

77:9 (2015) 115–125 | www.jurnalteknologi.utm.my | eISSN 2180–3722 |

Jurnal

Teknologi

Full Paper

NON FUNCTIONAL REQUIREMENTS (NFRS) TRACEABILITY

METAMODEL FOR AGILE DEVELOPMENT

Adila Firdaus*, Imran Ghani, Dayang Norhayati Abg Jawawi, Wan

Mohd Nasir Wan Kadir

Department of Software Engineering, Faculty Of Computing,

Universiti Teknologi Malaysia, Malaysia

Article history

Received

2 February 2015

Received in revised form

8 October 2015

Accepted

12 October 2015

*Corresponding author

adilafirdaus@gmail.com

Graphical abstract

Abstract

Agile methodologies are well known for early and frequent releases. Besides, these

methodologies also handle requirement changes well without causing delays. However, it

has been noticed that the functional requirements changes can affect the non-functional

requirements (NFRs) such as security and performance. It is also possible that the agile

team is not even aware of these effects causing dysfunctional system. This issue could be

addressed by offering traceability mechanism that helps to trace the effect of functional

requirement changes on the non-functional requirements. Unfortunately, a few researchers

have conducted studies regarding this issue. Thus, this study attempts to present a

Traceability Process Model (TPM) to tackle the issue of tracing NFR especially security and

performance. However, to materialize a full scale TPM, a metamodel is necessary.

Therefore in this paper, we present a metamodel by integrating two existing metamodels.

Then we validate the newly built metamodel with precision and recall methods. Lastly, we

also develop a traceability tool that is based on the proposed metamodel.

Keywords: Agile methodologies, security, performance, traceability, meta model,

propagation

Abstrak

Kaedah Agile terkenal dengan awal dan kerap pengeluaran. Selain itu, ia juga

mengendalikan perubahan keperluan berfungsi dengan baik semasa pembangunan

perisian tanpa menyebabkan kelewatan. Walau bagaimanapun, perubahan keperluan

berfungsi boleh menjejaskan keperluan tidak berfungsi (NFRs). Hal ini mungkin berlaku

kerana ahli kupulan pembinaan perisian tidak menyedari kesan-kesan ini menyebabkan

sistem tidak berfungsi dari segi keselamatan dan prestasi. Isu ini boleh ditangani dengan

menawarkan mekanisme pengesanan yang membantu untuk mengesan kesan

perubahan keperluan berfungsi kepada keperluan yang tidak berfungsi. Malangnya,

hanya terdapat beberapa orang penyelidik yang menyediakan kajian mengenai isu ini.

Oleh itu, kajian ini bertujuan untuk membentangkan Model Proses Kebolehkesanan (TPM)

untuk menangani isu mengesan NFR terutamanya dalam keselamatan dan prestasi.

Walau bagaimanapun, untuk mewujudkan skala penuh TPM, metamodel TPM hendaklah

dibuat terlebih dahulu. Oleh itu dalam kertas ini, kami akan membentangkan metamodel

baru dyang berintegrasi yang dari dua metamodel sedia ada. Kemudian kami

mengesahkan pembinaan metamodel baru dengan kaedah ketepatan / ingat. Akhir

sekali, kami membangunkan alat dan dipetakan dari metamodel itu.

Kata kunci: Kaedah Agil, keselamatan, prestasi, pengesanan, meta model, perambatan

© 2015 Penerbit UTM Press. All rights reserved

116 Adila Firdaus, et al. / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 115–125

1.0 INTRODUCTION

Traceability has worked greatly in traditional software

development process such as waterfall [1], model

driven [1] and started to grow in Agile software

development [2] too.

