Measurement. Florida, USA. 15-16 October 2009. 69-78.

[18] Khomh, F. and Y. G. Gueheneuce. 2008. Do Design

Patterns Impact Software Quality Positively? The 12th

European Conference on Software Maintenance and

Reengineering. Athens, Greece. 1-4 April 2008. 274-278.

[19] Razali, R., C. F. Snook, and M. R. Poppleton. 2007.

Comprehensibility of UML-Based Formal Model: A Series of

Controlled Experiments. The 1st ACM International

Workshop on Empirical Assessment of Software

Engineering Languages and Technologies. Atlanta, USA.

5-9 November 2007. 25-30.

[20] Dunlop, W. P., J. M. Cortina, J. B. Vaslow, M. J. Burke. 1996.

Meta-Analysis of Experiments with Matched Groups or

Meta-analysis. Psychological Method. 1(2): 170-177.

71 Aziz Nanthaamornphong & Rattana Wetprasit / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 61–73

Appendix A - Diagrams

Diagram 2 - We have created these class diagrams from a reporting software module used in a store selling DVDs,

VCDs and coffee to customers. The reporting module provides statistics about the customers who are members of

the store. Note: Diagram 1 is shown in Figure 1.

 Diagrams 3 and 4 - We have created these diagrams from a software module used in a hospital. This module

provides information for modeling outpatients’ behaviors. In this system, we have classified the patients into three

groups based on age range: 0 – 15 years, 16 – 45 years and over 45 years.

+main(args:String[]):void()

Main

+displayResult():void()

GeneralReport

+addCustomer(customer:Customer):void()

-customers:ArrayList = new ArrayList()

CustomerGroup

+getname():String()

+setName(name:String):void()

+addBook(book:Book)()

+addDVD(dvd:Dvd)()

+addCoffee(coffee:Coffee)()

+Customer(name:String)()

-name:String

-dvd:ArrayList=new ArrayList()

-coffee:ArrayList=new ArrayList()

-book:ArrayList=new ArrayList()

-

Customer

+setBookTitle(title:String):void()

+getBookTitle():String()

+setIsbn(isbn:String):void()

+getIsbn():String()

+setPublisher(publisher:String):void()

+getPublisher():String()

+setAuthors(authors:String):void()

+getAuthors():String()

+setPrice(price:Decimal):void()

+getPrice():Decimal()

-bookTitle:String

-isbn:String

-publisher:String

-authors:String

-itemcode:String

-price:Decimal

Book

+setTitle(title:String):void()

+getTitle():String()

+setPrice(price:Decimal):void()

+getPrice():Decimal()

-title:String

-price:Decimal

Dvd

+setCoffeeItem(item:String):void()

+getCoffeeItem():String()

+setPrice(price:Decimal):void()

+getPrice():Decimal()

-coffeeItem:String

-price:Decimal

Coffee

1

*

1

*

1

*

1*

Figure 9 Diagram No.2

72 Aziz Nanthaamornphong & Rattana Wetprasit / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 61–73

Figure 10 Diagram No.3

Figure 11 Diagram No.4

73 Aziz Nanthaamornphong & Rattana Wetprasit / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 61–73

Appendix B – Questions

Appendix C – Survey Questions (Post-Study)

1. Have you ever used the UML class diagram?

 () Yes () No

2. Please rate the easiness of reading the diagram no. 1 (or 2)

 () Very Difficult () Difficult () Neutral () Easy () Very Easy

3. Please rate the easiness of reading the diagram no. 3 (or 4)

 () Very Difficult () Difficult () Neutral () Easy () Very Easy

4. For the Questionnaire-A, how confident that you have correctly answered the questions?

 () Very Unsure () Unsure () Neutral () Sure () Very Sure

5. For the Questionnaire-B, how confident that you have correctly answered the questions?

 () Very Unsure () Unsure () Neutral () Sure () Very Sure

6. Please rate the Visitor pattern experience before performing the given tasks

 () No experience () Learned in a class or from books

 () Used on a class project () Used on several class project

 () Used on a real industry project

Questionnaire (A)

Name: _____________________

Diagram No: () 1 () 2

Write down the starting time (HH:MM:SS):______________________

1. How does the GeneralReport show the detail of the Customer(s)?

2. How does the GeneralReport show the detail of the Coffee(s) for each Customer?

3. Can the GeneralReport show the total price of product(s)? Please give the justification.

4. Suppose the store need to remove the Book from the existing system? Do we need to change the

GeneralReport? Please give the justification.

5. Suppose the store need to add more information in Customer from the existing system? Do we need to

change the GeneralReport? Please give the justification.

6. Can the Coffee know the Customer who is belong to? Please give justification.

Write down the ending time (HH:MM:SS):______________________

Questionnaire (B)

Name:_____________________

Diagram No: () 3 () 4

Write down the starting time (HH:MM:SS): ______________________

1. How does the BehaviorModeling show the behavior of patients?

2. How does the BehaviorModeling show the detail of the MidPatient?

3. Can the BehaviorModeling show the information of Physician for each patient?

4. Suppose the hospital need to remove the OldPatient group from the existing system. Do we need to

change the BehaviorModeling? Please give the justification.

5. Suppose the hospital need to add more information in Patient from the existing system. Do we need to

change the BehaviorModeling? Please give the justification.

6. Can the Physician know the Patient who has been treated? Please give justification.

Write down the ending time (HH:MM:SS): ______________________

