

77:9 (2015) 139–148 | www.jurnalteknologi.utm.my | eISSN 2180–3722 |

Jurnal

Teknologi

Full Paper

STRATEGY FOR SCALABLE SCENARIOS MODELING AND

CALCULATION IN EARLY SOFTWARE RELIABILITY

ENGINEERING

Awad Alia,b, Dayang N. A. Jawawia*, Mohd Adham Isaa

aDepartment of Software Engineering, UTM, Johor, Malaysia
bUniversity of Kassala, Kassala, Sudan

Article history

Received

2 February 2015

Received in revised form

8 October 2015

Accepted

12 October 2015

*Corresponding author

dayang@utm.my

Graphical abstract

Abstract

System scenarios derived from requirements specification play an important

role in the early software reliability engineering. A great deal of research effort

has been devoted to predict reliability of a system at early design stages. The

existing approaches are unable to handle scalability and calculation of

scenarios reliability for large systems. This paper proposes modeling of

scenarios in a scalable way by using a scenario language that describes

system scenarios in a compact and concise manner which can results in a

reduced number of scenarios. Furthermore, it proposes a calculation strategy

to achieve better traceability of scenarios, and avoid computational

complexity. The scenarios are pragmatically modeled and translated to finite

state machines, where each state machine represents the behaviour of

component instance within the scenario. The probability of failure of each

component exhibited in the scenario is calculated separately based on the

finite state machines. Finally, the reliability of the whole scenario is calculated

based on the components’ behaviour models and their failure information

using modified mathematical formula. In this paper, an example related to a

case study of an automated railcar system is used to verify and validate the

proposed strategy for scalability of system modeling.

Keywords: Reliability engineering, architecture-based reliability, scenario-

based reliability, component-based software, software quality

Abstrak

Senario sistem yang diperolehi daripada spesifikasi keperluan memainkan

peranan yang penting didalam kejuruteraan kebolehpercayaan perisian.

Usaha yang besar telah ditumpukan dalam bidang penyelidikan untuk

meramal kebolehpercayaan sistem di peringkat awalan rekabentuk sistem.

Pendekatan yang sedia ada tidak mampu untuk mengendalikan pengiraan

dan penskalaan kebolehpercayaan senario bagi sistem yang besar. Kertas

penyelidikan ini mencadangkan memodelkan senario yang merangkumi

penskalaan yang besar dengan menggunakan bahasa senario yang

mampu menerangkan senario sistem dengan padat dan tepat dimana akan

berhasil untuk mengurangkan jumlah senario. Tambahan, penyelidikan ini

juga mencadangkan strategi pengiraan untuk mencapai aliran senario yang

lebih baik dan mengelakkan kerumitan pengkomputeran. Senario-senario ini

secara teknikalnya dimodelkan dan ditafsirkan kepada mesin keadaan

terhingga dimana setiap mesin keadaan mewakili tingkahlaku komponen

didalam sesuatu senario. Kebarangkalian kegagalan bagi setiap komponen

yang ditunjukkan menerusi senario dikira secara berasingan berdasarkan

mesin keadaan terhingga. Akhirnya, kebolehpercayaan kesemua senario

dikira menggunakan formula matematik yang telah diubah berdasarkan

tingkahlaku model komponen dan maklumat berkaitan kegagalan sistem.

Kajian kes iaitu sistem automatik kereta api telah digunakan untuk

140 Awad Ali, Dayang N. A. Jawawi & Mohd Adham Isa / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 139–148

mengesahkan strategi yang dicadangkan untuk penskalaan permodelan

system.

Kata kunci: Kebolehpercayaan kejuruteraan, kebolehpercayaan berasaskan

senibina, kebolehpercayaan berasaskan scenario, perisian berasaskan

komponen, kualiti perisian

© 2015 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

Failure of software can lead to critical events and fatal

consequences in safety-critical applications as well as

in business applications. In order to meet customer

expectations and needs, the software must have high

reliability. Increasing demands on software

functionalities are leading to various issues, which

include the scalability and degree of concurrency of

the software system. Customer satisfaction is also a

serious challenge; thus software reliability engineering

should live up to today’s complex software systems

and their specific challenges.

The reliability approach is formalized to explain the

failure behaviour within the system. Software reliability

is defined as the probability that the software system

will perform a required function correctly (failure free)

in a stated environment for a specified period of time

[1, 2]. Due to the heterogeneity of the execution

environment and the development methodology of

the current software systems, a failure broadly can

mean that the software system is unable to deliver the

expected service and is not capable of resuming its

service as it was not interrupted. Several kinds of

failures are possible during service execution, such as

faults in the implementation of the software

components, hardware failure and network failure.