Traceability in software development process

specifically on Non Functional Requirement (NFR)

could be back tracked since the year of 1996 [3]. As

far as NFR in agile development is concerned, recent

work in 2012 [4], 2013 [5] and 2014 [6] have been

done. The recent research has helped to solve a

number of problems that always arise in software

development process such as tracking the progress of

the system development [7], and process

improvement [8]. After doing literature review on the

traceability and Agile projects, there are still a few

main issues. One of the main problems in tracing NFR in

Agile projects is that the change in functional

requirements (FRs) impact on NFRs. However in this

study, we only focus on two main sub issues which are

propagation and inconsistency issues.

Propagation issue [9-12] is discussed in relation to

model based or object-oriented [13] that leads to

redundancy of traceability process in Agile

environment. It means that the propagation

techniques in most existing traceability include heavy

weighted documents, time consuming and

repeatable flows. Then the inconsistencies are

important to make sure when changes happen. It

could help the team to track back which requirements

are affected. It also must prove how adaptive is the

traceability technique when the new requirements are

added to the existing system. As mentioned earlier, in

this study we consider security and performance and

their relation to propagation and inconsistency.

Meanwhile, security and performance have different

criteria and attributes inside the artefact to be traced.

Due to that, propagation of change must be

consistent and cover the whole different path. All

these scenarios depict the research problems that

need to be solved.

In order to address this issue, there are many

traceability models [14], concepts [15] and

mechanisms [16] that have been proposed in relation

to NFR but none of them are compatible with Agile

projects.

In order to develop a suitable approach, we

develop a metamodel that supports the approach.

This metamodel is explained in detail in this paper. In

the next section we introduce a generic Agile

traceability model (ATM) that becomes the base of

traceability approach in any traceability model in

Agile development process. In Section 3, we explain

the NFR traceability metamodel (NFRTM). While

Section 4 and 5 present the design of Agile NFR

traceability metamodel as the result of two

metamodels integration that have been explained in

Section 2 and 3. The validation of the metamodel is

also presented. Lastly, a tool was built in order to

support this metamodel. This mapping of tool with the

metamodel is explained in Section 6.

2.0 AGILE TRACEABILITY MODEL

The most common tracing scenario for an agile

project is depicted in the ATM [17] shown in Figure 1. It

is interesting to note that ATM has appeared as a result

of the discussions with agile developers and therefore

it reflects developers’ perception of a common

practice. It shows how traceability in ATM was first

established between acceptance tests and user

stories by inserting a reference to one or more users’

history in each of the acceptance tests. This ATM is

elaborated, and is supported by a number of efficient

management tools such as Rally Software [17].

In ATM, testing is a way of tracing. During testing

scenario, when the test cases are executed and

passed, the developer confirm that the code

implements the test [18], and therefore implicitly train

the tracking "tools". This however means that the code

is treated as a single artifact, without visibility

associated with the test case class. This raises the

question whether the level of granularity could be

supported for the traceability purposes of impact

analysis. In order to think about it, we need to know

that how to determine which traceability links are used

to identify potentially impacted sections of the code in

order to plan a proposed change, manage risks, or

estimate effort. However, the level of support required

is not necessarily the most agile projects, especially if

the project is small or moderate. This method is feasible

unless the size of the project is too large, or the lifetime

of the project and staff means that collective

knowledge is sufficient for tracking.

In other context, one can show the suitability of the

product because of the acceptance tests of the

history of individual user. That individual users can

identify whether they are satisfied with the code [19].

However, ATM cannot support the traditional impact

analysis to identify areas of potential that lie within the

code traceability links to plan a proposed change, risk

management, and assessment efforts. One of ATM

advantages is that it provides a very flexible

mechanism anchored around traceability and user

acceptance testing, and does not become brittle

over time.

