

77:9 (2015) 179–190 | www.jurnalteknologi.utm.my | eISSN 2180–3722 |

Jurnal

Teknologi

Full Paper

A WEAKLY HARD SCHEDULING APPROACH OF

PARTITIONED SCHEDULING ON MULTIPROCESSOR

SYSTEMS

Habibah Ismail*, Dayang N. A. Jawawi

Department of Software Engineering, Faculty of Computing,

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor,

Malaysia

Article history

Received

2 February 2015

Received in revised form

14 September 2015

Accepted

12 October 2015

*Corresponding author

habibahisma@gmail.com

Graphical abstract

Abstract

Real-time systems or tasks can be classified into three categories, based on the

“seriousness” of deadline misses – hard, soft and weakly hard real-time tasks. The

consequences of a deadline miss of a hard real-time task can be prohibitively expensive

because all the tasks must meet their deadlines whereas soft real-time tasks tolerate “some”

deadline misses. Meanwhile, in a weakly hard real-time task, the distribution of its met and

missed deadlines is stated and specified precisely. As real-time application systems

increasingly come to be implemented upon multiprocessor environments, thus, this study

applies multiprocessor scheduling approach for verification of weakly hard real-time tasks

and to guaranteeing the timing requirements of the tasks. In fact, within the multiprocessor,

the task allocation problem seem even harder than in uniprocessor case; thus, in order to

cater that problem, the sufficient and efficient scheduling algorithm supported by accurate

schedulability analysis technique is present to provide weakly hard real-time guarantees. In

this paper, a weakly hard scheduling approach has been proposed and schedulability

analysis of proposed approach consists of the partitioned multiprocessor scheduling

techniques with solutions for the bin-packing problem, called R-BOUND-MP-NFRNS (R-

BOUND-MP with next-fit-ring noscaling) combining with the exact analysis, named

hyperperiod analysis and deadline models; weakly hard constraints and µ-pattern under

static priority scheduling. Then, Matlab simulation tool is used in order to validate the result

of analysis. From the evaluation results, it can be proven that the proposed approach

outperforms the existing approaches in terms of satisfaction of the tasks deadlines.

Keywords: Weakly hard real-time tasks, partitioned scheduling, multiprocessor systems,

hyperperiod analysis, deadlines models

Abstrak

Sistem atau tugas masa nyata boleh diklasifikasikan kepada tiga kategori, berdasarkan

"kesungguhan" terlepas tarikh akhir – tugas masa nyata yang keras, lembut dan keras yang

lemah. Kebarangkalian tugas masa nyata yang keras terlepas tarikh akhir boleh menjadi

terlampau mahal kerana semua tugas-tugas mesti memenuhi tarikh akhir mereka

sedangkan masa nyata yang lembut boleh bertolak ansur "beberapa" tarikh akhir yang

terlepas. Sementara itu, dalam tugas masa nyata keras yang lemah, pengagihan tarikh

akhir yang bertemu dan terlepas dinyatakan dengan tepat. Disebabkan peningkatan

terhadap aplikasi sistem masa nyata yang dilaksanakan kepada persekitaran multi

pemproses, dengan itu, kajian ini mengaplikasikan pendekatan penjadualan multi

pemproses untuk pengesahan tugas masa nyata keras yang lemah dan untuk menjamin

keperluan masa tugas-tugas. Malah, dalam multi pemproses, masalah peruntukan tugas

kelihatan lebih sukar daripada dalam kes uni pemproses; dengan itu, untuk menampung

masalah itu, algoritma penjadualan yang cekap disokong oleh teknik penjadualan analisis

yang tepat diperkenalkan untuk memberikan jaminan masa nyata keras yang lemah.