Hardware failure is due to an unreliable hardware

resource, and network failure is just because the

message is lost or there is a problem in inter-

component communication [3, 4]. Predicting software

reliability at design-time enables the software designer

to identify weak design spots, which would be more

cost-effective to improve than fixing consequent errors

at later implementation phases. Therefore, the

reliability approach must be able to work at the early

design stage, and particularly during the architectural

design.

During the last decade, researchers have proposed

many approaches to predict reliability depending

upon architectural design and targeting design-time

specification. These approaches address different

problems and challenges. However, extension of a

scenario specification toward partial behaviour

modeling is integral part that should be considered to

predict the reliability based on the architecture [5, 6].

Except for certain approach [7], which we will discuss

in the related work, most of the current approaches [8-

17] compute the reliability based upon large

behavioural models, without taking into account the

scalability problem (e.g., dealing with applications

consist of a large number of components).

To address the problem of scalability, a partial

behaviour modeling approach is presented in this

paper using expressive scenario specification

language and finite state machine. The scenario

language describes system scenarios in a compact

and concise manner that enables the system engineer

to model the system in fewer scenarios. The finite state

machine explains the basic states of the scenario and

helps in computation along limited space so as to

avoid the computational complexity.

The rest of the paper is divided into six sections.

Section 2 describes the research background. Section

3 describes in brief the proposed strategy. The details

of behaviour modeling are given in Sections 4. The

reliability calculation strategy is given in Section 5.

Furthermore, Section 6 is about related work and it

compares and classifies the current works based on

the proposed strategy. Section 7 concludes the

research and identifies future research directions.

2.0 BACKGROUND

This section briefly defines and reviews the concepts of

system scenarios and behaviour models, on which we

base our modeling and calculation of system

scenarios. The running example that used to illustrate

the different proposed aspects is also introduced.

Finally, an outline is given which illustrates the

proposed strategy.

2.1 System Scenarios and Behaviour Models

Two common ways for describing and documenting

system requirements specification have been found

very useful in practice, particularly at earlier stages of

system design. One is scenarios based that describes

how the different components in the system interact,

for example, UML sequence diagrams (SD), and

Message Sequence Charts (MSC) [18]. The other way is

state description language that describes and defines

conditions and constraints among the internal states of

individual components, for example, Object Constraint

Language (OCL) [19], and VDM Specification

Language (VDM-SL) [20].

Live Sequence Charts (LSC) [21] is scenario based

language that provides syntactic and semantic

support both ways for behaviour modeling. It was

introduced to overcome the shortcomings of SD and

141 Awad Ali, Dayang N. A. Jawawi & Mohd Adham Isa / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 139–148

MSC by adding liveness. LSC equipped to describe

alternative and repetitive behaviour, synchronous,

asynchronous, data values on messages, and symbolic

instances. In addition, there are characteristics that

enable making explicit causality relations between

different behaviours by means of conditional,

triggered and pre-empted behaviour. LSC describes

system scenarios in two types of charts: an existential

live sequence charts (eLSC) and a universal sequence

charts (uLSC). eLSC are more like MSC and SD [22]. The

eLSC scenarios define an example of system

behaviour, and must be satisfied through at least one

system run. The uLSC scenarios describe a rule that all

system behaviour is expected to satisfy; they

encapsulate a conditional behaviour as action and

reaction, using a pre-chart and main chart: once the

pre-chart occurs, the main chart must occur. The

reason being that during the requirements obtained

from the domain knowledge, there is a progressive

movement from existential statements, in the formula

of examples and use-cases to universal statements in

the formula of declarative properties. Most important

point of uLSC scenarios, they document the last

confirmation of the system requirements specification.

Thus, behaviour models generated from them are

more accurate than the behaviour models build from

other charts.

In this research work, the system requirements

specification is described by extended uLSC charts

and OCL. The extended uLSC is part of this paper’s

contribution (defined in section 4.1). Then these

specifications are translated to a set of finite state

machines (FSM). FSM are simply directed graphs, with

nodes denoting states, and arrows (labelled with

the triggering events and guarding conditions)

denoting transitions [23]. FSM describes the dynamic

behaviour of system in a sequential flow. Most of

behaviour modeling approaches converts FSMs to

other type of state representation graphs such as

statecharts [23], Labeled Transition System (LTS) [24],

and Modal Transition System (MTS)[25], in order to

expressively allow for more compact representation of

large and complex software systems. However, in this

research work, calculation of reliability was built upon

the basic behaviour models without the need of

integration to complex behaviour models.