117 Adila Firdaus, et al. / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 115–125

Figure 1 Example Agile Traceability Model [17]

3.0 NFR TRACEABILITY METAMODEL

NFRs can be traced at different stages in the project

life cycle, and work within and across stages of the life

cycle [20]. In order to be clear about the traceability

of NFRs during the software development process it is

necessary that the NFRs and their relations are

explicitly modelled. A UML based NFR Traceability

Metamodel (NFRTM) in Figure 2 shows the relations of

requirements in scope [19]. In the model, NFRs are

used as part of a group that is part of the model. The

left side of the model, model application, shows the FR

through the various stages of development. Each

model is an aggregation of one or more artefacts for

example use case diagram and a use case model,

using a range model diagram and sequence diagram

to model system analysis, communication diagram,

class diagram and artifact such as a class, association,

inheritance and class diagram. Artefacts and

components of the model in this form give us the

option of decoupling the work of tracing NFRs act or

instance specific development. Right part of the

NFRTM is the model that is used to model the hierarchy

of NFRs and their relations. The decomposition of the

NFRs is supported by non-functional models and can

be achieved by using the goal-driven approach [21].

The items below show the explanation of each

element in the metamodel.

 Association: an element that shows action or tasks

of the association of NFRs with other elements such

as FRs, Projects and Phase.

 FR (every element belonging to the Requirement

Group modelling capabilities built in each

elements of Phase): This refers to the practice field

during requirement development.

 Elements: This refers to the foreign entity of NFRs.

An example of such NFRs would be kept to 2 years

as experienced artifacts in Oracle database

software [19].

 Project: This refers to NFRs which provide a precise

context to the project or development process.

They are decomposition of NFRs,

operationalization that refines the NFR into

solutions in the system that will satisfice the NFR

and Interactivity of NFRs.

 Stakeholder: element that guide the choice of

NFRs associated with the FRs with which the parent

NFR is associated. It also required to determine the

existence of the relation between the Requirement

Model elements.

 Artifacts: It gives the option of decoupling the task

of tracing NFRs from a specific development

practice or paradigm. For example, a use-case

diagram for the use-case model, a domain model

diagram and a system sequence diagram for the

analysis model, a class diagram and a

communication diagram for the design model.

 Requirement model and Requirement Group: FRs

and NFRs are modeled as parts of a requirements

group which is a part of a requirements model.

118 Adila Firdaus, et al. / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 115–125

Figure 2 Example NFR Traceability Model [20]

4.0 AGILE NFR TRACEABILITY METAMODEL

In this section, an integration of agile and NFR

traceability metamodel will be explained in detail. This

integration formed a new metamodel that is Agile NFR

Traceability Metamodel that has been specifically

modified for resolving issues in this research area. As

shown in Figure 3, the user stories, requirements (FR)

and non-functional requirements (NFR) are

decomposed from requirements elements. These three

elements are linked during software development

process. For example, a fast response time NFR

associated with the order that the system should have

the ability to accept orders during run time. Yet,

without an NFR parent of a child element can be

associated with related FRs. An explicit specification of

the NFRs association’s agreements between the FRs is

required. All those specification will be under the

elements of Association. As an example of Association

artifacts, the order is in place before the operation of

the association reacts with faster response time to set

high or low latency.

 Then in the middle of the model, test cases are not

associated only with the requirements but also with the

NFRs. Based on the basic model of agile traceability

models, the code will be traced back to the

requirements based on test cases that associate with

the requirements. Therefore, in this model, we also

need to provide test cases that test NFRs without

adding any code (depending on the kind NFRs). Thus,

the impact of changes happen during the

development will be traced by using test cases. This

test cases will track back FR including NFRs.

Based on Figure 3, the black highlighted box is the

part of NFR Traceability model and the blue

highlighted box is of the Agile Traceability model.

Therefore the overlap in blue and black highlighted

box is the point where they are integrated. The

integration validation is discussed in the next section.

119 Adila Firdaus, et al. / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 115–125

Figure 3 Proposed NFR Agile Traceability Model

5.0 INTERGRATION VALIDATION RESULT

The integration between ATM and NFRTM that form a

new metamodel needs to be validated. This validation

result determines whether the integration is

compatible or not. In this validation phase, Precision

and Recall method [22] are used. Precision has a

mutual relationship with Recall, in which one thing

affects or depends upon another.

