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Graphical abstract 
 

 

Abstract 
 

System scenarios derived from requirements specification play an important 

role in the early software reliability engineering. A great deal of research effort 

has been devoted to predict reliability of a system at early design stages. The 

existing approaches are unable to handle scalability and calculation of 

scenarios reliability for large systems. This paper proposes modeling of 

scenarios in a scalable way by using a scenario language that describes 

system scenarios in a compact and concise manner which can results in a 

reduced number of scenarios. Furthermore, it proposes a calculation strategy 

to achieve better traceability of scenarios, and avoid computational 

complexity. The scenarios are pragmatically modeled and translated to finite 

state machines, where each state machine represents the behaviour of 

component instance within the scenario. The probability of failure of each 

component exhibited in the scenario is calculated separately based on the 

finite state machines. Finally, the reliability of the whole scenario is calculated 

based on the components’ behaviour models and their failure information 

using modified mathematical formula. In this paper, an example related to a 

case study of an automated railcar system is used to verify and validate the 

proposed strategy for scalability of system modeling.  

 

Keywords: Reliability engineering, architecture-based reliability, scenario-

based reliability, component-based software, software quality 

 

Abstrak 
 

Senario sistem yang diperolehi daripada spesifikasi keperluan memainkan 

peranan yang penting didalam kejuruteraan kebolehpercayaan perisian. 

Usaha yang besar telah ditumpukan dalam bidang penyelidikan untuk 

meramal kebolehpercayaan sistem di peringkat awalan rekabentuk sistem. 

Pendekatan yang sedia ada tidak mampu untuk mengendalikan pengiraan 

dan penskalaan kebolehpercayaan senario bagi sistem yang besar. Kertas 

penyelidikan ini mencadangkan memodelkan senario yang merangkumi 

penskalaan yang besar dengan menggunakan bahasa senario yang 

mampu menerangkan senario sistem dengan padat dan tepat dimana akan 

berhasil untuk mengurangkan jumlah senario. Tambahan, penyelidikan ini 

juga mencadangkan strategi pengiraan untuk mencapai aliran senario yang 

lebih baik dan mengelakkan kerumitan pengkomputeran. Senario-senario ini 

secara teknikalnya dimodelkan dan ditafsirkan kepada mesin keadaan 

terhingga dimana setiap mesin keadaan mewakili tingkahlaku komponen 

didalam sesuatu senario. Kebarangkalian kegagalan bagi setiap komponen 

yang ditunjukkan menerusi senario dikira secara berasingan berdasarkan 

mesin keadaan terhingga. Akhirnya, kebolehpercayaan kesemua senario 

dikira menggunakan formula matematik yang telah diubah berdasarkan 

tingkahlaku model komponen dan maklumat berkaitan kegagalan sistem. 

Kajian kes iaitu sistem automatik kereta api telah digunakan untuk 
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mengesahkan strategi yang dicadangkan untuk penskalaan permodelan 

system. 
 
Kata kunci: Kebolehpercayaan kejuruteraan, kebolehpercayaan berasaskan 

senibina, kebolehpercayaan berasaskan scenario, perisian berasaskan 

komponen, kualiti perisian 
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1.0  INTRODUCTION 
 

Failure of software can lead to critical events and fatal 

consequences in safety-critical applications as well as 

in business applications. In order to meet customer 

expectations and needs, the software must have high 

reliability. Increasing demands on software 

functionalities are leading to various issues, which 

include the scalability and degree of concurrency of 

the software system. Customer satisfaction is also a 

serious challenge; thus software reliability engineering 

should live up to today’s complex software systems 

and their specific challenges. 

The reliability approach is formalized to explain the 

failure behaviour within the system. Software reliability 

is defined as the probability that the software system 

will perform a required function correctly (failure free) 

in a stated environment for a specified period of time 

[1, 2]. Due to the heterogeneity of the execution 

environment and the development methodology of 

the current software systems, a failure broadly can 

mean that the software system is unable to deliver the 

expected service and is not capable of resuming its 

service as it was not interrupted. Several kinds of 

failures are possible during service execution, such as 

faults in the implementation of the software 

components, hardware failure and network failure. 

