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Graphical abstract 
 

 

Abstract 
 

Real-time systems or tasks can be classified into three categories, based on the 

“seriousness” of deadline misses – hard, soft and weakly hard real-time tasks. The 

consequences of a deadline miss of a hard real-time task can be prohibitively expensive 

because all the tasks must meet their deadlines whereas soft real-time tasks tolerate “some” 

deadline misses. Meanwhile, in a weakly hard real-time task, the distribution of its met and 

missed deadlines is stated and specified precisely.  As real-time application systems 

increasingly come to be implemented upon multiprocessor environments, thus, this study 

applies multiprocessor scheduling approach for verification of weakly hard real-time tasks 

and to guaranteeing the timing requirements of the tasks. In fact, within the multiprocessor, 

the task allocation problem seem even harder than in uniprocessor case; thus, in order to 

cater that problem, the sufficient and efficient scheduling algorithm supported by accurate 

schedulability analysis technique is present to provide weakly hard real-time guarantees. In 

this paper, a weakly hard scheduling approach has been proposed and schedulability 

analysis of proposed approach consists of the partitioned multiprocessor scheduling 

techniques with solutions for the bin-packing problem, called R-BOUND-MP-NFRNS (R-

BOUND-MP with next-fit-ring noscaling) combining with the exact analysis, named 

hyperperiod analysis and deadline models; weakly hard constraints and µ-pattern under 

static priority scheduling. Then, Matlab simulation tool is used in order to validate the result 

of analysis. From the evaluation results, it can be proven that the proposed approach 

outperforms the existing approaches in terms of satisfaction of the tasks deadlines.   

 

Keywords: Weakly hard real-time tasks, partitioned scheduling, multiprocessor systems, 

hyperperiod analysis, deadlines models 

 

Abstrak 
 

Sistem atau tugas masa nyata boleh diklasifikasikan kepada tiga kategori, berdasarkan 

"kesungguhan" terlepas tarikh akhir – tugas masa nyata yang keras, lembut dan  keras yang 

lemah. Kebarangkalian tugas masa nyata yang keras terlepas tarikh akhir boleh menjadi 

terlampau mahal kerana semua tugas-tugas mesti memenuhi tarikh akhir mereka 

sedangkan masa nyata yang lembut boleh bertolak ansur "beberapa" tarikh akhir yang 

terlepas. Sementara itu, dalam tugas masa nyata keras yang lemah, pengagihan tarikh 

akhir yang bertemu dan terlepas dinyatakan dengan tepat. Disebabkan peningkatan 

terhadap aplikasi sistem masa nyata yang dilaksanakan kepada persekitaran multi 

pemproses, dengan itu, kajian ini mengaplikasikan pendekatan penjadualan multi 

pemproses untuk pengesahan tugas masa nyata keras yang lemah dan untuk menjamin 

keperluan masa tugas-tugas. Malah, dalam multi pemproses, masalah peruntukan tugas 

kelihatan lebih sukar daripada dalam kes uni pemproses; dengan itu, untuk menampung 

masalah itu, algoritma penjadualan yang cekap disokong oleh teknik penjadualan analisis 

yang tepat diperkenalkan untuk memberikan jaminan masa nyata keras yang lemah. 

Dalam penulisan  ini, pendekatan penjadualan keras yang lemah telah dicadangkan dan 

pendekatan penjadualan analisis yang dicadangkan terdiri daripada teknik-teknik 
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penjadualan multi pemproses dibahagikan dengan penyelesaian untuk masalah 

pembungkusan-pemproses, yang dikenali sebagai R-TERIKAT-MP-NFRNS (R-TERIKAT-MP 

dengan cincin-sesuai-seterusnya yang tiada skala) digabungkan dengan analisis yang 

tepat, yang dinamakan analisis hyperperiod dan model tarikh akhir; kekangan keras yang 

lemah dan μ-corak di bawah penjadualan keutamaan statik. Kemudian, alat simulasi 

Matlab digunakan untuk mengesahkan hasil daripada analisis. Daripada hasil penilaian, ia 

membuktikan bahawa pendekatan yang dicadangkan adalah melebihi prestasi 

pendekatan yang sedia ada dari segi memenuhi tarikh akhir tugas-tugas.  

 

Kata kunci: Tugas masa nyata keras yang lemah, penjadualan dibahagikan, sistem multi 

pemproses, analisis hyperperiod, model tarikh akhir 

 

© 2015 Penerbit UTM Press. All rights reserved 

  

 

 
1.0  INTRODUCTION 
 

Every task in the system which is completed in period 

of time is referred to a real-time system. For real-time 

systems, it should be predictable and ensure that all 

timing constraints will always be met. Guaranteeing 

temporal correctness is the endmost goal of real-time 

systems analysis where verifying a priori that no task 

has always missed the deadline, or if the deadline be 

missed, it missed by not more than a certain amount of 

time. The temporal correctness is depending on the 

task that has being scheduled. Due to the need to 

validate temporal correctness of the tasks, real-time 

scheduling algorithms need to be utilized and 

schedulability tests must be derived. 

In order to determine when to execute which task on 

which processor if it has more than one processor, a 

scheduling algorithm could be used. In order to 

determine whether a real-time system can run within 

the timing constraints put upon it, a number of 

different algorithms have been designed to analyse a 

system and determine whether it is schedulable or not. 