 In order to validate, ATM is declared as set A

element that formed AATM set while set B element is

NFRTM set that formed as BNFRTM. Based on Figure 1

and Figure 2, AATM consists of six elements whereas

BNFRTM consists of seven elements. Based on Figure 3,

the integration result shows that there are three

elements that overlap. These elements are

Requirements, FR and NFR. This technique

subsequently uses a primary measurement

ABmeasure. The equation for calculating ABmeasure

utilize both Precision and Recall value to encounter

any problems of misestimating of measurement. The

equation to get ABmeasure will be shown below.

Basically, ABmeasure used four notions that are true

positive (tp), true negative (tn), false positive (fp) and

false negative (fn). However, in this calculation only

three notions will be used. First, tp is the elements that

overlap between AATM set and BNFRTM set that

become a new set of integration elements set,

ABintergrate set. Notion fp is used as the elements of

AATM that do not overlap with BNFRTM set. While fn is

the elements of BNFRTM that do not overlap with

AATM. The calculation and formula for Precision and

Recall are as below:

tp = |ABIntergrate| = 3 (Eq.

1)

fp = | AATM| - |tp| = 6 – 3 = 3 (Eq.

2)

fn =| BNFRTM| - |tp| = 7-3 = 4 (Eq.

3)

The tp has 3 elements that are Requirement, FR and

NFR. While fp consists of 3 elements that are Tests Suite,

Test Case and Code and fn consists of four elements

that are Association, Model, Project and Phase. Based

on these values, Precision and recall could be count;

precision = |tp|/ AATM = 3/6 =0.5 (Eq. 4)

recall = |tp|/ BNFRTM= 3/7 =0.43 (Eq. 5)

From precision value and recall value, ABmeasure is

calculated by this equation as show below.

ABmeasure= 2 x (|tp| /(|fn|+ |tp|) +(|tp| + |fn|)

=2 x (3/13) = 0.46 (Eq. 6)

Consequently, the integrated component model

comprises a balanced average result value, where

 class Class Model

Requirements
User S tories

Test Cases

Test Suite

Code

NFR

Association

Mode l
Pha se

Decompose To

Implements

Contain In

Tests/Trace

Test/Trace

Proj ect

*

1

*

1

*1

1

*

120 Adila Firdaus, et al. / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 115–125

ABmeasure is 0.46.This result is equally distributed with

the average value of precision and recall.

Average Precision and Recall =

 (Precision + Recall) / 2 = 0.5+ 0.43 /2 =0.4646 (Eq.

7)

The average value of precision and recall is 0.46.

Therefore it could be concluded that the integration is

mapped correctly.

6.0 TOOL SUPPORT

A tool called SAgile is developed to support this

metamodel. Figure 4 shows the use case diagram

used to develop the SAgile tool. There are four main

actors: Product Owner (PO), Tester, Security Master

and Developer. Based on the figure, the term

“Manage” in a few use cases such as Manage Project

and Manage User Stories refers to the role that is

related to use cases for add, delete and edit function

in each SAgile related feature. For example, based on

the figure, PO role is connected with Manage Project

use case. It means that the role of PO has the authority

to add, delete and edit the project information using

SAgile tool. SAgile is designed to help the PO, Security

Master, Development team, and tester in managing

the software development project in Agile manner. It

also helps the development team to trace NFRs such

as security and performance features in the system.

Each of the metamodel component in this tool is

discussed in the next section.

Figure 4 Use case diagram for SAgile tool

7.0 MAPPING OF METAMODEL TO TOOLS

In this section, we will show the mapping of Agile NFR

Traceability Metamodel to tools that we develop

known as SAgile. Figure 5 and Figure 6 show the

features inside SAgile tool, representing each

component in the Agile NFR traceability metamodel.

SAgile tool has been improved from the previous work

proposed in FDD [6], [23], [24], Scrum [25], [26] and XP

[27] mainly with security features.