2.2 Running Example

An ongoing example is used in this paper to illustrate

the proposed strategy. The automated railcar system

presented in [26], and already used in our previous

work [27] is selected as the ongoing example. Because

our main goal is to improve our previous work by

achieving more scalability via reducing number of

scenarios, thus, use of this example can ease the

comparison. The railcar system consists of six terminals

located on a cyclic path, and each pair of adjacent

terminals is linked by two rail tracks. Many railcars are

existed to carriage passengers between terminals. A

number of scenarios have been depicted in the

previous work [27], for ease of illustration, in this paper

our focusing will be on two of them: scenario of car

approaching to the terminal with stopping at that

terminal (scenario 1 in Figure 1), and scenario of car

approaching to the terminal with passing the terminal

(scenario 2 in Figure 1). The scenarios consisted of four

components named: proxSensor, cruiser, car, and

carHandler. The details of the scenarios are depicted

in Figure 1.

Figure 1 Portion of Railcar system specifications

3.0 THE PROPOSED STRATEGY

The proposed strategy has four steps as detailed

below. These steps are distributed into two phases,

behaviour modeling (Section 4.0) and reliability

calculation (Section 5.0).

 Describing of system scenarios using extended

uLSC notations.

 Annotation of scenario specification using system

constraints

 Translation of annotated scenarios to FSMs.

 Determination of components’ criticalities.

 Calculation of scenarios reliability.

The strategy starts by describing system scenarios

using enhanced scenario language and annotate

these scenarios by system constraints. After scenarios

preparation, we take a step-by-step approach. First, a

finite state machine is constructed for each

component instance as part of the scenario; the

failure probability associated to this instance is

calculated by treating this part of the scenario

separately. Hence, the computation conducts along

limited space to avoid the computation complexity.

The failure probability of the components reveals the

criticality of those components regarding to the

scenario and then the system. Second, the probability

failure and the related reliability of the whole scenario

are calculated based the sequences of the finite state

machines. Tackling scenarios independently in

reliability engineering potentially helps in the

construction of the system global behaviour model

without the need the system’s internal states

http://en.wikipedia.org/wiki/Sequential_logic

142 Awad Ali, Dayang N. A. Jawawi & Mohd Adham Isa / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 139–148

(components interactions), in turn, avoiding the state

space explosion problem. Figure 2 depicts the strategy

phases and steps.

Figure 2 The proposed strategy phases and steps

Modeling phase focuses on moving from scenario-

based specification to state based specification.

Unlike most of reliability approaches, in the modeling

we move from system specification explicitly. Most

approaches rely on Markov notations directly (state

based specification) as a primary modeling notation

without describing how the states generated. In the

calculation phase, the calculation conducts partially.

Given the state specification of the scenarios, the

calculation adopts mathematical formula to tackle

the state space partially. The following sections

describe the phases in details.

4.0 BEHAVIOUR MODELING

By documenting the behaviour of the system in two

different and complementary ways of requirements

specification (as scenarios notations (e.g. uLSC) and

constraints (e.g. OCL)), the architects of the system are

forced to truly understand the requirements

specification and the behaviour implied by them. In

Figure 1, the requirements specifications are

documented by uLSC. As mentioned before, the

characteristic of uLSC compared to eLSC and other

scenario notations, they give the last confirmation of

the requirements specification. Unfortunately, use of

uLSC as single scenarios notation produces increase

number of scenarios (each action and its reaction

documented separately). In case of large software

systems there is need for a scenario language that can

reduce the number of the scenarios. Thus, the uLSC

notations are extended to hold more than one

scenario specifications, by adopting constructs from

UML 2.0 SD[28].

4.1 Moving from uLSC to Extended uLSC

In the scenario description, an extended form of uLSC

is used, which includes additional constructs. Part of

these constructs is adopted from UML 2.0 SD such as

interaction combined fragment with alt operator. The

idea was to constructs an uLSC that is able to combine

more than one uLSC bases on the similarity between

triggers. After unifying the pre-chart of scenarios, the

main charts are combined via a combined fragment

notation with alt operator. A combined fragment is

expression of an interaction by a box contains a subset

of messages and is defined by an operator (e.g. alt),

which states the connection between the fragment's

messages. An alt is an operator which denotes that

the messages within the fragment are alternatives to

each other. Each alternative has a guard and

contains the interaction that occurs when the

condition for that guard is met. Only one of the

conditions can occur at the same time. An 'alt'

combined fragment is similar to nested if-then-else and

switch/case constructs in programming languages.

Conditions in the guards can be described as implied

triggers. Figure 3 depicts the extension idea by

drawing a single uLSC holding scenario 1 and scenario

2 of the running example.

Figure 3 The extended uLSC combing scenario 1 and

scenario 2 of railcar system

4.2 Annotate the Scenario Specification by System

Constraints

The general purpose is to construct a FSM for each

component instance within the scenario, therefore,

information that reveals the component states

separately is needed. As the proposed work intended

for early design stages (i.e. when complete information

about the behaviour of a component is not available),

there is no option other than to leverage on system

143 Awad Ali, Dayang N. A. Jawawi & Mohd Adham Isa / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 139–148

constraints and their state variables as basic

information sources to depict the component's

behavior precisely. The constraints and their state

variables (called as a set, state vector) are already

provided as domain knowledge related to early

design specification. For example, the state vector of

the railcar system based on the constraints shown in

Figure 1 is: < “idle, cruising, arrival”>.