Hardware failure is due to an unreliable hardware 

resource, and network failure is just because the 

message is lost or there is a problem in inter-

component communication [3, 4]. Predicting software 

reliability at design-time enables the software designer 

to identify weak design spots, which would be more 

cost-effective to improve than fixing consequent errors 

at later implementation phases. Therefore, the 

reliability approach must be able to work at the early 

design stage, and particularly during the architectural 

design. 

During the last decade, researchers have proposed 

many approaches to predict reliability depending 

upon architectural design and targeting design-time 

specification. These approaches address different 

problems and challenges. However, extension of a 

scenario specification toward partial behaviour 

modeling is integral part that should be considered to 

predict the reliability based on the architecture [5, 6]. 

Except for certain approach [7], which we will discuss 

in the related work, most of the current approaches [8-

17] compute the reliability based upon large 

behavioural models, without taking into account the 

scalability problem (e.g., dealing with applications 

consist of a large number of components). 

To address the problem of scalability, a partial 

behaviour modeling approach is presented in this 

paper using expressive scenario specification 

language and finite state machine. The scenario 

language describes system scenarios in a compact 

and concise manner that enables the system engineer 

to model the system in fewer scenarios. The finite state 

machine explains the basic states of the scenario and 

helps in computation along limited space so as to 

avoid the computational complexity. 

The rest of the paper is divided into six sections. 

Section 2 describes the research background. Section 

3 describes in brief the proposed strategy. The details 

of behaviour modeling are given in Sections 4. The 

reliability calculation strategy is given in Section 5. 

Furthermore, Section 6 is about related work and it 

compares and classifies the current works based on 

the proposed strategy. Section 7 concludes the 

research and identifies future research directions. 

 

 

2.0  BACKGROUND 
 

This section briefly defines and reviews the concepts of 

system scenarios and behaviour models, on which we 

base our modeling and calculation of system 

scenarios. The running example that used to illustrate 

the different proposed aspects is also introduced. 

Finally, an outline is given which illustrates the 

proposed strategy. 

 

2.1  System Scenarios and Behaviour Models 

 

Two common ways for describing and documenting 

system requirements specification have been found 

very useful in practice, particularly at earlier stages of 

system design. One is scenarios based that describes 

how the different components in the system interact, 

for example, UML sequence diagrams (SD), and 

Message Sequence Charts (MSC) [18]. The other way is 

state description language that describes and defines 

conditions and constraints among the internal states of 

individual components, for example, Object Constraint 

Language (OCL) [19], and VDM Specification 

Language (VDM-SL) [20]. 

Live Sequence Charts (LSC) [21] is scenario based 

language that provides syntactic and semantic 

support both ways for behaviour modeling. It was 

introduced to overcome the shortcomings of SD and 
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MSC by adding liveness. LSC equipped to describe 

alternative and repetitive behaviour, synchronous, 

asynchronous, data values on messages, and symbolic 

instances. In addition, there are characteristics that 

enable making explicit causality relations between 

different behaviours by means of conditional, 

triggered and pre-empted behaviour. LSC describes 

system scenarios in two types of charts: an existential 

live sequence charts (eLSC) and a universal sequence 

charts (uLSC). eLSC are more like MSC and SD [22]. The 

eLSC scenarios define an example of system 

behaviour, and must be satisfied through at least one 

system run. The uLSC scenarios describe a rule that all 

system behaviour is expected to satisfy; they 

encapsulate a conditional behaviour as action and 

reaction, using a pre-chart and main chart: once the 

pre-chart occurs, the main chart must occur. The 

reason being that during the requirements obtained 

from the domain knowledge, there is a progressive 

movement from existential statements, in the formula 

of examples and use-cases to universal statements in 

the formula of declarative properties. Most important 

point of uLSC scenarios, they document the last 

confirmation of the system requirements specification. 