In order to show the mapping between Agile NFR

Traceability Metamodel to tools, an experiment has

been carried out by using SAgile in a small software

development project that is called Hotel

Management System. Basically, this system has a few

user stories that we set and a few security and

performance features that are linked to the user

stories. Some of the user stories are linked with security

features such as SQL injection or Cross Site Scripting

(XSS), some are linked with both NFR security and

 uc Use Case Model

System Boundary

Manage Project

Manage Phase

Manage Re quirement

Manage Use r Stories

Manage Security

Feature

Manage Performance

Feature

Manage As sociation

Manage Test Case

Manage

Dev elopment

Project Manager

Login

Security Master

Tester

Dev eloperSys tem

Product Owner

121 Adila Firdaus, et al. / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 115–125

performance feature and some user stories are not

linked to any of the NFR features. This could shows the

difference indications that we have set in SAgile. Even

though this is a controlled experiment, we tried to

make this project having the same condition with a

real software development project.

Before entering all the features, the Project Manager

(for FDD projects) or Scrum Master (for Scrum project)

must set the project that is called Hotel Management

System belongs to Project element. After that, the

Project Manager must set the iteration (for FDD

project) or backlog (for Scrum project). This SAgile

feature is under the element of Phase. Then, the

Project Manager will pick the developer team, tester

team or perhaps design team if needed. Then, they

have to list out all the user stories. The list of user stories

in one project belongs under Model element. Then the

steps on how to link the user stories to NFR features will

be explained next.

First we look at Figure 5 where there is a list of user

stories. The first user story is in green color and the

second user story is in blue color. The green color user

story indicates that this user story is linked to any

security and performance features while the blue

colored user story shows that it does not link to any

security or performance feature. This different color

indicates to the development team whether a certain

user story is linked to NFRs or not. This feature of SAgile

belongs to the requirements, NFRs and user stories

elements in our proposed metamodel.

Figure 5 User stories

122 Adila Firdaus, et al. / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 115–125

Figure 6 User stories (Security Feature)

 Meanwhile in Figure 6, some of the user stories are

in red color. This actually indicates that the feature

actually is linked to security features only. Each colour

code means diferent linkage of user store(functional

requirement) with NFR. It mean that this feature is

directly associated with “Manage Assocition” use

case/ association element (refer to Figure 4).

 Based on these two figures, we can see three

categories of association element. The first category of

association element is user stories or requirements

elements that do not have linkage with any NFR

features. The second category is user stories or

requirements element that have one one linkage with

one NFR element so in this case, it is one to many

relationship. The third category is user stories or

requirements element that have linkage with two or

more(depends on the project need of tracking how

many NFR types) NFR element, so that is one to many

relationship. This give the flexibility for the devloper to

link as many NFR needed or none at all if not required.

 Then Figure 7 shows the example of performance

and security features that are linked to the user stories.

The checked box gives the development team to

choose any NFR features that should be linked to the

user stories. While this feature is added by the person in

charge of taking care of the system quality or NFR. For

example, we have SQL INJECTION in security Feature

column and LOADING TIME in ‘Performance Feature’

column. All these are added before we linked them to

each user stories. Hence, these features are linked to

“Manage Security” & “Manage Performance” use

cases.

123 Adila Firdaus, et al. / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 115–125

Figure 7 NFRs(Security & Performance)

 Then “Manage Association” use case functions

are not traced only in one way such as: user stories to

NFR, or security to performance but also the linkage

goes backward too. Hence based on Figure 8, the tool

actually displays any user stories that have linked to

any NFR. Also, the tool provides status information so

that the team could know the progress of each user

stories together with NFR.

Figure 8 Association between User stories to NFR

124 Adila Firdaus, et al. / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 115–125

Figure 9 Association between User stories to Test Cases

 Lastly, Figure 9 shows the link or association

between each user story and test cases. This is

important because basic Agile traceability concept

suggests that the trace is not required from design to

architecture. A simple link from user stories to test cases

should complete the task. However, these test cases

are not only limited for user stories but must also be

eqquipped with NFR test cases. For example, test case

one is linked to login user story that requires Sql

injection mitigatiion so the test case case needs to be

checked if the login works properly but also it must

check that any attempt to to do sql injection toward

the login should not be successful. Therefore, this

function is related to “Manage Test” use case.