The timing constrained requirements are the direct 

input for the scheduling analysis algorithms. But, 

schedulability analysis is needed to analyze the 

satisfaction of tasks either its deadlines can be met or 

not. Schedulability analysis is a mathematically sound 

way of predicting the timing behaviour of a set of real-

time systems [1]. It is used in many different ways such 

as at design time or at run-time. In order to do the 

schedulability analysis and design for real-time systems, 

a task execution time and a task period must be 

obtain because both information are needed in 

related scheduling parameters especially for periodic 

tasks.  

Timing requirements or constraints are being defined 

in terms of deadlines for the activities. Computations 

occurring in a real-time system that have timing 

constraints are called real-time tasks. The classification 

of real-time systems or tasks divided into two 

categories, based on the “seriousness” of deadline 

misses – hard real-time tasks and soft real-time tasks [2]. 

The consequences of deadlines miss for a hard real-

time task system cannot be tolerated because some 

failure can affects the systems performance whereas 

“some” deadline misses are tolerated for soft real-time 

task systems. An automobile braking system is an 

example of a hard real-time system. When the driver 

pressed the brakes, the automobile can meet with an 

accident, if the systems are not appropriately 

responds. On the other hand, consider an online 

transaction system as a soft real-time example in 

which some laxity of task deadlines are tolerated; the 

users does not mind if during the processing of their 

transaction, a little delay happens but within 

“acceptable” limits. Nowadays, most real-time 

applications consist of a mix of hard and soft real-time 

tasks, and it called weakly hard real-time system.   
A typical example of systems with weakly hard real-

time requirements is multimedia systems, such as 

videophone application because some delay during 

execution is acceptable in that system and it is 

unnecessary to meet all the tasks deadlines as long as 

the misses (or deadlines) are specified precisely. In a 

weakly hard real-time system, the number of deadlines 

that may be missed can be specified. This makes a 

weakly hard real-time system stronger than a soft real-

time system.  
Such weakly hard real-time scheduling approach 

has traditionally focused upon scheduling analysis on 

uniprocessor. As a system becomes more complex 

and significantly increasing functionality, attention has 

been given to multiprocessor scheduling, comprised of 

several processors. Research on multiprocessor 

scheduling has mainly focused on ensuring strict 

compliance deadlines and several scheduling 

techniques were adopted. In an effort, Carpenter et 

al. have cataloged multiprocessor real-time 

scheduling algorithm considers the degree of 

migration jobs or tasks and the complexity of the 

mechanism of priority [3]. The classes of priorities 

includes such as (a) static priority, where task priorities 

are never change, Rate Monotonic Algorithm (RMA); 

(b) dynamic priority, where job or task priorities are 

change dynamically, Earliest Deadline First (EDF). The 

classification of multiprocessor scheduling is divided 

into partitioned and global [3].  

 

 

2.0  RELATED WORKS 
 

There have been some efforts that relate to schedule 

weakly hard real-time tasks on multiprocessor systems. 

Wu and Jin proposed the classical weakly hard real-
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time scheduling algorithms, namely Distance Based 

Priority (DBP) to apply into multiprocessor applications 

to guarantee QoS of both hard real-time tasks and 

multimedia streams even under overload conditions 

[4]. In fact, the DBP algorithm originally was introduced 

by Hamdaoui and Ramanathan on uniprocessor 

system [5]. However, even when the system is under 

loaded, MPDBPs do not maximize the performance 

and the task deadline satisfaction ratio even when 

possible, which eventually fails to provide the best 

quality of service for multimedia streaming 

applications. 

Another work is done by Kong and Cho where they 

designed a new dynamic scheduling algorithm known 

as the Guaranteed Multiprocessor Real-Time 

Scheduling (GMRTS-MK) algorithm for (m,k)-firm 

constrained tasks on homogenous multiprocessors [6]. 

However, the algorithm that they used will cause an 

increase in the ratio caused by the increasing number 

of tasks. Later, the same author, Kong and Cho 

introduced an Energy-constrained Multiprocessor Real-

Time Scheduling (EMRTS-MK) class algorithms for 

weakly hard real-time for (m,k)-firm deadline 

constrained tasks running on multiprocessor. 

Multimedia service quality is maximized under energy-

constrained when the static and dynamic EMRTS-MKs 

that they propose is using weakly hard real-time 

constraints [7]. However, EMRTS-MKs considers energy 

to make its scheduling decision. 
Several static and dynamic approaches on 

partitioned multiprocessor scheduling have been 
proposed but most prior research is limits for hard and 
soft real-time tasks. The most well-known static priority 
scheduling algorithm is Rate Monotonic-First Fit (RM-FF), 
which use First-fit-bin-packing algorithm [8]. Thereafter, 
another algorithm called R-BOUND-MP-NFR 
(multiprocessor next-fit-ring) is presented with the best 
results of partitioned static priority scheduling reaching 
50%. It introduces the NFR heuristic into the R-BOUND-
MP algorithm [9]. Here, R-BOUND-MP is a previously 
known multiprocessor (MP) scheduling which 
combines R-BOUND [10] with First-Fit bin-packing 
algorithm and exploits R-BOUND. Then, Andersson in his 
PhD thesis proposed a new algorithm, called R-
BOUND-MP-NFRNS to deal with maximizing the 
capacity used for the tasks without missing a deadline 
[11]. These stated researchers are using the allocation 
algorithm in their approaches. 