Thus, behaviour models generated from them are 

more accurate than the behaviour models build from 

other charts. 

In this research work, the system requirements 

specification is described by extended uLSC charts 

and OCL. The extended uLSC is part of this paper’s 

contribution (defined in section 4.1). Then these 

specifications are translated to a set of finite state 

machines (FSM). FSM are simply  directed  graphs,  with  

nodes  denoting  states, and  arrows  (labelled  with  

the  triggering  events  and  guarding  conditions)  

denoting transitions [23]. FSM describes the dynamic 

behaviour of system in a sequential flow. Most of 

behaviour modeling approaches converts FSMs to 

other type of state representation graphs such as 

statecharts [23], Labeled Transition System (LTS) [24], 

and Modal Transition System (MTS)[25], in order to 

expressively allow for more compact representation of 

large and complex software systems. However, in this 

research work, calculation of reliability was built upon 

the basic behaviour models without the need of 

integration to complex behaviour models. 

 

2.2  Running Example 

 

An ongoing example is used in this paper to illustrate 

the proposed strategy. The automated railcar system 

presented in [26], and already used in our previous 

work [27] is selected as the ongoing example. Because 

our main goal is to improve our previous work by 

achieving more scalability via reducing number of 

scenarios, thus, use of this example can ease the 

comparison. The railcar system consists of six terminals 

located on a cyclic path, and each pair of adjacent 

terminals is linked by two rail tracks. Many railcars are 

existed to carriage passengers between terminals. A 

number of scenarios have been depicted in the 

previous work [27], for ease of illustration, in this paper 

our focusing will be on two of them: scenario of car 

approaching to the terminal with stopping at that 

terminal (scenario 1 in Figure 1), and scenario of car 

approaching to the terminal with passing the terminal 

(scenario 2 in Figure 1). The scenarios consisted of four 

components named: proxSensor, cruiser, car, and 

carHandler. The details of the scenarios are depicted 

in Figure 1. 

 

 
Figure 1 Portion of Railcar system specifications 

 

 

3.0  THE PROPOSED STRATEGY 
 

The proposed strategy has four steps as detailed 

below. These steps are distributed into two phases, 

behaviour modeling (Section 4.0) and reliability 

calculation (Section 5.0). 

 Describing of system scenarios using extended 

uLSC notations. 

 Annotation of scenario specification using system 

constraints 

 Translation of annotated scenarios to FSMs. 

 Determination of components’ criticalities. 

 Calculation of scenarios reliability. 

The strategy starts by describing system scenarios 

using enhanced scenario language and annotate 

these scenarios by system constraints. After scenarios 

preparation, we take a step-by-step approach. First, a 

finite state machine is constructed for each 

component instance as part of the scenario; the 

failure probability associated to this instance is 

calculated by treating this part of the scenario 

separately. Hence, the computation conducts along 

limited space to avoid the computation complexity. 

The failure probability of the components reveals the 

criticality of those components regarding to the 

scenario and then the system. Second, the probability 

failure and the related reliability of the whole scenario 

are calculated based the sequences of the finite state 

machines. Tackling scenarios independently in 

reliability engineering potentially helps in the 

construction of the system global behaviour model 

without the need the system’s internal states 

http://en.wikipedia.org/wiki/Sequential_logic
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(components interactions), in turn, avoiding the state 

space explosion problem. Figure 2 depicts the strategy 

phases and steps. 

 

 
Figure 2 The proposed strategy phases and steps 

 
 

Modeling phase focuses on moving from scenario-

based specification to state based specification. 

Unlike most of reliability approaches, in the modeling 

we move from system specification explicitly. Most 

approaches rely on Markov notations directly (state 

based specification) as a primary modeling notation 

without describing how the states generated. In the 

calculation phase, the calculation conducts partially. 