 Then, one test case is mapped through the

element of test case element but a full test suite

element is the list of test case for each user stories

individually, test case for each linkage of user stories to

NFR features and test case for each NFR features

individually. Finally, all the elements of Agile NFR

Traceability Metamodel has been mapped back to

Sagile tools feature. Therefore it is proven that Sagile

tool are develop based on or guided by the Agile NFR

Traceability Metamodel.

8.0 CONCLUSION AND FUTURE WORK

The main objective of this paper is to design and

evaluated a metamodel that will be the guidance

and benchmark for making an approach in helping

the Agile development team to trace NFRs during

Agile software development. This paper shows the

integration between the Agile traceability model and

Systematics NFR Traceability Model. This paper also

shows the flow of integration of these two metamodels

that produces a new integrated metamodel and

validate the integrated metamodel using Precision

and Recall method. Therefore the integrated

metamodel could be used as a benchmark in

producing an approach that solves the issues of

tracing NFR such as security and performance features

during Agile software development.

In addition, the integration also offers flexibility during

modelling of components. This offers more specific

modelling artefacts and more details of design

models, compared with a model using UML 2.0. This

integrated metamodel has the potential to be a

guideline in designing traceability approach in Agile

software development. The authors suggest that the

future work needs to be done continuously since there

are still some issues as discussed in earlier section in this

paper. Future work includes the study of other NFRs

with respect to traceability.

Acknowledgement

We are thankful to Universiti Teknologi Malaysia (UTM)

and Ministry of Science, Technology and Innovation

(MOSTI), Malaysia for funding this project under Vot

No: 4S113.

References

[1] Breivold, H. P, D. Sundmark, P. Wallin, and S. Larsson 2010.

What Does Research Say about Agile and Architecture.

Fifth International Conference on Software Engineering

Advances 32-37. Retrieved April 1, 2013

(http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?ar

number=5615620).

[2] Abbors, F., J. Lilius, A Joukahaisenkatu, E. Fredrik Abbors,

and D. Truscan. 2009. Tracing Requirements In A Model-

Based Testing Approach. First International Conference on

Advances in System Testing and Validation Lifecycle. 123-

128.

125 Adila Firdaus, et al. / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 115–125

[3] Chung, L., B. A. Nixon. & Yu, E. 1996. Dealing with Change :

An Approach Using Non-functional Requirements.

Requirements Eng. 1: 238-260, 238-260.

[4] Grau, R. 2012. Requirements Engineering in Agile Software

Development. Software for People. Springer Berlin

Heidelberg

[5] Huang, J. C., A. Czauderna, and E. Keenan. 2013. A

Persona-Based Approach for Exploring Architecturally

Significant Requirements in Agile Projects. Requirements

Engineering: Foundation for Software Quality. Springer Berlin

Heidelberg.

[6] Firdaus, A., Ghani, I, and Jeong, S. R. 2014. Secure Feature

Driven Development (SFDD) Model for Secure Software

Development. Procedia-Social and Behavioral Sciences.

129: 546-553.

[7] Cao, L., Mohan, K., Ramesh, B., & Sarkar, S. 2013. Adapting

Funding Processes for Agile IT Projects: An Empirical

Investigation. European Journal of Information Systems.

22(2): 191-205.

[8] VanderLeest, S., and A. Buter. 2009. Escape the Waterfall:

Agile for Aerospace 28th Digital Avionics Systems

Conference.

[9] Grundy, J., J. Hosking, W. B. Mugridge, 2002. Inconsistency

Management for Multiple-View Software Development

Environments. Software Engineering, IEEE Transactions on.