Component state vector is a vector holding a state

variable(s) elicited from the system state vector and its

values represent the component state before and

after each operation (message). The component state

vector is employed in the strategy to annotate the

scenario specification based on the system constraints.

The following steps give details of how component

state vector elicited and then how it can be

employed to annotate the scenario specifications.

i) Elicit component’s state vector:

Component state vector uses as pre- and post-

conditions to component’s operations invocation

(incoming and outgoing messages). Therefore, in order

to elicit component state vector, following procedures

are needed. Firstly, the determination of component’s

incoming and outgoing messages. Secondly, the

addition of each state variable appears in the

preconditions of the outgoing messages to

component’s state vector. Finally, the addition of

each state variable modified by the component’s

incoming or outgoing messages to the component’s

state vector. The previous procedures can be defined

formally as follows:

Definition 1: (Sets of component’s incoming and

outgoing messages):
Let compom and compim be the sets of outgoing and

incoming message of the component i (compi)

respectively. compi extended uLSC , a message

mi  extended uLSC will be added to the compom iff

mi sent by the compi to other components within the

extended uLSC; and mi will be added to the compim iff

it was received by compi from other components

within the extended uLSC.

Definition 2: (State vector and pre-conditions):

Let compsv be a component’s state vector.  mi
compom if  mi matching opname  system

constraints, then the state variable that appear in the

preconds of the opname will be added to the compsv iff is

not already existing in compsv.

Definition 3: (state vector and the modified variables):
 mi(compom  compim) if  mi matching opname

 system constraints, and the value of preconds of the

opname does not matching the value of postconds, then

the state variables related to the preconds or postconds

will be added to the compsv iff does not already

existed in compsv.

For example, according to these definitions and the

railcar constraints, the state vector of the car

component is < idle, cruising, arrival >, cruiser: < idle,

cruising>, the proxSensor: < cruising, arrival >, and the

carHandler component is: < arrival >.

ii) Scenario annotation and propagation:

After the elicitation of the state vector of each

component, annotation and propagation of the

component’s within the scenario can be conducted

similar to the techniques in [29] and [30]. The goal of

the annotation procedure is to enrich component

information by defining the system state from a

component’s perspective before and after execution

of each operation depicted in the scenario. In this

procedure, firstly, annotation parameters are built

based on variables of the state vector and their values

in the system constraints (e.g. see Figure 4 below). The

annotation values before and after each operation is

determined according to the system constraints. Some

operations (messages) may not be given a

specification specifying system state before or after;

so, secondly, the propagation process is used to

propagate unknown values (?) in (before and after)

the annotations. Propagation is executed using the

technique in [29]. Figure 4(a) shows annotation result

of our running example and Figure 4(b) shows the

annotation result after the propagation.

Figure 4 (a) Annotation result of railcar example (b) The

annotation after propagation

3.3 Translate the Annotated Scenario to FSMs

Once the scenarios are prepared (annotated and

propagated), the first step is to generate a set of FSMs.

This process starts through the construction of a FSM for

each component instance within the extended uLSC

scenario. Given an extended uLSC m, let

144 Awad Ali, Dayang N. A. Jawawi & Mohd Adham Isa / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 139–148

(S,S ,S ,T)0
iFm b be a FSM synthesized from instance i in

m. The basic idea is to construct a state for each state

vector value. Thus, S is the set of states corresponding

to the state vector values along the instance. S0

contains exactly the state corresponding to the first

state vector value. Sb contains state corresponding to

the branching state vector value if it existed (first state

vector value in the combined fragment box). T is a

transition relation labelled with associated messages

sent or received by the instance. Figure 5, shows FSMs

for railcar system components translated from the

scenario in Figure 4.

Figure 5 The obtained FSMs of the railcar system components

5.0 RELIABILITY CALCULATION

Once the FSMs of the scenario are given, scenario’s

reliability can be calculated. The calculation builds

upon mathematical formula tackling each FSM

separately to avoid the computation complexity. The

following sub sections defines calculation formulas and

discusses calculation results.

5.1 Calculation Formulas and Failure Information

Let comp1, comp2,…, compK denote the K

components participated in scenario Scj . Let fi be the

failure probability of the component compi and

assume fi’s to be known. Let ni be the number of

invocation of component i within the scenario Scj.