Given the state specification of the scenarios, the 

calculation adopts mathematical formula to tackle 

the state space partially. The following sections 

describe the phases in details.  

 

 

4.0  BEHAVIOUR MODELING 
 

By documenting the behaviour of the system in two 

different and complementary ways of requirements 

specification (as scenarios notations (e.g. uLSC) and 

constraints (e.g. OCL)), the architects of the system are 

forced to truly understand the requirements 

specification and the behaviour implied by them. In 

Figure 1, the requirements specifications are 

documented by uLSC. As mentioned before, the 

characteristic of uLSC compared to eLSC and other 

scenario notations, they give the last confirmation of 

the requirements specification. Unfortunately, use of 

uLSC as single scenarios notation produces increase 

number of scenarios (each action and its reaction 

documented separately). In case of large software 

systems there is need for a scenario language that can 

reduce the number of the scenarios. Thus, the uLSC 

notations are extended to hold more than one 

scenario specifications, by adopting constructs from 

UML 2.0 SD[28]. 

 

4.1  Moving from uLSC to Extended uLSC 

 

In the scenario description, an extended form of uLSC 

is used, which includes additional constructs. Part of 

these constructs is adopted from UML 2.0 SD such as 

interaction combined fragment with alt operator. The 

idea was to constructs an uLSC that is able to combine 

more than one uLSC bases on the similarity between 

triggers. After unifying the pre-chart of scenarios, the 

main charts are combined via a combined fragment 

notation with alt operator.  A combined fragment is 

expression of an interaction by a box contains a subset 

of messages and is defined by an operator (e.g. alt), 

which states the connection between the fragment's 

messages.  An alt is an operator which denotes that 

the messages within the fragment are alternatives to 

each other.  Each alternative has a guard and 

contains the interaction that occurs when the 

condition for that guard is met. Only one of the 

conditions can occur at the same time. An 'alt' 

combined fragment is similar to nested if-then-else and 

switch/case constructs in programming languages. 

Conditions in the guards can be described as implied 

triggers. Figure 3 depicts the extension idea by 

drawing a single uLSC holding scenario 1 and scenario 

2 of the running example. 

 

 
 

Figure 3 The extended uLSC combing scenario 1 and 

scenario 2 of railcar system 

 

 

4.2  Annotate the Scenario Specification by System 

Constraints 

 

The general purpose is to construct a FSM for each 

component instance within the scenario, therefore, 

information that reveals the component states 

separately is needed. As the proposed work intended 

for early design stages (i.e. when complete information 

about the behaviour of a component is not available), 

there is no option other than to leverage on system 
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constraints and their state variables as basic 

information sources to depict the component's 

behavior precisely. The constraints and their state 

variables (called as a set, state vector) are already 

provided as domain knowledge related to early 

design specification. For example, the state vector of 

the railcar system based on the constraints shown in 

Figure 1 is: < “idle, cruising, arrival”>. 

Component state vector is a vector holding a state 

variable(s) elicited from the system state vector and its 

values represent the component state before and 

after each operation (message). The component state 

vector is employed in the strategy to annotate the 

scenario specification based on the system constraints. 

The following steps give details of how component 

state vector elicited and then how it can be 

employed to annotate the scenario specifications. 

  

i) Elicit component’s state vector:  

 

Component state vector uses as pre- and post-

conditions to component’s operations invocation 

(incoming and outgoing messages). Therefore, in order 

to elicit component state vector, following procedures 

are needed. Firstly, the determination of component’s 

incoming and outgoing messages. Secondly, the 

addition of each state variable appears in the 

preconditions of the outgoing messages to 

component’s state vector. Finally, the addition of 

each state variable modified by the component’s 

incoming or outgoing messages to the component’s 

state vector. The previous procedures can be defined 

formally as follows: 

 

Definition 1:  (Sets of component’s incoming and 

outgoing messages):  
Let compom and compim be the sets of outgoing and 

incoming message of the component i (compi) 

respectively.  compi extended uLSC , a message 

mi   extended uLSC will be added to the compom iff 

mi sent by the compi to other components within the 

extended uLSC; and mi will be added to the compim iff 

it was received by compi from other components 

within the extended uLSC. 
 