Dalam penulisan ini, pendekatan penjadualan keras yang lemah telah dicadangkan dan

pendekatan penjadualan analisis yang dicadangkan terdiri daripada teknik-teknik

180 Habibah Ismail & Dayang N. A. Jawawi / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 179–190

penjadualan multi pemproses dibahagikan dengan penyelesaian untuk masalah

pembungkusan-pemproses, yang dikenali sebagai R-TERIKAT-MP-NFRNS (R-TERIKAT-MP

dengan cincin-sesuai-seterusnya yang tiada skala) digabungkan dengan analisis yang

tepat, yang dinamakan analisis hyperperiod dan model tarikh akhir; kekangan keras yang

lemah dan μ-corak di bawah penjadualan keutamaan statik. Kemudian, alat simulasi

Matlab digunakan untuk mengesahkan hasil daripada analisis. Daripada hasil penilaian, ia

membuktikan bahawa pendekatan yang dicadangkan adalah melebihi prestasi

pendekatan yang sedia ada dari segi memenuhi tarikh akhir tugas-tugas.

Kata kunci: Tugas masa nyata keras yang lemah, penjadualan dibahagikan, sistem multi

pemproses, analisis hyperperiod, model tarikh akhir

© 2015 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

Every task in the system which is completed in period

of time is referred to a real-time system. For real-time

systems, it should be predictable and ensure that all

timing constraints will always be met. Guaranteeing

temporal correctness is the endmost goal of real-time

systems analysis where verifying a priori that no task

has always missed the deadline, or if the deadline be

missed, it missed by not more than a certain amount of

time. The temporal correctness is depending on the

task that has being scheduled. Due to the need to

validate temporal correctness of the tasks, real-time

scheduling algorithms need to be utilized and

schedulability tests must be derived.

In order to determine when to execute which task on

which processor if it has more than one processor, a

scheduling algorithm could be used. In order to

determine whether a real-time system can run within

the timing constraints put upon it, a number of

different algorithms have been designed to analyse a

system and determine whether it is schedulable or not.

The timing constrained requirements are the direct

input for the scheduling analysis algorithms. But,

schedulability analysis is needed to analyze the

satisfaction of tasks either its deadlines can be met or

not. Schedulability analysis is a mathematically sound

way of predicting the timing behaviour of a set of real-

time systems [1]. It is used in many different ways such

as at design time or at run-time. In order to do the

schedulability analysis and design for real-time systems,

a task execution time and a task period must be

obtain because both information are needed in

related scheduling parameters especially for periodic

tasks.

Timing requirements or constraints are being defined

in terms of deadlines for the activities. Computations

occurring in a real-time system that have timing

constraints are called real-time tasks. The classification

of real-time systems or tasks divided into two

categories, based on the “seriousness” of deadline

misses – hard real-time tasks and soft real-time tasks [2].

The consequences of deadlines miss for a hard real-

time task system cannot be tolerated because some

failure can affects the systems performance whereas

“some” deadline misses are tolerated for soft real-time

task systems. An automobile braking system is an

example of a hard real-time system. When the driver

pressed the brakes, the automobile can meet with an

accident, if the systems are not appropriately

responds. On the other hand, consider an online

transaction system as a soft real-time example in

which some laxity of task deadlines are tolerated; the

users does not mind if during the processing of their

transaction, a little delay happens but within

“acceptable” limits. Nowadays, most real-time

applications consist of a mix of hard and soft real-time

tasks, and it called weakly hard real-time system.
A typical example of systems with weakly hard real-

time requirements is multimedia systems, such as

videophone application because some delay during

execution is acceptable in that system and it is

unnecessary to meet all the tasks deadlines as long as

the misses (or deadlines) are specified precisely. In a

weakly hard real-time system, the number of deadlines

that may be missed can be specified. This makes a

weakly hard real-time system stronger than a soft real-

time system.
Such weakly hard real-time scheduling approach

has traditionally focused upon scheduling analysis on

uniprocessor. As a system becomes more complex

and significantly increasing functionality, attention has

been given to multiprocessor scheduling, comprised of

several processors. Research on multiprocessor

scheduling has mainly focused on ensuring strict

compliance deadlines and several scheduling

techniques were adopted. In an effort, Carpenter et

al. have cataloged multiprocessor real-time

scheduling algorithm considers the degree of

migration jobs or tasks and the complexity of the

mechanism of priority [3]. The classes of priorities

includes such as (a) static priority, where task priorities

are never change, Rate Monotonic Algorithm (RMA);

(b) dynamic priority, where job or task priorities are

change dynamically, Earliest Deadline First (EDF). The

classification of multiprocessor scheduling is divided

into partitioned and global [3].