Later, AlEnawy and Aydin adopted partitioned 
scheduling consider to cater the problem of energy 
minimization for periodic pre-emptive hard real-time 
tasks that are scheduled on an identical 
multiprocessor platform with dynamic voltage scaling 
capability [12].  

Fisher et al. presented a polynomial-time partitioning 
approach for general sporadic task systems on an 
identical multiprocessor platform when static-priority 
scheduling policies are used on each processor [13]. 
This approach was adopted by Niemeier et al 
specifically deriving polynomial-time algorithms for 
solving several partitioning real-time scheduling 
problems on heterogeneous multiprocessor platforms 
[14].  

Chishiro and Yamasaki performed experimental 
evaluations of partitioned semi-fixed priority scheduling 
in the extended imprecise computation model of 
multicore systems for comparable overhead [15]. 
Afterwards, Fan et al. presented a new partitioned 
scheduling approach to schedule fixed-priority 
periodic real-time tasks on multi-core platforms under 
Rate Monotonic Scheduling (RMS) policy [16]. Both 
approaches that they proposed are used for multicore 
systems. 

There are some simple dynamic priority scheduling 
algorithm that using the allocation algorithms, such as 
EDF-FF (Earliest Deadline First-Fit), EDF-BF (Earliest 
Deadline Best-Fit) and Earliest Deadline Next-Fit (EDF-
NF) [17]. The following two approaches were used on 
identical multiprocessor platform. Muller and Werner 
combined partitioned scheduling with EDF and used 
the classical approach of bin-packing with utilization 
bounds [18].  They considered periodic and 
preemptive with implicit deadlines on an identical 
multiprocessor. Later on, Baruah studied the 
partitioned EDF scheduling of sporadic task systems on 
identical multiprocessor platforms [19].  

In most cases, if the task set is fixed and known a 
priori, the partitioning approach is becoming the most 
appropriate solution. Based on the review, in the past, 
partitioned scheduling of multiprocessor systems has 
been extensively studied but the used of scheduling 
analysis approaches of partitioning real-time 
scheduling is extremely applied for hard real-time 
tasks. Hence, due to this limitation, it is required to find 
the solution for applying partitioned scheduling 
approach for weakly hard real-time tasks where 
violation of task is allowed.  

Unfortunately, the existing works on scheduling and 
schedulability analysis techniques of weakly hard real-
time tasks are focused on global scheduling 
approach, thus, the aim of this paper is to contribute 
towards guaranteed weakly hard real-time scheduling 
by adopting partitioned scheduling approach and 
static priority assignment policy and the implement of 
task can be forecast. Static priority scheduling is 
considered than dynamic priority because it is an 
attractive option for real-time applications since it can 
ensure both the predictability of worst case behaviour 
and high resource utilization. 

The objective of the paper is to guarantee the 

satisfaction of the timing constraints and parameter of 

weakly hard real-time systems. Solutions to the 

problem are by providing a schedulability analysis of 

periodic and preemptive tasks that are constrained by 

weakly hard real-time temporal constraints on 

multiprocessor.  

 

 

3.0  A WEAKLY HARD SCHEDULING 
APPROACH 
 

The main focused of research on multiprocessor 

scheduling is on guaranteeing the completion of 

deadlines. However, for weakly hard real-time tasks 

where violation of a task is allowed, we proposed the 

weakly hard scheduling approach to cater task 

allocation problem in partitioned scheduling. In this 
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approach, we adopted the technique by using bin-

packing algorithm because it is known as the best 

heuristics that solved the task allocation problem.  

Also, we used well-known, widely used and a useful 

performance metric, worst case utilization bounds. 

Within the context of preemptive scheduling of 

periodic tasksets, in order to make the multiprocessor 

scheduling algorithm resilient with exceptions, the 

algorithms must be combined with specific techniques 

such as hyperperiod analysis first to recover from 

deadline missing.  

Due to the limitation of previous approaches wherein 

most of the partitioned scheduling algorithm is applied 

for hard real-time tasks, thus, we propose a solution to 

be applied for weakly hard real-time tasks (i.e. weakly 

hard real-time requirements, such as deadline 

models).  

To the best of our knowledge, the weakly hard 

scheduling approach that we proposed is the first 

static real-time scheduling approach that provides a 

guaranteed performance for weakly hard real-time 

tasks on multiprocessor partitioned scheduling. We 

illustrate the flow of weakly hard scheduling approach 

of partitioned scheduling in Figure 1. 

 
Figure 1 A weakly hard scheduling approach 

 

 
4.0  THE PARTITIONED SCHEDULING 
 

In the partitioning approach [3] (also known as offline 

processor assignment), no migration is allowed, where 

tasks are statically partitioned and allocated to 

processors (i.e. there is a need to choose a processor 

for all tasks and then run local scheduler on each 

processor with no migration. This is because; 

partitioned scheduling algorithms partitioned a task set 

into groups beforehand or in other words, at design 

time. Here, the priority is to statically assign a set of 

periodic tasks to a set of processors. A separate ready 

queue is held by each processor such that a specific 

processor is assigned by each task group. In other 

words, during the run-time, no migration of tasks is 

permitted from one processor to other processor. Thus, 

multiprocessor scheduling is equivalent to multiple 

uniprocessor system. 