Definition 2: (State vector and pre-conditions):  

Let compsv be a component’s state vector.  mi
compom  if   mi matching opname   system 

constraints, then the state variable that appear in the 

preconds of the opname will be added to the compsv iff is 

not already existing in compsv. 

 

Definition 3: (state vector and the modified variables): 
 mi(compom   compim ) if   mi matching opname 

  system constraints, and the value of preconds of the 

opname does not matching the value of  postconds, then 

the state variables related to the preconds or postconds  

will be added to the compsv iff does not already 

existed in compsv. 

For example, according to these definitions and the 

railcar constraints, the state vector of the car 

component is < idle, cruising, arrival >, cruiser: < idle, 

cruising>, the proxSensor: < cruising, arrival >, and the 

carHandler component is: < arrival >. 

 

ii) Scenario annotation and propagation: 

 

After the elicitation of the state vector of each 

component, annotation and propagation of the 

component’s within the scenario can be conducted 

similar to the techniques in [29] and [30]. The goal of 

the annotation procedure is to enrich component 

information by defining the system state from a 

component’s perspective before and after execution 

of each operation depicted in the scenario. In this 

procedure, firstly, annotation parameters are built 

based on variables of the state vector and their values 

in the system constraints (e.g. see Figure 4 below). The 

annotation values before and after each operation is 

determined according to the system constraints. Some 

operations (messages) may not be given a 

specification specifying system state before or after; 

so, secondly, the propagation process is used to 

propagate unknown values (?) in (before and after) 

the annotations. Propagation is executed using the 

technique in [29]. Figure 4(a) shows annotation result 

of our running example and Figure 4(b) shows the 

annotation result after the propagation. 

 

 
Figure 4 (a) Annotation result of railcar example (b) The 

annotation after propagation 

 
 
3.3  Translate the Annotated Scenario to FSMs 

 

Once the scenarios are prepared (annotated and 

propagated), the first step is to generate a set of FSMs. 

This process starts through the construction of a FSM for 

each component instance within the extended uLSC 

scenario. Given an extended uLSC m, let 
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(S,S ,S ,T)0
iFm b  be a FSM synthesized from instance i in 

m. The basic idea is to construct a state for each state 

vector value. Thus, S is the set of states corresponding 

to the state vector values along the instance. S0 

contains exactly the state corresponding to the first 

state vector value. Sb contains state corresponding to 

the branching state vector value if it existed (first state 

vector value in the combined fragment box). T is a 

transition relation labelled with associated messages 

sent or received by the instance. Figure 5, shows FSMs 

for railcar system components translated from the 

scenario in Figure 4. 

 

 

 
Figure 5 The obtained FSMs of the railcar system components 

 

 

5.0  RELIABILITY CALCULATION 
 

Once the FSMs of the scenario are given, scenario’s 

reliability can be calculated. The calculation builds 

upon mathematical formula tackling each FSM 

separately to avoid the computation complexity. The 

following sub sections defines calculation formulas and 

discusses calculation results. 
 

5.1  Calculation Formulas and Failure Information 

 

Let comp1, comp2,…, compK denote the K 

components participated in scenario Scj . Let fi be the 

failure probability of the component compi and 

assume fi’s to be known. Let ni be the number of 

invocation of component i within the scenario Scj. 