2.0 RELATED WORKS

There have been some efforts that relate to schedule

weakly hard real-time tasks on multiprocessor systems.

Wu and Jin proposed the classical weakly hard real-

181 Habibah Ismail & Dayang N. A. Jawawi / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 179–190

time scheduling algorithms, namely Distance Based

Priority (DBP) to apply into multiprocessor applications

to guarantee QoS of both hard real-time tasks and

multimedia streams even under overload conditions

[4]. In fact, the DBP algorithm originally was introduced

by Hamdaoui and Ramanathan on uniprocessor

system [5]. However, even when the system is under

loaded, MPDBPs do not maximize the performance

and the task deadline satisfaction ratio even when

possible, which eventually fails to provide the best

quality of service for multimedia streaming

applications.

Another work is done by Kong and Cho where they

designed a new dynamic scheduling algorithm known

as the Guaranteed Multiprocessor Real-Time

Scheduling (GMRTS-MK) algorithm for (m,k)-firm

constrained tasks on homogenous multiprocessors [6].

However, the algorithm that they used will cause an

increase in the ratio caused by the increasing number

of tasks. Later, the same author, Kong and Cho

introduced an Energy-constrained Multiprocessor Real-

Time Scheduling (EMRTS-MK) class algorithms for

weakly hard real-time for (m,k)-firm deadline

constrained tasks running on multiprocessor.

Multimedia service quality is maximized under energy-

constrained when the static and dynamic EMRTS-MKs

that they propose is using weakly hard real-time

constraints [7]. However, EMRTS-MKs considers energy

to make its scheduling decision.
Several static and dynamic approaches on

partitioned multiprocessor scheduling have been
proposed but most prior research is limits for hard and
soft real-time tasks. The most well-known static priority
scheduling algorithm is Rate Monotonic-First Fit (RM-FF),
which use First-fit-bin-packing algorithm [8]. Thereafter,
another algorithm called R-BOUND-MP-NFR
(multiprocessor next-fit-ring) is presented with the best
results of partitioned static priority scheduling reaching
50%. It introduces the NFR heuristic into the R-BOUND-
MP algorithm [9]. Here, R-BOUND-MP is a previously
known multiprocessor (MP) scheduling which
combines R-BOUND [10] with First-Fit bin-packing
algorithm and exploits R-BOUND. Then, Andersson in his
PhD thesis proposed a new algorithm, called R-
BOUND-MP-NFRNS to deal with maximizing the
capacity used for the tasks without missing a deadline
[11]. These stated researchers are using the allocation
algorithm in their approaches.

Later, AlEnawy and Aydin adopted partitioned
scheduling consider to cater the problem of energy
minimization for periodic pre-emptive hard real-time
tasks that are scheduled on an identical
multiprocessor platform with dynamic voltage scaling
capability [12].

Fisher et al. presented a polynomial-time partitioning
approach for general sporadic task systems on an
identical multiprocessor platform when static-priority
scheduling policies are used on each processor [13].
This approach was adopted by Niemeier et al
specifically deriving polynomial-time algorithms for
solving several partitioning real-time scheduling
problems on heterogeneous multiprocessor platforms
[14].