Additionally, the schedulability of partitioned 

scheduling can be verified by using well-understood 

uniprocessor analysis techniques. The main advantage 

of partitioning approaches is that it reduces a 

multiprocessor scheduling problem to a set of 

uniprocessor ones and partitioning approaches are 

widely used by system designers and received greater 

attention by researchers.   

As shown in Figure 2, in partitioned scheduling, arrival 

jobs of tasks using a partitioning algorithm first is due to 

assign tasks to processors. Then, the local job queue is 

then used to place the generated jobs of each task. 

After that, in order to schedule jobs to each processor, 

a uniprocessor scheduling is used. 

 

 

Figure 2 A multiprocessor partitioned scheduling 

 

 

5.0  THE BIN-PACKING ALGORITHM 
 

Each task having its own dedicated processor, as 

partition method divides tasks into partitions. Many 

heuristic have been proposed for partitioning. The bin-

packing algorithm appears to be the popular choice 

[20]. In order to determine whether or not a given task 

can be allocated to a given processor, the bin-

packing algorithm often depends on schedulability 

test. The following equation is to use as knowledge in 

schedulability test:  

 

 

1
( , )

pn i
p p

i
i

C
B r n

T


                                      

(Eq. 1) 
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This condition uses information of the periods of the 

task set to achieve a high utilization. Note that in order 

to schedule tasks on processor p, rate monotonic 

algorithm is used. Thus, p is defined by the number of 

task assigned to processor p which denote by np. The 

fraction between the maximum and the minimum 

period among the tasks assigned to processor p is 

denoted by rp. r denotes the set of all n tasks and it 

holds that p : 1 ≤ rp < 2.  Let Equation 1:  

 
1

( , ) ( 1) 2 / 1
np

p p p p pB r n n r r   
      (Eq. 2) 

 

The algorithm R-BOUND-MP-NFRNS (R-BOUND-MP 

with next-fit-ring noscaling) [11] is used to partition the 

scheduling algorithm which is derived from the 

multiprocessor scheduling algorithm, R-BOUND-MP 

(combined R-BOUND [10] with a first-fit-bin-packing 

algorithm). R-BOUND is a uniprocessor scheduling 

algorithm for partitioned scheduling. The R-BOUND-MP-

NFRNS requirements are elaborated as follows: 

 

i. Sorting of tasks in the ascending order of 

periods where the first task needed to be 

considered is the task with the smallest period. 

ii. Each uniprocessor uses Equation 1 in a 

schedulability test. 

iii. The next-fit-bin-packing algorithm is used to 

assign each task. 

iv. The task is assigned to processor 1 upon failure 

of the task assigned to processor p.  
 

 

6.0  HYPERPERIOD ANALYSIS 
 

Another alternative way to study the performance of a 
scheduling algorithm or to verify the schedulability of a 
task set, is through the use of an exact analysis such as 
hyperperiod analysis. Here, it can be used to verify if a 
task set misses any deadline, showing if it is 
unschedulable. Additionally, it can also be used as 
sufficient condition for unschedulability. The task set 
hyperperiod (0, H(τ)) is a feasibility interval for implicit 
and constrained deadline synchronous periodic 
tasksets, when scheduled by a deterministic and 
memoryless algorithm, such as RMA [21].  
 For these algorithms, the schedulability of the task set 
can be verified by checking if the schedule generated 
misses any deadline using the least common multiple 
calculation. It is possible to use hyperperiod analysis on 
multiprocessor scheduling because of using periodic 
task with deadline and preemptive fixed priority 
scheduling.  

The higher order period or the hyperperiod, hi consists 
of the number of invocations of a task in the 

hyperperiod at level i, ai = 
ℎ𝑖

𝑇𝑖
 [22]. The least common 

multiple tool is used in order to get values of the 
hyperperiod. The hyperperiod hi equation is given by 
[22]:  

 

hi = lcm{Tj | ∈ hep(ґi)}                                            (Eq. 3) 

 

lcm is the least common multiple of the periods of 

the tasks and hep(ґi) is the set of tasks with a priority 

higher than or equal to task ґi. 

 

 
7.0  WEAKLY HARD CONSTRAINTS AND µ-
PATTERN 
 

Bernat et al. defined the weakly hard constraints in 

order to precisely specify how many deadlines may be 

missed and met [22]. The consecutiveness of lost 

deadlines is very sensitive for some systems while others 

are only sensitive to the number of deadlines missed. 

The merger of the two judgments, (a) consecutiveness 

vs. non-consecutiveness, and (b) missed vs. met 

deadlines concretely guides to four basic constraints 

(n ≥ 1, n ≤ m).  