24(11).

[10] Gotel, O., C., Z., and Finkelstein, C.W, 1994. An analysis of

the requirements traceability problem. In: Proceedings of

the First International Conference on Requirements

Engineering, pp. 94–101.

[11] Reshef, A. N., R. F. Paige, J. Rubin, Y. Shaham-Gafni, and D.

S. Kolovos.2005. Operational Semantics for Traceability In

Proceedings of ECMDA Traceability Workshop, ECMDA-TW

’05, pages 8–14

[12] Ajila, S., and A. B. Kaba. 2004. Using Traceability

Mechanisms to Support Software Product Line Evolution. In

Information Reuse and Integration, 2004. IRI 2004.

Proceedings of the 2004 IEEE International Conference on

IEEE. 157-162.

[13] Chen, J. Y., & S. C. Chou. 1999. Consistency Management

in a Process Environment. Journal of Systems and Software.

47(2): 105-110.

[14] Huang, J. C. 2005. Toward Improved Traceability of Non-

Functional Requirements. Proceedings of the 3rd

International Workshop on Traceability in Emerging Forms of

Software Engineering. ACM.

[15] Kassab, M., and O. Ormandjieva. 2006. Towards an Aspect-

Oriented Software Development Model with Tractability

Mechanism. Trese.cs.utwente.nl. 1–8.

[16] A. G. Kourie and B. W. Watson. 2003. Standards and Agile

Software Development. Proceedings of SAICSIT 2003. 1-11.

[17] Huang, J. C., O. Gotel, and A. Zisman. 2012. Software and

Systems Traceability. 2(3). Springer.

[18] Collins, E. F., and V. F. de Lucena. 2012. Software Test

Automation Practices in Agile Development Environment:

An Industry Experience Report. Automation of Software Test

(AST). 7th International Workshop on. IEEE.

[19] Julian, R., and J. Green. 2004. Automating Traceability For

Generated Software Artifacts. Proceedings of the 19th IEEE

International Conference on Automated Software

Engineering. IEEE Computer Society.

[20] Kassab, M., O. Ormandjieva, and Maya Daneva. 2009. A

Metamodel for Tracing Non-functional Requirements.

Computer Science and Information Engineering, 2009 WRI

World Congress on. 7. IEEE.

[21] Huang J. C., R. Settimi, O. BenKhadra, E. Berezhanskaya,

and S. Christina. 2005. Goal Centric Traceability for

Managing Non-Functional Requirements. Proceedings of

the 27th International Conference on Software Engineering.

362-371

[22] Kappel, G., Kargl, H.,Kramler, G., Schauerhuber, A., Seidl, M.

Strommer, M., & Wimmer, M. 2007. Matching Metamodel

with Sematics Systems-An Experience Report.

Datebanksysteme in Business. Technologie und Web

Workshop Proceedings, 5.-6 Marz, Aachen Germany. 38-52.

[23] Firdaus A., Ghani I., and Yasin NIM. 2013. Developing Secure

Websites Using Feature Driven Development (FDD): A Case

Study. Journal of Clean Energy Technologies Issue. 1(4).

[24] Inayat, I., Salim, S. S., Marczak, S., Daneva, M., &

Shamshirband, S. 2014. A Systematic Literature Review on

Agile Requirements Engineering Practices and

Challenges. Computers in Human Behavior.

[25] Azham Z., Ghani I., and Ithnin N. 2011. Security Backlog In

Scrum Security Practices. Software Engineering (Mysec).

2011 5th Malaysian Conference in. 414-417.

[26] Ghani I., Azham Z., and Jeong SR. 2014. Integrating

Software Security into Agile-Scrum Method. KSII Transactions

on Internet and Information Systems (TIIS). 8(2): 646-663.

[27] Azham Z., Ghani I., and Ithnin N. 2011. Security Backlog In

Scrum Security Practices. Software Engineering (Mysec).

2011 5th Malaysian Conference in. 414-417.