Recall that fij is the probability that the ith component

(compi) fails in the jth scenario (Scj). The value of fij can

be computed by [31]:

1 (1) in

ij if f   (Eq.1)

From Equation (1), assuming that component failure

probabilities are independent, the scenario failure

probability fSc j can be derived as:

1

1 (1) i

j

K
n

Sc i

i

f f


   (Eq. 2)

Design specifications depicted by our scenario

description notation can reveal both structural and

behavioural inconsistencies among component

interaction. However, identification and classification

of these inconsistences are beyond the scope of this

paper. In particular, they reveal directional errors as

well as mismatches among interface signatures and

pre- and post-conditions, more details about such

type of errors can be found in [32]. However, all these

errors are related to components required and

provided services which implemented via component

operations, thus, all these types of errors are

abstracted and encapsulated in operations’ failure

probability. In the previous work [27], the failure

probability of the whole component is used as failure

information required as an input for equation (2) in

order to calculate reliability of scenario. In this paper,

to be more accurate, the failure probability of

operations will be used as alternatives to component

failure. This use due to the fact that component failure

estimates or calculates as a function of the entire

component states, while in each interaction moment,

only specific set of operations participates in the

failure.

By observing to the scenario descriptions, for

example, the operations that a component executes

at each specific time can be identified exactly.

Following this line of thinking, fi can be replaced with

a set of operation failure probabilities lf i , where

,...,1l l ln is the index of the operation within the

component. Equation (1), in this case, becomes:

1

1 (1)
nl

l

ij i

l l

f f


   (Eq. 3)

Failure information needed now is the probabilities

of failure of the operation such as the information

shown in Table 1 which is related to the operations

invoked in the railcar system. As mentioned previously,

the failure information will be tackled abstractly,

therefore, this paper’s illustration is not limited to

specific type of error, a preliminary estimate of lf i ,
could be, for example, some approaches [33] [34]

derived such errors by analyzing the dynamic

complexity and dynamic connectors coupling and

severity levels of their failures of every component and

its operations. The number of nodes and transitions in

the FSM of the component can be used as other

parameters of the complexity assessments. In case of

using UML, statecharts diagrams and Timed Sequence

Diagrams may reveal information about the length of

component’s busy period which can also be utilized as

parameters of failure rate estimation [31].

145 Awad Ali, Dayang N. A. Jawawi & Mohd Adham Isa / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 139–148

Table 1 Failure information of each operation in the railcar

scenario

Operation name Probability of failure

alert100 0.002

arriveReq 0.01

arriveAck 0.004

alertStop 0.004

disengage 0.001

stop 0.001

passTerminal 0.004

From Equation (3), assuming that component failure

probabilities are independent, the scenario failure

probability fSc j defined in equation (2) can be

updated by replacing the new formula of fij defined in

equation (3); thus fSc j will be:

11

1 (1)
n

j

lK
l

Sc i

i l l

f f
 

   (Eq. 4)

Note that equation (3) and (4) are only feasible

under the assumptions that: an operation’s failure

probability does not depend on the failure

probabilities of other operations and the scenario is a

sequential structure. Unfortunately, important

enhancement made by extend uLSC is the propose of

branching notation, this in the most cases will produce

branching scenarios (e.g. see FSMs of car and cruiser

components in Figure 4); thus, for more accurate, in

case of branching scenario, for equation (3) and (4)

the calculation can be done by considering each

branch as a sequential structure, and then taking the

mean of the branches before the subtraction from 1.

The scenario reliability can be defined as the

probability of not being in a failure state; thus reliability

of scenario Scj is computed as:

1
Sc jj

ScR f  (Eq. 5)

5.2 Results of Calculation and Discussion

Once FSMs of the scenario have been derived from

the extended uLSC where, each FSM represents a

component instance, the next step is to calculate the

reliability of the scenario. Using Equation (3) and

values of the expected failure of the operations

invoked by the component, the probability of

component failure is calculated. By calling back our

railcar system the probabilities of failure of the

components proxSensor, cruiser, car, and carHandler

are: 0.0059920, 0.002995, 0.0208480, and 0.0139600

respectively. These values denote to the criticality of

these components regarding to the scenario and then

the system. Applying Equation (4), if the branching

structure of the components is not considered, the

probability of failure of the whole scenario will be

0.050818. Based on this failure probability and using

Equation (5), the reliability of the scenario is 0.949182.

By considering the branching structure of cruiser and

car components (taking mean of branches failure)

probability of failure of the scenario will be 0.047004

and thus reliability of the scenario is 0.952996. The

difference between the reliability values in the case of

considering versus ignoring the branching structure is

0.003814. This difference in some applications, may

seems relatively small, however, in the case of long

branches, the difference can be significant. Thus,

considering the weighted mean value would be

deemed helpful. Furthermore, a weighted mean that

takes into account the number of states in the

branches represent a more accurate model of the

actual system.