 

i. A task ґ “meets any n in m deadlines”, 

denoted 








m

n
, if, in any window of m 

consecutive invocations of the task, there are 

at least n invocations in any order that meet 

the deadline. 

ii. A task ґ “meets row n in m deadlines”, 

denoted
m

n
, if, in any window of m 

consecutive invocations of the task, there are 

at least n consecutive invocations that meet 

the deadline. 

iii. A task ґ “misses any n in m deadlines”, 

denoted 








m

n
, if, in any window of m 

consecutive invocations of the task, no more 

of n deadlines are missed. 

iv. A task ґ “misses row n in m deadlines”, 

denoted 
m

n
, if, in any window of m 

consecutive invocations of the task, it is never 

the case that n consecutive invocations miss 

their deadline. 

 

The term ґ denotes the set of all possible weakly hard 

constraints of these four types. The four constraints or 

cases are summarized in Table 1. 
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Table 1 Weakly hard constraints 

 

For example, 








5

4
 expresses that the task has to 

meet 4 deadlines in every 5 invocations. Note that this 

is equivalent to 








5

1
. 









4

2
 meaning that at least 2 

deadlines have to be met in any 4 consecutive 

invocations. Note that this allows 2 deadlines to be 

missed consecutively.  

On the contrary, 
4

2
 means that in any 4 

consecutive invocations, at least 2 consecutive 

deadlines have to be met. This also means that only 

one deadline can be missed in any 4 invocations. 
6

3
 

means that no more than 3 deadlines can be missed 

in a row in 6 consecutive invocations of the task. 

A µ-pattern is a pattern of deadlines missed during a 

period of time. A µ-pattern is denoted by a 0 (zeros) 

that represent missed deadlines and by a 1 (ones) 

represent met deadlines. The sequence of zeros and 

ones can be used to characterise a task. For example, 

a task that has a pattern or sequence 11001101 and it 

does satisfy a 2

4

 
 
 

constraint because there is at least 

“1’s” in any 4 consecutive symbols, however it does 

not satisfy 1

2

 
 
 

 because there is a sequence that 

have 2 consecutive “0’s” without a 1.  

 

 

8.0  AN INERTIAL NAVIGATION SYSTEM (INS) 
CASE STUDY 
 

We chose the INS case study based on the one 
described by Borger because it consists of a mixture 
hard and soft tasks [23]. Thus, it is unnecessary for the 
system to meet the entire task deadlines as long as the 
misses (or deadlines) are spaced distantly/evenly or, in 
other words, is weakly hard real-time tasks.  We first 
present a task set derived from the INS system that 
consists of six tasks and all the tasks are listed in Table 2.  

 
 
 

 

Table 2 The task set of INS case study 
 

 
The six main subsystems of the INS used in the case 

study consist of Attitude Updater, Velocity Updater, 
Attitude Sender, Navigation Sender, Status Display and 
Position Updater. Each subsystems has deadline that 
equals its period. The INS system is the executive 
subsystems that support the scheduling of the INS task 
set via the real-time task dispatcher. 

Among the six tasks, four tasks are known as hard 
tasks and another two tasks are known as soft tasks. 
The Attitude Updater, Velocity Updater, Attitude 
Sender and Navigation Sender tasks are specified as 
hard periodic tasks. Meanwhile, the Status Display and 
Position Updater tasks are specified as soft periodic 
tasks.  

In the parameters, Ti is the period of the task, and Di 
refers to the relative deadline of the task that must be 
finished. Every task is periodic and we assumed that Di 
= Ti. Ci represents the worst case execution time of the 
tasks.  
 
 
9.0 A SCHEDULABILITY ANALYSIS OF 
PARTITIONED SCHEDULING 
 

A schedulability test or analysis is a condition in order 
to know whether a task set meets its deadlines or not. 
The system behaves in partitioned scheduling as 
explained in details as follows. The processor is 
assigned with each task in order to assign a local (for a 
processor) with static priority.   

Attitude Updater has the highest priority because the 

task priority was decreasing in each processor. 

Consider six tasks in Table 3, where these tasks needed 

to be scheduled using 2 processors with R-BOUND-MP-

NFRNS.  

 

 

 

 

 

 

 

 

 

 

 Met deadlines Missed deadlines 

Any order 










m

n
 









m

n
 

Consecutive 

m

n
 

n  

Task Ti Ci 

 

 

Attitude Updater (T1) 

 

10 

 

1 

 

Velocity Updater (T2) 15 4 

Attitude Sender (T3) 20 10 

Navigation Sender (T4) 50 20 

Status Display (T5) 

 

50 20 

Position Updater (T6) 100 10 
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Table Task parameters of the task set and processors 

 

 

 Furthermore, the algorithm is responsible to sort the 

task periods in ascending order. On this analysis, 

processor 1 is the current one with the tasks has been 

assigned in order. Moreover, Attitude Updater has 

been selected and assigned into processor 1. 

Afterwards, Velocity Updater has been tried to assign 

into processor 1, which is successful due to the T2/T1 = 

1.5 and n1 = 2 gives the utilization sum for these two 

tasks is 0.4.  

The task named Attitude Sender is attempted to be 

assigned to Processor 1 where it fails due to the max 

(T1,T2,T3)/min (T1,T2,T3) = 2.0 and n2 = 3 the utilization sum 

of these three tasks is 0.9 resulting to the task being 

assigned to processor 2. Next, processor 2 is identified 

as the current processor. Afterwards, the processor 2 

has been assigned with task named Navigation 

Sender. Here, task assignment is successful due to the 

T4/T3 = 2.5 and n2 = 2 values, in turn, gives the utilization 

sum of the tasks to 0.9.  