Recall that fij is the probability that the ith component 

(compi) fails in the jth scenario (Scj). The value of fij can 

be computed by [31]: 

 

1 (1 ) in

ij if f                           (Eq.1) 

 

From Equation (1), assuming that component failure 

probabilities are independent, the scenario failure 

probability fSc j can be derived as: 

1

1 (1 ) i

j

K
n

Sc i

i

f f


                             (Eq. 2) 

Design specifications depicted by our scenario 

description notation can reveal both structural and 

behavioural inconsistencies among component 

interaction. However, identification and classification 

of these inconsistences are beyond the scope of this 

paper. In particular, they reveal directional errors as 

well as mismatches among interface signatures and 

pre- and post-conditions, more details about such 

type of errors can be found in [32]. However, all these 

errors are related to components required and 

provided services which implemented via component 

operations, thus, all these types of errors are 

abstracted and encapsulated in operations’ failure 

probability. In the previous work [27], the failure 

probability of the whole component is used as failure 

information required as  an input for equation (2) in 

order to calculate reliability of scenario. In this paper, 

to be more accurate, the failure probability of 

operations will be used as alternatives to component 

failure. This use due to the fact that component failure 

estimates or calculates as a function of the entire 

component states, while in each interaction moment, 

only specific set of operations participates in the 

failure. 

By observing to the scenario descriptions, for 

example, the operations that a component executes 

at each specific time can be identified exactly. 

Following this line of thinking, fi  can be replaced with 

a set of operation failure probabilities lf i , where 

,...,1l l ln  is the index of the operation within the 

component. Equation (1), in this case, becomes: 

 

1

1 (1 )
nl

l

ij i

l l

f f


                                   (Eq. 3) 

 
Failure information needed now is the probabilities 

of failure of the operation such as the information 

shown in Table 1 which is related to the operations 

invoked in the railcar system. As mentioned previously, 

the failure information will be tackled abstractly, 

therefore, this paper’s illustration is not limited to 

specific type of error, a preliminary estimate of lf i , 
could be, for example, some approaches [33] [34] 

derived such errors by analyzing the dynamic 

complexity and dynamic connectors coupling and 

severity levels of their failures of every component and 

its operations. The number of nodes and transitions in 

the FSM of the component can be used as other 

parameters of the complexity assessments. In case of 

using UML, statecharts diagrams and Timed Sequence 

Diagrams may reveal information about the length of 

component’s busy period which can also be utilized as 

parameters of failure rate estimation [31]. 
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Table 1 Failure information of each operation in the railcar 

scenario 

Operation name Probability of failure  

alert100 0.002 

arriveReq 0.01 

arriveAck 0.004 

alertStop 0.004 

disengage 0.001 

stop 0.001 

passTerminal 0.004 

 

 

From Equation (3), assuming that component failure 

probabilities are independent, the scenario failure 

probability fSc j defined in equation (2) can be 

updated by replacing the new formula of fij defined in 

equation (3); thus fSc j will be: 

 

11

1 (1 )
n

j

lK
l

Sc i

i l l

f f
 

                          (Eq. 4) 

 
Note that equation (3) and (4) are only feasible 

under the assumptions that: an operation’s failure 

probability does not depend on the failure 

probabilities of other operations and the scenario is a 

sequential structure. Unfortunately, important 

enhancement made by extend uLSC is the propose of 

branching notation, this in the most cases will produce 

branching scenarios (e.g. see FSMs of car and cruiser 

components in Figure 4); thus, for more accurate, in 

case of branching scenario, for equation (3) and (4) 

the calculation can be done by considering each 

branch as a sequential structure, and then taking the 

mean of the branches before the subtraction from 1. 