Chishiro and Yamasaki performed experimental
evaluations of partitioned semi-fixed priority scheduling
in the extended imprecise computation model of
multicore systems for comparable overhead [15].
Afterwards, Fan et al. presented a new partitioned
scheduling approach to schedule fixed-priority
periodic real-time tasks on multi-core platforms under
Rate Monotonic Scheduling (RMS) policy [16]. Both
approaches that they proposed are used for multicore
systems.

There are some simple dynamic priority scheduling
algorithm that using the allocation algorithms, such as
EDF-FF (Earliest Deadline First-Fit), EDF-BF (Earliest
Deadline Best-Fit) and Earliest Deadline Next-Fit (EDF-
NF) [17]. The following two approaches were used on
identical multiprocessor platform. Muller and Werner
combined partitioned scheduling with EDF and used
the classical approach of bin-packing with utilization
bounds [18]. They considered periodic and
preemptive with implicit deadlines on an identical
multiprocessor. Later on, Baruah studied the
partitioned EDF scheduling of sporadic task systems on
identical multiprocessor platforms [19].

In most cases, if the task set is fixed and known a
priori, the partitioning approach is becoming the most
appropriate solution. Based on the review, in the past,
partitioned scheduling of multiprocessor systems has
been extensively studied but the used of scheduling
analysis approaches of partitioning real-time
scheduling is extremely applied for hard real-time
tasks. Hence, due to this limitation, it is required to find
the solution for applying partitioned scheduling
approach for weakly hard real-time tasks where
violation of task is allowed.

Unfortunately, the existing works on scheduling and
schedulability analysis techniques of weakly hard real-
time tasks are focused on global scheduling
approach, thus, the aim of this paper is to contribute
towards guaranteed weakly hard real-time scheduling
by adopting partitioned scheduling approach and
static priority assignment policy and the implement of
task can be forecast. Static priority scheduling is
considered than dynamic priority because it is an
attractive option for real-time applications since it can
ensure both the predictability of worst case behaviour
and high resource utilization.

The objective of the paper is to guarantee the

satisfaction of the timing constraints and parameter of

weakly hard real-time systems. Solutions to the

problem are by providing a schedulability analysis of

periodic and preemptive tasks that are constrained by

weakly hard real-time temporal constraints on

multiprocessor.

3.0 A WEAKLY HARD SCHEDULING
APPROACH

The main focused of research on multiprocessor

scheduling is on guaranteeing the completion of

deadlines. However, for weakly hard real-time tasks

where violation of a task is allowed, we proposed the

weakly hard scheduling approach to cater task

allocation problem in partitioned scheduling. In this

182 Habibah Ismail & Dayang N. A. Jawawi / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 179–190

approach, we adopted the technique by using bin-

packing algorithm because it is known as the best

heuristics that solved the task allocation problem.

Also, we used well-known, widely used and a useful

performance metric, worst case utilization bounds.

Within the context of preemptive scheduling of

periodic tasksets, in order to make the multiprocessor

scheduling algorithm resilient with exceptions, the

algorithms must be combined with specific techniques

such as hyperperiod analysis first to recover from

deadline missing.

Due to the limitation of previous approaches wherein

most of the partitioned scheduling algorithm is applied

for hard real-time tasks, thus, we propose a solution to

be applied for weakly hard real-time tasks (i.e. weakly

hard real-time requirements, such as deadline

models).

To the best of our knowledge, the weakly hard

scheduling approach that we proposed is the first

static real-time scheduling approach that provides a

guaranteed performance for weakly hard real-time

tasks on multiprocessor partitioned scheduling. We

illustrate the flow of weakly hard scheduling approach

of partitioned scheduling in Figure 1.

Figure 1 A weakly hard scheduling approach

4.0 THE PARTITIONED SCHEDULING

In the partitioning approach [3] (also known as offline

processor assignment), no migration is allowed, where

tasks are statically partitioned and allocated to

processors (i.e. there is a need to choose a processor

for all tasks and then run local scheduler on each

processor with no migration. This is because;

partitioned scheduling algorithms partitioned a task set

into groups beforehand or in other words, at design

time. Here, the priority is to statically assign a set of

periodic tasks to a set of processors. A separate ready

queue is held by each processor such that a specific

processor is assigned by each task group. In other

words, during the run-time, no migration of tasks is

permitted from one processor to other processor. Thus,

multiprocessor scheduling is equivalent to multiple

uniprocessor system.