Later on, the task named Status Display is attempted 

to be assigned into Processor 2 where it fails due to the 

max (T3,T4,T5)/min (T3,T4,T5) = 2.5 and n1 = 3 the utilization 

sum of these three tasks is 1.3. Hence, it is assigned to 

processor 1. Next, processor 1 is identified as the 

current processor. The task named Position Updater 

has been tried to assign to processor 1, which is 

successful due to the max (T1,T2,T5,T6)/min (T1,T2,T5,T6) = 

10.0 and n1 = 4 giving the utilization sum for these four 

tasks of 0.9. Table 3 shows which processor of each 

task is assigned.  

Later, in Figure 3 we show a timing diagram which 

has been designed for a partitioned static priority 

scheduling algorithm along with the utilization bound 

U, wherein Ui = Ci/Ti. From the figure, it should be noted 

that task Position Updater missed its deadline by two 

time units. This is made task Position Updater 

unschedulable.  

 

 
 

Figure 3 Timing diagram of partitioned scheduling for INS 

 

 

Hence, hyperperiod analysis and weakly hard 

temporal constraints can be used to guarantee that 

both deadlines and constraints are satisfied if there 

have one or more tasks missed its deadline. In order to 

guarantee that task Position Updater meet its 

deadlines and satisfy its weakly hard temporal 

constraints, an exact analysis is perform to make the 

tasks predictable. 

In order to show that exact number of deadlines that 

can be missed, hyperperiod analysis and weakly hard 

deadline models/temporal constraints are used.  

 
Table 4 The hyperperiod analysis 

 

 

From the results in Table 4, even though task Position 

Updater missed its deadline at the utilization bound, 

but by using hyperperiod analysis, the number of 

deadline missed for that task can be specified. 

The utilization bound at each invocation within the 

hyperperiod at priority level 6 and as depicts in Figure 

4, the task is invoked α6 = 3 times within the 

hyperperiod at level 6. 

 

Task 

 

Ti 

 

Ci 

 

 

Ui 

 

 

Pi 

 

Attitude Updater (T1)  

10 

 

1 

 

 

0.1 

 

1 

 

Velocity Updater (T2) 15 4 0.3 1 

Attitude Sender (T3) 20 10 0.5 2 

 

Navigation Sender (T4) 50 20 0.4 2 

 

Status Display (T5) 50 20 0.4 1 

Position Updater (T6) 100 12 0.1 1 

 

Task 

 

Ti 

 

Ci 

 

 

hi 

 

 

ai 

 

  

 

Attitude Updater (T1) 

 

10 

 

1 

 

 

10 

 

1 

Velocity Updater (T2) 15 4 30 2 

Attitude Sender (T3) 20 10 60 3 

Navigation Sender (T4) 50 20 300 6 

Status Display (T5) 

 

50 20 300 6 

Position Updater (T6) 100 12 300 3 
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The following Table 5 shows the exact distribution of 

the missed and met deadlines for invocations 1 to 3 of 

task Position Updater.  

 
 

Figure 4 Invocation of Position Updater in the hyperperiod 

 
Table 5 The exact distribution of the task 

 

 

 

 

 

 

As can been seen, task Position Updater missed its 

deadline at its second and third invocations. Using 

weakly hard constraints, we can precisely specify the 

number of deadline met and missed for the task. So, 

task Position Updater’s µ-pattern would be 100. A 0 

represents a deadline missed and a 1 a deadline met. 

It can miss it at most 2 times during its hyperperiod, (2 

times every 3 invocations).  
Thus, the weakly hard constraint for task Position 

Updater is defined as 1

3

 
 
 

 constraint. Checking 

Position Updater’s weakly hard constraint shows that it 
is satisfied, despite the miss and we can concluded 
that the system is weakly hard schedulable. The main 
objective of weakly hard constraints is to guarantee 
the tasks meet their timing constraints even though 
during execution time there are some deadlines may 
be missed. Meanwhile, µ-patterns are used to 
determine how the deadline can be missed in terms of 
the consecutiveness or non-consecutiveness of such 
missed and met deadlines. 
 
 
10.0  RESULTS AND DISCUSSION 
 

In this section, we give the videophone application 

case study as benchmark [24]. A set of benchmark’s 

characteristic as given in Table 6. It consists of a set of 

tasks and in the second column; we listed the number 

of tasks. The range of these tasks execution times and 

periods as depicts in the third and fourth columns. The 

last column shows utilization. We applied the task set of 

videophone application into our experiment and the 

results are shown in Table 7.  

The cases analysed by Bernat et al. show that soft 

real-time systems are not that soft as it is generally 

required to specify upper bounds on the number and 

pattern of deadlines missed during a period of time 

[22]. All parameters of tasks of videophone application 

are listed in Table 7. 
 

Table 6 The benchmark 

 
Table 7 Task set of videophone application 

 

 

VSELP speech encoding has the highest priority 

because the task priority was decreasing in each 

processor. Consider four tasks in Table 3, where these 

tasks needed to be scheduled using 2 processors with 

R-BOUND-MP-NFRNS.  