Summing up, the scenario reliabilities calculation

based on the system requirements specifications have

been discussed. These specifications were modeled

through a scalable scenario description (the scenario

modeled in a compact and concise manner). After

the scenarios calculation stage, the system global

behaviour model can be constructed in hierarchical

(e.g. see [7]) or flat (e.g. see [24]). In the global

behaviour model of the system, the scenarios can

represent the basic elements as alternative to the

components potentially reducing the complexity of

the system global structure (e.g. a software system

may consist hundreds of components). Each scenario

will represent node in the structure. The relation and

connections among these nodes (scenarios) will be

determined based on the information of the system

specification (e.g. eLSCs and system documents) and

operational profile artifact, which can describe the

related and unrelated behaviours. After global model

construction, reliability of the system can be

computed using any reliability technique [10, 35] or

formula [13, 36] that provided to utilize system

structures and behaviour in the prediction.

6.0 RELATED WORK

During the last decade, researchers proposed several

approaches to predict reliability at the design-time

utilizing the architectural design of the software system

and the interaction scenarios of components; these

approaches address different problems and

challenges. For the sake of brevity, a brief overview of

the approaches of greatest interest to the scope of

this paper’s work is provided. The approaches

classified to two groups, bases on their closeness to this

paper’s work.
The first group comprises the approaches [7, 24, 31,

37, 38], which can be regarded as more closed to the

proposed work. Roshandel et al. [37], show how the

component behavioural views can be modeled by a

Quartert model which is used to model four views

named interface, static view, dynamic view, and

interaction protocol. These views are used to classify

the architectural defects. The significant defects are

used in the reliability prediction technique as failure

146 Awad Ali, Dayang N. A. Jawawi & Mohd Adham Isa / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 139–148

states. The architecture analysis is used based on

Quartert views to reveal the potential problems of

design and implementation. Result of architecture

analysis are built based on Quartert views of this work

and can be used as input to the proposed strategy in

this paper. However, in the work [37] and [24] the total

behaviour of system is represented by a flat model.

The flat model as reported in [7] suffers from scalability

problem. The main reason for these problems is the

number of states which is also known as state

explosion problem, exactly, in the case of large

systems. Authors of [7] proposed extension to the work

in [37] by modeling and calculating system scenarios

hierarchically. The hierarchical method can provide

solution in the case of large systems, especially when

the synchronization nature of the system

implementation is taken into account [6]. However

language of scenario description is message

sequence charts in classical form. Thus, the description

of system scenarios in a compact and concise manner

toward archiving scalability is not addressed by the

approaches in [7] and even in[38]. Moreover, there is

no new calculation strategies that consider

computation complexity are presented in most of

these approaches.

In the second group the approaches [3, 4] address

the utilization of usage profiles and the component

environment, to predict the system reliability in the

deployment environment of the system. In [4] the

previous usage information which is named as

architectural kens and defined as a parameters store

the error probability of component, while there are no

specifications about how the values are obtained. The

work in [3] extends the ideas in [4] by utilizing the

usage profiles. Furthermore, this approach includes

hardware factor (failures caused by communication

links or hardware) in the reliability calculation. The

usage-profile is built upon parameter dependencies.

The parameters dependencies concept is about the

influence of the input values on the control and data

flow. These values are derived from the usage

scenarios by domain expert and treated as a

stochastic expression and the probability distribution of

the failure. However, unlike our proposed work, these

approaches focus on the structural aspects rather

than the behavioural aspects of the component

interactions.

Comparatively, our work enhances the work of the

first group, that is, by adding more scalability by using

extended scenario description language that

describes the system scenarios in a compact and

concise manner. Furthermore, our work provides

promising scenario calculation strategy, treated the

calculation partially. In fact, unlike most of the first

group approaches (i.e. lack of step-by-step

traceability), our strategy forces traceable mapping

from system specification to the reliability calculation

through explicitly processes. Compared to the second

group, our focuses on both behavioural and structural

aspects while these approaches focus on the

structural aspects rather than the behavioural.

Table 2 summarizes our findings regarding current

approaches for design-time reliability engineering. A

check mark in parenthesis means that an approach

partially supports the feature.

7.0 CONCLUSION AND FUTURE WORK

In this paper, we presented a strategy for scalable

modeling and calculation of scenarios reliability based

on the system requirements specification. The work is

applicable to the early design stage of the software

life cycle. The major contribution lies on modeling

scenarios in a scalable way by using a scenario

language that describes system scenarios in a

compact and concise manner potentially results in

reduced number of scenarios. Another contribution lies

in the calculation, where the well-known “divide and

conquer” strategy is followed through the scenarios

reliability calculation. Each part of the scenario is

tackled separately in the calculation to achieve better

traceability and avoid computational complexity in

the case of having scenarios consisting of a large

number of components. A finite state machine is used

to truncate each scenario into its basic elements

(component instances) and to reveal their internal

states. In the reliability calculation, the failure

probabilities of the operations within the component

and operations’ invocations that exhibited in the

scenarios are utilized as base for the scenario reliability.