Additionally, the schedulability of partitioned

scheduling can be verified by using well-understood

uniprocessor analysis techniques. The main advantage

of partitioning approaches is that it reduces a

multiprocessor scheduling problem to a set of

uniprocessor ones and partitioning approaches are

widely used by system designers and received greater

attention by researchers.

As shown in Figure 2, in partitioned scheduling, arrival

jobs of tasks using a partitioning algorithm first is due to

assign tasks to processors. Then, the local job queue is

then used to place the generated jobs of each task.

After that, in order to schedule jobs to each processor,

a uniprocessor scheduling is used.

Figure 2 A multiprocessor partitioned scheduling

5.0 THE BIN-PACKING ALGORITHM

Each task having its own dedicated processor, as

partition method divides tasks into partitions. Many

heuristic have been proposed for partitioning. The bin-

packing algorithm appears to be the popular choice

[20]. In order to determine whether or not a given task

can be allocated to a given processor, the bin-

packing algorithm often depends on schedulability

test. The following equation is to use as knowledge in

schedulability test:

1
(,)

pn i
p p

i
i

C
B r n

T


(Eq. 1)

183 Habibah Ismail & Dayang N. A. Jawawi / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 179–190

This condition uses information of the periods of the

task set to achieve a high utilization. Note that in order

to schedule tasks on processor p, rate monotonic

algorithm is used. Thus, p is defined by the number of

task assigned to processor p which denote by np. The

fraction between the maximum and the minimum

period among the tasks assigned to processor p is

denoted by rp. r denotes the set of all n tasks and it

holds that p : 1 ≤ rp < 2. Let Equation 1:

1

(,) (1) 2 / 1
np

p p p p pB r n n r r   
 (Eq. 2)

The algorithm R-BOUND-MP-NFRNS (R-BOUND-MP

with next-fit-ring noscaling) [11] is used to partition the

scheduling algorithm which is derived from the

multiprocessor scheduling algorithm, R-BOUND-MP

(combined R-BOUND [10] with a first-fit-bin-packing

algorithm). R-BOUND is a uniprocessor scheduling

algorithm for partitioned scheduling. The R-BOUND-MP-

NFRNS requirements are elaborated as follows:

i. Sorting of tasks in the ascending order of

periods where the first task needed to be

considered is the task with the smallest period.

ii. Each uniprocessor uses Equation 1 in a

schedulability test.

iii. The next-fit-bin-packing algorithm is used to

assign each task.

iv. The task is assigned to processor 1 upon failure

of the task assigned to processor p.

6.0 HYPERPERIOD ANALYSIS

Another alternative way to study the performance of a
scheduling algorithm or to verify the schedulability of a
task set, is through the use of an exact analysis such as
hyperperiod analysis. Here, it can be used to verify if a
task set misses any deadline, showing if it is
unschedulable. Additionally, it can also be used as
sufficient condition for unschedulability. The task set
hyperperiod (0, H(τ)) is a feasibility interval for implicit
and constrained deadline synchronous periodic
tasksets, when scheduled by a deterministic and
memoryless algorithm, such as RMA [21].
 For these algorithms, the schedulability of the task set
can be verified by checking if the schedule generated
misses any deadline using the least common multiple
calculation. It is possible to use hyperperiod analysis on
multiprocessor scheduling because of using periodic
task with deadline and preemptive fixed priority
scheduling.