On this analysis, processor 1 is the current one with 

the tasks has been assigned in order. Moreover, VSELP 

speech encoding has been selected and assigned 

into processor 1. Afterwards, VSELP speech decoding 

has been tried to assign into processor 1, which is 

successful due to the T2/T1 = 1.0 and n1 = 2 gives the 

utilization sum for these two tasks is 0.75. The task 

named MPEG-4 video encoding is attempted to be 

assigned into Processor 1 where it fails due to the max 

(T1,T2,T3)/min (T1,T2,T3) = 1.65 and n2 = 3 the utilization 

sum of these three tasks is 1.2 which resulting the task is 

assigned into processor 2. Next, processor 2 is identified 

as the current processor. Afterwards, the processor 2 

has been assigned with task named MPEG-4 video 

decoding. The assignment is successful as T4/T3 = 1.0 

and n2 = 2 giving the utilization sum of the tasks of 1.25.  

Referring to Figure 5, even though the timing 

diagram shows that task video decoding missed its 

deadline by fourteen time units, it is weakly hard 

schedulable. Then, Figure 6 shows that the task is 

invoked α4 = 20 times within the hyperperiod at priority 

level 4. 

 

Task Ti Ci 

 

Ui Pi hi ai 

VSELP speech 

encoding (T1) 

40 20 0.5 1 40 1 

VSELP speech 

decoding (T2) 

40 10 0.25 1 40 1 

MPEG-4 video 

encoding (T3) 

66 30 0.45 2 1320 20 

MPEG-4 video 

decoding (T4) 

66 50 0.8 2 1320 20 
Task Position Updater 

Invocations µ-pattern 

1 - 3: 100 

Applications Task 

type 

Num of 

tasks 

Execution 

time (ms) 

Period 

(ms) 

Total 

Utilization 

INS Weakly 

hard 

6 1~20 10~100 1.8 

Videophone Weakly 

hard 

4 10~50 40~66 2.0 
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Figure 5 Timing diagram for videophone application 

 

 
Figure 6 Invocation of video decoding in the hyperperiod 

 

Table 8 The exact distribution of the task 

 

Task video decoding 

Invocations µ-pattern 

1 - 20: 11111 11111 10111 11110 

 

 

The Table 8 points the exact distribution of missed 

and meets deadlines for invocations 1 to 20 of task 

video decoding.  

As can been seen task video decoding missed its 

deadline at its twelve and twenty invocations. Hence, 

task video decoding’s µ-pattern would be 11111 11111 

10111 11110. Thus, the weakly hard constraint for task 

video decoding is defined as 4

5

 
 
 

constraint. 

In conclusion, after another case study, named 

videophone application has been used for 

schedulability tests; the result obtained is the number 

of deadlines missed for videophone application is 

greater than INS. This is due to the fact that the task set 

of videophone application is softer than INS in term of 

the toleration of missed deadline. Nevertheless, both 

tasksets are weakly hard schedulable. 

11.0  PERFORMANCE EVALUATION 

 

In this section, we evaluated the performance of our 

weakly hard scheduling approach in terms of the 

deadline satisfaction ratio. For the performance 

comparison between our proposed scheduling 

approach with one of the existing approach, EMRTS-

MK was considered. We use this metric or in other 

words, performance measurement parameters in 

order to quantitatively evaluate system performance. 

Deadline satisfaction ratio derived from Wu and Jin [4], 

Kong and Cho [6, 7] and Lee et al. [25] defined as the 

number of deadlines satisfaction per total number of 

job releases. The deadline satisfaction ratio can be 

obtained by: 

 

100%
NumberofSchedulableTasksets

successRatio x
NumberofTotalTasksets



                                                                     (Eq. 4) 

 

 
 

Figure 7 Deadline satisfaction ratio of tasksets 

 

 

We show in Figure 7 the deadline satisfaction ratio of 

two different algorithms. It shows that, our proposed 

scheduling approach provides guaranteed 

performance better than EMRTS-MK. 

The success ratio is an important metric which we are 

greatly concerned about. The success ratio defined as 

the number of task sets that are schedulable under a 

given scheduling algorithm over the total number of 

the task sets. A good algorithm must have a high 

success ratio. The Average Meet Ratio is defined as 

the following equation [27]:  

 

0

( ) /
n

i

i

AverageMeetRatio Meet TotalNumberofExecution


  

                                                                     (Eq. 5) 

 

and the Average Miss Ratio is defined: 

 

0

( ) /
n

i

i

AverageMissRatio Miss TotalNumberofExecution


  

                                                                     (Eq. 6) 
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The number of meet of task is defined for Meeti and 
the number of miss of task is defined for Missi. n is the 
number of tasks.  

 

Figure 8 Meet/Miss ratio of the case study 

 
 
As shown in Figure 8, the proposed scheduling 

approach can effectively increase the meet ratio of 
systems with weakly hard real-time tasks as compared 
to EMRTS-MK approach. This is because the number of 
deadline satisfactions for our proposed scheduling 
approach is greater than the existing ones.  

The greater value of meet/success ratio 
demonstrates that an approach has the better 
performance of schedulability. 