In summary, the proposed approach may enhance

the ability of the current reliability approaches to deal

with large software systems.

There are several open issues for future work. It is

notable that the scenario modeling and calculation

presented here can be adopted by most of current

approaches of reliability prediction. However, the

combination of scenarios and their related

assumptions (e.g. synchronization of execution among

scenarios and within the one scenario) it can enhance

more to match the capability of current software

technology. Therefore in future studies, there is an

intention to develop a system level reliability approach

that can utilize the proposed scenarios’ treatments.

Also, there is a plan to develop a mechanism for

detecting any conflicts among scenarios; furthermore

the automation of this process.

147 Awad Ali, Dayang N. A. Jawawi & Mohd Adham Isa / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 139–148

Table 2 Current approaches for design-time reliability

G
ro

u
p

The Approach

B
o

th
 s

tr
u

c
tu

ra
l

a
n

d
 b

e
h

a
v

io
u

ra
l

p
e

rs
p

e
c

ti
v

e
s

e
x

p
li
c

it
ly

 m
o

v
e

s

fr
o

m
 r

e
q

u
ir
e

m
e

n
ts

sp
e

c
if
ic

a
ti
o

n
 t

o

c
a

lc
u

la
ti
o

n

P
a

rt
ia

l
c

a
lc

u
la

ti
o

n

A
d

d
re

ss

S
c

a
la

b
il
it
y

G
ro

u
p

 A

Singh et al. [31] √ × (√) ×

Rodrigues et al. [24] √ × × ×

Roshandel et al. [37] √ (√) × ×

M. Palviainen et al. [17] √ √ × ×

L.Cheung et al. [7] √ (√) (√) √

D. Cooray et al. [38] √ (√) (√) ×

Our work √ √ √ √

G
ro

u
p

 B

Reussner et al. [4] (√) (√) × ×

Brosch et al. [3] (√) (√) × ×

Acknowledgement

The authors are very grateful to the Ministry of

Education (MOE) Malaysia, under vote no. 4F303, and

Universiti Teknologi Malaysia, for their financial support

of this research. The authors would also like to thank

Embedded & Real-Time Software Engineering

Laboratory (EReTSEL) members for their thoughtful and

constructive feedback.

References

[1] Lyu, M. R. 2007. Software Reliability Engineering: A

Roadmap. IEEE.

[2] Musa, J. D., A. Iannino, and K. Okumoto. 1987. Software

Reliability: Measurement, Prediction, Application. McGraw-

Hill, Inc.

[3] Brosch, F., et al. 2011. Architecture-Based Reliability

Prediction with the Palladio Component Model. IEEE

Transactions on Software Engineering. 99: 1-1.

[4] Reussner, R. H., H. W. Schmidt, and I. H. Poernomo. 2003.

Reliability Prediction for Component-Based Software

Architectures. Journal of Systems and Software. 66(3): 241-

252.

[5] Immonen, A. and E. Niemelä. 2008. Survey of Reliability and

Availability Prediction Methods from the Viewpoint of

Software Architecture. Software and Systems Modeling.

7(1): 49-65.

[6] Krka, I., et al. 2009. A Comprehensive Exploration of

Challenges in Architecture-based Reliability Estimation.

Architecting Dependable Systems VI. 202-227.

[7] Cheung, L., et al. 2012. Architecture-Level Reliability

Prediction of Concurrent Systems. ACM.

[8] Gokhale, S. S. and K. S. Trivedi. 2002. Reliability Prediction

and Sensitivity Analysis Based on Software Architecture. IEEE.

[9] Cortellessa, V., H. Singh, and B. Cukic. 2002. Early Reliability

Assessment of UML Based Software Models. ACM.

[10] Yacoub, S., B. Cukic, and H. H. Ammar. 2004. A Scenario-

Based Reliability Analysis Approach for Component-Based

Software. Reliability, IEEE Transactions on. 53(4): 465-480.

[11] Cukic, B. 2005. The Virtues of Assessing Software Reliability

Early. Software, IEEE. 22(3): 50-53.

[12] Goswami, V. and Y. Acharya. 2009. Method for Reliability

Estimation of COTS Components based Software Systems.

[13] Hsu, C. J. and C. Y. Huang. 2011. An Adaptive Reliability

Analysis Using Path Testing for Complex Component-Based

Software Systems. Reliability, IEEE Transactions on. 60(1):

158-170.

[14] Fan, Z., et al. 2008. A Novel Model for Component-Based

Software Reliability Analysis. In High Assurance Systems

Engineering Symposium, 2008. HASE 2008. 11th IEEE.