The higher order period or the hyperperiod, hi consists
of the number of invocations of a task in the

hyperperiod at level i, ai =
ℎ𝑖

𝑇𝑖
 [22]. The least common

multiple tool is used in order to get values of the
hyperperiod. The hyperperiod hi equation is given by
[22]:

hi = lcm{Tj | ∈ hep(ґi)} (Eq. 3)

lcm is the least common multiple of the periods of

the tasks and hep(ґi) is the set of tasks with a priority

higher than or equal to task ґi.

7.0 WEAKLY HARD CONSTRAINTS AND µ-
PATTERN

Bernat et al. defined the weakly hard constraints in

order to precisely specify how many deadlines may be

missed and met [22]. The consecutiveness of lost

deadlines is very sensitive for some systems while others

are only sensitive to the number of deadlines missed.

The merger of the two judgments, (a) consecutiveness

vs. non-consecutiveness, and (b) missed vs. met

deadlines concretely guides to four basic constraints

(n ≥ 1, n ≤ m).

i. A task ґ “meets any n in m deadlines”,

denoted 








m

n
, if, in any window of m

consecutive invocations of the task, there are

at least n invocations in any order that meet

the deadline.

ii. A task ґ “meets row n in m deadlines”,

denoted
m

n
, if, in any window of m

consecutive invocations of the task, there are

at least n consecutive invocations that meet

the deadline.

iii. A task ґ “misses any n in m deadlines”,

denoted 








m

n
, if, in any window of m

consecutive invocations of the task, no more

of n deadlines are missed.

iv. A task ґ “misses row n in m deadlines”,

denoted
m

n
, if, in any window of m

consecutive invocations of the task, it is never

the case that n consecutive invocations miss

their deadline.

The term ґ denotes the set of all possible weakly hard

constraints of these four types. The four constraints or

cases are summarized in Table 1.

184 Habibah Ismail & Dayang N. A. Jawawi / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 179–190

Table 1 Weakly hard constraints

For example, 








5

4
 expresses that the task has to

meet 4 deadlines in every 5 invocations. Note that this

is equivalent to 








5

1
. 









4

2
 meaning that at least 2

deadlines have to be met in any 4 consecutive

invocations. Note that this allows 2 deadlines to be

missed consecutively.

On the contrary,
4

2
 means that in any 4

consecutive invocations, at least 2 consecutive

deadlines have to be met. This also means that only

one deadline can be missed in any 4 invocations.
6

3

means that no more than 3 deadlines can be missed

in a row in 6 consecutive invocations of the task.

A µ-pattern is a pattern of deadlines missed during a

period of time. A µ-pattern is denoted by a 0 (zeros)

that represent missed deadlines and by a 1 (ones)

represent met deadlines. The sequence of zeros and

ones can be used to characterise a task. For example,

a task that has a pattern or sequence 11001101 and it

does satisfy a 2

4

 
 
 

constraint because there is at least

“1’s” in any 4 consecutive symbols, however it does

not satisfy 1

2

 
 
 

 because there is a sequence that

have 2 consecutive “0’s” without a 1.

8.0 AN INERTIAL NAVIGATION SYSTEM (INS)
CASE STUDY

We chose the INS case study based on the one
described by Borger because it consists of a mixture
hard and soft tasks [23]. Thus, it is unnecessary for the
system to meet the entire task deadlines as long as the
misses (or deadlines) are spaced distantly/evenly or, in
other words, is weakly hard real-time tasks. We first
present a task set derived from the INS system that
consists of six tasks and all the tasks are listed in Table 2.

Table 2 The task set of INS case study

The six main subsystems of the INS used in the case

study consist of Attitude Updater, Velocity Updater,
Attitude Sender, Navigation Sender, Status Display and
Position Updater. Each subsystems has deadline that
equals its period. The INS system is the executive
subsystems that support the scheduling of the INS task
set via the real-time task dispatcher.

Among the six tasks, four tasks are known as hard
tasks and another two tasks are known as soft tasks.
The Attitude Updater, Velocity Updater, Attitude
Sender and Navigation Sender tasks are specified as
hard periodic tasks. Meanwhile, the Status Display and
Position Updater tasks are specified as soft periodic
tasks.