Additionally, the purpose of the comparison table in 
Table 9 is to evaluate the proposed scheduling analysis 
approach with existing approach based on the 
selected characteristics. Immonen and Niemelä used 
a framework to compare some methodologies [26], 
which they called Normative Information Model-based 
Systems Analysis and Design (NIMSAD). This framework 
offers an essential learning model to evaluate the 
crucial elements of any problem-solving scenario [27]. 
NIMSAD consists of four categories: context, user, 
content, and evaluation. Thus, the approaches or 
models are classified into these categories.  

The first is the context category in which the 

classification of the method/approach is made by 

examining the viewpoint of the problem situation. In 

the user category, as the second category, the 

method/approach is examined from the viewpoint of 

the users. In the third category, the content of the 

method/approach itself is taken into account to 

examine in detail. The fourth category is the evaluation 

category that includes the method/approach 

validation. Elements in each category are defined to 

examine some specific requirements of the 

model/approach. In Table 9, the results of the 

evaluation are shown based on the specified criteria. 

 

 

 

 

Table 9 Results of the evaluation between the existing 

approach and proposed approach 

 
 

Category Criterion 
Kong and 

Cho (2012) 

Proposed 

Approach 

Context 
Scope of 

Applicability  

Do not 

propose any 

hybrid 

scheduling 

technique 

Proposed a 

hybrid 

scheduling 

technique 

User 
Required 

Extra Works  

To study one 

scheduling 

algorithm for 

static and 

dynamic  

schemes used 

 

To study 

partitioned 

scheduling 

approach, an 

exact 

schedulability 

analysis and 

deadline 

models  

Content 

Scheduling 

Approach 

Energy-

constrained 

Multiprocess

or Real-Time 

Scheduling 

(EMRTS-MK) 

Hybrid 

schedulability 

analysis 

consists of R-

BOUND-MP-

NFRNS, 

hyperperiod 

analysis and 

deadline 

models 

(weakly hard 

constraints 

and  µ-

pattern) 

Schedulability 

Test 

Pfair Worst-case 

utilization 

bounds and 

bin-packing 

algorithm 

 
Performance 

Measurement 

Parameter 

Dynamic 

failure ratio 

and success 

ratio 

Deadline 

satisfaction 

ratio (meet 

and miss ratio) 

 

Predictability 

To maximize 

the quality 

of 

multimedia 

services 

under both 

energy and 

weakly hard 

real-time 

constraint. 

To guarantee 

the 

satisfaction of 

the timing 

requirements 

of weakly hard 

real-time 

systems. 

Validation 

Maturity of 

the Proposed 

Approach 

Dynamic 

Voltage 

Scaling 

(DVS) 

Inertial 

Navigation 

System and 

videophone 

application 



189                         Habibah Ismail & Dayang N. A. Jawawi / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 179–190 

 

 

12.0  CONCLUSION 

 

In conclusion, this study has described the 

schedulability analysis of weakly hard real-time tasks 

on multiprocessor. The results analyses were 

investigated through an experiment with the INS and 

videophone application case studies. In this paper, we 

presented an offline static schedulability analysis in 

order to schedule periodic weakly hard real-time tasks. 

We have focused on partitioned scheduling 

approach.  

 We use R-BOUND-MP-NFRNS partitioned scheduling 

algorithm under the rate monotonic algorithm in order 

to assign each of task into processors. From the 

schedulability tests, task Position Updater missed its 

deadline, thus to guarantee the system is predictable, 

we analysed the task using hyperperiod analysis and 

deadline models/temporal constraints in order to know 

precisely the number of deadline met and missed for 

the task. To demonstrate the efficiency of our 

proposed approach, another case study is used as 

benchmark. Our results showed that, although the task 

Position Updater and video decoding missed their 

deadline, however, it is weakly hard schedulable This is 

because, the simulation result showed that the system 

is predictable due to the fact that, most deadlines are 

indeed met using exact schedulability analysis and we 

can obtain the number of deadlines missed and met 

for each task using deadline models. Most importantly, 

the proposed approach presented here can 

guarantee that both deadlines and timing constraints 

of the systems are successfully satisfied. 

We also evaluated the performance of the proposed 

approach in terms of the deadline satisfaction ratio. 

For comparison, EMRTS-MK was considered as existing 

approach for deadline-constrained tasks on 

multiprocessor. The Matlab simulation tool is used to 

simulate the performance. Our experimental studies 

validate our results analysis and evaluation showed the 

effectiveness of the proposed approach and has the 

better performance of schedulability compared to 

EMRTS-MK approach in terms of achieves a higher 

success ratio. In fact, compared with existing 

approach, the proposed approach provides higher 

meet ratio of systems with weakly hard real-time tasks 

on multiprocessor. 

Moreover, the results of the comparisons were 

derived using the selected criteria to show the 

differences between the approaches. It can be 

concluded that the proposed scheduling analysis 

approach can make the weakly hard real-time tasks 

more predictable based on used a tighter 

schedulability analysis and utilization-based tests 

performance metric. 

Regarding this approach, designers can provide 

more predictable weakly hard real-time systems based 

on using weakly hard scheduling technique consists of 

exact analysis such as hyperperiod analysis combining 

with deadline models or temporal constraints, namely 

weakly hard constraints and µ-patterns. Also, our 

approach can be useful on any multiprocessor system 

provided that worst-case bound delays can be 

obtained.  
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