[15] Tyagi, K. and A. Sharma. 2012. A Rule-Based Approach for

Estimating the Reliability of Component-based Systems.

Advances in Engineering Software. 54: 24-29.

[16] Kim, Y., et al. 2013. Validating Software Reliability Early

through Statistical Model Checking. Software, IEEE. PP(99):

1-1.

[17] Palviainen, M., A. Evesti, and E. Ovaska. 2011. The Reliability

Estimation, Prediction and Measuring of Component-based

Software. Journal of Systems and Software. 84(6): 1054-1070.

[18] Mauw, S., M. Reniers, and T. Willemse. 2001. Message

Sequence Charts in the Software Engineering Process.

Handbook of Software Engineering and Knowledge

Engineering. 1: 437-464.

[19] Pilone, D. 2005. UML 2.0 in a Nutshell. O'Reilly Media, Inc.

[20] Diirr, E. and J. van Katwijk. 1992. VDM++, A Formal

Specification Language For Object-Oriented Designs. In

Proceedings 6th Annual European Computer Conference,

Compeuro.

[21] Harel, D. and R. Marelly. 2003. Come, Let’s Play: Scenario-

Based Programming Using Lscs and the Play-Engine. Vol. 1.

Springer.

[22] Sibay, G., S. Uchitel, and V. Braberman. 2008. Existential Live

Sequence Charts Revisited. In Software Engineering, 2008.

ICSE'08. ACM/IEEE 30th International Conference on. IEEE.

[23] Harel, D. 1987. Statecharts: A Visual Formalism for Complex

Systems. Science of Computer Programming. 8(3): 231-274.

[24] Rodrigues, G., D. Rosenblum, and S. Uchitel. 2005. Using

Scenarios to Predict the Reliability of Concurrent

Component-Based Software Systems. Fundamental

Approaches to Software Engineering. 111-126.

[25] Sibay, G. E., et al. 2013. Synthesizing Modal Transition

Systems from Triggered Scenarios. Software Engineering,

IEEE Transactions on. 39(7): 975-1001.

[26] Harel, D. and E. Gery. 1996. Executable Object Modeling

with Statecharts. In Proceedings of the 18th International

Conference on Software Engineering. IEEE Computer

Society.

[27] Ali, A., D. N. Jawawi, and M. A. Isa. 2014. Modeling and

Calculation of Scenarios Reliability in Component-Based

Software Systems. In Software Engineering Conference

(MySEC), 2014 8th Malaysian. IEEE.

[28] UML: Unified Modeling Language Superstructure

Specification v2.0, formal/05-07-04, August 2005, OMG

specification, OMG.

148 Awad Ali, Dayang N. A. Jawawi & Mohd Adham Isa / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 139–148

[29] Krka, I., et al. 2009. Synthesizing Partial Component-Level

Behavior Models from System Specifications. In Proceedings

of the 7th Joint Meeting of the European Software

Engineering Conference and the ACM SIGSOFT Symposium

on the Foundations of Software Engineering. ACM.

[30] Whittle, J. and J. Schumann. Generating statechart designs

from scenarios. in Software Engineering, 2000. Proceedings

of the 2000 International Conference on. 2000. IEEE.

[31] Singh, H., et al. A bayesian approach to reliability prediction

and assessment of component based systems. 2001. IEEE.

[32] Roshandel, R., et al. Understanding tradeoffs among

different architectural modeling approaches. in Software

Architecture, 2004. WICSA 2004. Proceedings. Fourth

Working IEEE/IFIP Conference on. 2004. IEEE.

[33] Goseva-Popstojanova, K., et al. 2003. Architectural-level Risk

Analysis Using UML. Software Engineering, IEEE Transactions

on. 29(10): 946-960.

[34] Sadi, M. S. et al. 2010. Component Criticality Analysis to

Minimizing Soft Errors Risk. International Journal of Computer

Systems Science and Engineering. CRL Publishing. 25(5).

[35] Wang, W. L., D. Pan, and M. H. Chen. 2006. Architecture-

Based Software Reliability Modeling. Journal of Systems and

Software. 79(1): 132-146.

[36] Gokhale, S. S. and K. S. Trivedi. 2002. Reliability Prediction

and Sensitivity Analysis Based on Software Architecture. In

Software Reliability Engineering, 2002. ISSRE 2003.

Proceedings. 13th International Symposium on. IEEE.

[37] Roshandel, R., N. Medvidovic, and L. Golubchik. 2007. A

Bayesian Model for Predicting Reliability of Software Systems

at the Architectural Level. Software Architectures,

Components, and Applications. 108-126.

[38] Cooray, D., et al. 2013. Proactive Self-Adaptation for

Improving the Reliability of Mission-Critical, Embedded, and

Mobile Software.