The scenario reliability can be defined as the 

probability of not being in a failure state; thus reliability 

of scenario Scj is computed as: 

 

1
Sc jj

ScR f                            (Eq. 5) 

 
5.2  Results of Calculation and Discussion 

 

Once FSMs of the scenario have been derived from 

the extended uLSC where, each FSM represents a 

component instance, the next step is to calculate the 

reliability of the scenario.  Using Equation (3) and 

values of the expected failure of the operations 

invoked by the component, the probability of 

component failure is calculated. By calling back our 

railcar system the probabilities of failure of the 

components proxSensor, cruiser, car, and carHandler 

are: 0.0059920, 0.002995, 0.0208480, and 0.0139600 

respectively. These values denote to the criticality of 

these components regarding to the scenario and then 

the system. Applying Equation (4), if the branching 

structure of the components is not considered, the 

probability of failure of the whole scenario will be 

0.050818. Based on this failure probability and using 

Equation (5), the reliability of the scenario is 0.949182. 

By considering the branching structure of cruiser and 

car components (taking mean of branches failure) 

probability of failure of the scenario will be 0.047004 

and thus reliability of the scenario is 0.952996. The 

difference between the reliability values in the case of 

considering versus ignoring the branching structure is 

0.003814. This difference in some applications, may 

seems relatively small, however, in the case of long 

branches, the difference can be significant. Thus, 

considering the weighted mean value would be 

deemed helpful. Furthermore, a weighted mean that 

takes into account the number of states in the 

branches represent a more accurate model of the 

actual system. 

Summing up, the scenario reliabilities calculation 

based on the system requirements specifications have 

been discussed. These specifications were modeled 

through a scalable scenario description (the scenario 

modeled in a compact and concise manner). After 

the scenarios calculation stage, the system global 

behaviour model can be constructed in hierarchical 

(e.g. see [7]) or flat (e.g. see [24]). In the global 

behaviour model of the system, the scenarios can 

represent the basic elements as alternative to the 

components potentially reducing the complexity of 

the system global structure (e.g. a software system 

may consist hundreds of components). Each scenario 

will represent node in the structure. The relation and 

connections among these nodes (scenarios) will be 

determined based on the information of the system 

specification (e.g. eLSCs and system documents) and 

operational profile artifact, which can describe the 

related and unrelated behaviours. After global model 

construction, reliability of the system can be 

computed using any reliability technique [10, 35] or 

formula [13, 36] that provided to utilize system 

structures and behaviour in the prediction. 

 

 

6.0  RELATED WORK 
 

During the last decade, researchers proposed several 

approaches to predict reliability at the design-time 

utilizing the architectural design of the software system 

and the interaction scenarios of components; these 

approaches address different problems and 

challenges. For the sake of brevity, a brief overview of 

the approaches of greatest interest to the scope of 

this paper’s work is provided. The approaches 

classified to two groups, bases on their closeness to this 

paper’s work. 
The first group comprises the approaches [7, 24, 31, 

37, 38], which can be regarded as more closed to the 

proposed work. Roshandel et al. [37], show how the 

component behavioural views can be modeled by a 

Quartert model which is used to model four views 

named interface, static view, dynamic view, and 

interaction protocol. These views are used to classify 

the architectural defects. The significant defects are 

used in the reliability prediction technique as failure 
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states. The architecture analysis is used based on 

Quartert views to reveal the potential problems of 

design and implementation. Result of architecture 

analysis are built based on Quartert views of this work 

and can be used as input to the proposed strategy in 

this paper. However, in the work [37] and [24] the total 

behaviour of system is represented by a flat model. 

The flat model as reported in [7] suffers from scalability 

problem. The main reason for these problems is the 

number of states which is also known as state 

explosion problem, exactly, in the case of large 

systems. Authors of [7] proposed extension to the work 

in [37] by modeling and calculating system scenarios 

hierarchically. The hierarchical method can provide 

solution in the case of large systems, especially when 

the synchronization nature of the system 

implementation is taken into account [6]. However 

language of scenario description is message 

sequence charts in classical form. Thus, the description 

of system scenarios in a compact and concise manner 

toward archiving  scalability is not addressed by the 

approaches in [7] and even in[38]. Moreover, there is 

no new calculation strategies that consider 

computation complexity are presented in most of 

these approaches. 

In the second group the approaches [3, 4] address 

the utilization of usage profiles and the component 

environment, to predict the system reliability in the 

deployment environment of the system. In [4] the 

previous usage information which is named as 

architectural kens and defined as a parameters store 

the error probability of component, while there are no 

specifications about how the values are obtained. The 

work in [3] extends the ideas in [4] by  utilizing the 

usage profiles. Furthermore, this approach includes 

hardware factor (failures caused by communication 

links or hardware) in the reliability calculation. The 

usage-profile is built upon parameter dependencies. 

The parameters dependencies concept is about the 

influence of the input values on the control and data 

flow. These values are derived from the usage 

scenarios by domain expert and treated as a 

stochastic expression and the probability distribution of 

the failure. However, unlike our proposed work, these 

approaches focus on the structural aspects rather 

than the behavioural aspects of the component 

interactions. 

Comparatively, our work enhances the work of the 

first group, that is, by adding more scalability by using 

extended scenario description language that 

describes the system scenarios in a compact and 

concise manner. Furthermore, our work provides 

promising scenario calculation strategy, treated the 

calculation partially. In fact, unlike most of the first 

group approaches (i.e. lack of step-by-step 

traceability), our strategy forces traceable mapping 

from system specification to the reliability calculation 

through explicitly processes. Compared to the second 

group, our focuses on both behavioural and structural 

aspects while these approaches focus on the 

structural aspects rather than the behavioural. 

Table 2 summarizes our findings regarding current 

approaches for design-time reliability engineering. A 

check mark in parenthesis means that an approach 

partially supports the feature. 

 

 

7.0  CONCLUSION AND FUTURE WORK 
 

In this paper, we presented a strategy for scalable 

modeling and calculation of scenarios reliability based 

on the system requirements specification. The work is 

applicable to the early design stage of the software 

life cycle. The major contribution lies on modeling 

scenarios in a scalable way by using a scenario 

language that describes system scenarios in a 

compact and concise manner potentially results in 

reduced number of scenarios. Another contribution lies 

in the calculation, where the well-known “divide and 

conquer” strategy is followed through the scenarios 

reliability calculation. Each part of the scenario is 

tackled separately in the calculation to achieve better 

traceability and avoid computational complexity in 

the case of having scenarios consisting of a large 

number of components. A finite state machine is used 

to truncate each scenario into its basic elements 

(component instances) and to reveal their internal 

states. In the reliability calculation, the failure 

probabilities of the operations within the component 

and operations’ invocations that exhibited in the 

scenarios are utilized as base for the scenario reliability. 

In summary, the proposed approach may enhance 

the ability of the current reliability approaches to deal 

with large software systems. 

There are several open issues for future work. It is 

notable that the scenario modeling and calculation 

presented here can be adopted by most of current 

approaches of reliability prediction. However, the 

combination of scenarios and their related 

assumptions (e.g. synchronization of execution among 

scenarios and within the one scenario) it can enhance 

more to match the capability of current software 

technology. Therefore in future studies, there is an 

intention to develop a system level reliability approach 

that can utilize the proposed scenarios’ treatments. 

Also, there is a plan to develop a mechanism for 

detecting any conflicts among scenarios; furthermore 

the automation of this process.  

 



147       Awad Ali, Dayang N. A. Jawawi & Mohd Adham Isa / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 139–148 

 

 

Table 2 Current approaches for design-time reliability 
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Singh et al. [31] √ × (√) × 

Rodrigues et al. [24] √ × × × 

Roshandel et al. [37] √ (√) × × 

M. Palviainen et al. [17] √ √ × × 

L.Cheung et al. [7] √ (√) (√) √ 

D. Cooray et al. [38] √ (√) (√) × 

Our work √ √ √ √ 

G
ro

u
p

 B
 

Reussner et al. [4] (√) (√) × × 

Brosch et al. [3] (√) (√) × × 
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