In the parameters, Ti is the period of the task, and Di
refers to the relative deadline of the task that must be
finished. Every task is periodic and we assumed that Di
= Ti. Ci represents the worst case execution time of the
tasks.

9.0 A SCHEDULABILITY ANALYSIS OF
PARTITIONED SCHEDULING

A schedulability test or analysis is a condition in order
to know whether a task set meets its deadlines or not.
The system behaves in partitioned scheduling as
explained in details as follows. The processor is
assigned with each task in order to assign a local (for a
processor) with static priority.

Attitude Updater has the highest priority because the

task priority was decreasing in each processor.

Consider six tasks in Table 3, where these tasks needed

to be scheduled using 2 processors with R-BOUND-MP-

NFRNS.

 Met deadlines Missed deadlines

Any order










m

n
 









m

n

Consecutive

m

n

n

Task Ti Ci

Attitude Updater (T1)

10

1

Velocity Updater (T2) 15 4

Attitude Sender (T3) 20 10

Navigation Sender (T4) 50 20

Status Display (T5)

50 20

Position Updater (T6) 100 10

185 Habibah Ismail & Dayang N. A. Jawawi / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 179–190

Table Task parameters of the task set and processors

 Furthermore, the algorithm is responsible to sort the

task periods in ascending order. On this analysis,

processor 1 is the current one with the tasks has been

assigned in order. Moreover, Attitude Updater has

been selected and assigned into processor 1.

Afterwards, Velocity Updater has been tried to assign

into processor 1, which is successful due to the T2/T1 =

1.5 and n1 = 2 gives the utilization sum for these two

tasks is 0.4.

The task named Attitude Sender is attempted to be

assigned to Processor 1 where it fails due to the max

(T1,T2,T3)/min (T1,T2,T3) = 2.0 and n2 = 3 the utilization sum

of these three tasks is 0.9 resulting to the task being

assigned to processor 2. Next, processor 2 is identified

as the current processor. Afterwards, the processor 2

has been assigned with task named Navigation

Sender. Here, task assignment is successful due to the

T4/T3 = 2.5 and n2 = 2 values, in turn, gives the utilization

sum of the tasks to 0.9.

Later on, the task named Status Display is attempted

to be assigned into Processor 2 where it fails due to the

max (T3,T4,T5)/min (T3,T4,T5) = 2.5 and n1 = 3 the utilization

sum of these three tasks is 1.3. Hence, it is assigned to

processor 1. Next, processor 1 is identified as the

current processor. The task named Position Updater

has been tried to assign to processor 1, which is

successful due to the max (T1,T2,T5,T6)/min (T1,T2,T5,T6) =

10.0 and n1 = 4 giving the utilization sum for these four

tasks of 0.9. Table 3 shows which processor of each

task is assigned.

Later, in Figure 3 we show a timing diagram which

has been designed for a partitioned static priority

scheduling algorithm along with the utilization bound

U, wherein Ui = Ci/Ti. From the figure, it should be noted

that task Position Updater missed its deadline by two

time units. This is made task Position Updater

unschedulable.

Figure 3 Timing diagram of partitioned scheduling for INS

Hence, hyperperiod analysis and weakly hard

temporal constraints can be used to guarantee that

both deadlines and constraints are satisfied if there

have one or more tasks missed its deadline. In order to

guarantee that task Position Updater meet its

deadlines and satisfy its weakly hard temporal

constraints, an exact analysis is perform to make the

tasks predictable.

In order to show that exact number of deadlines that

can be missed, hyperperiod analysis and weakly hard

deadline models/temporal constraints are used.

Table 4 The hyperperiod analysis

From the results in Table 4, even though task Position

Updater missed its deadline at the utilization bound,

but by using hyperperiod analysis, the number of

deadline missed for that task can be specified.

The utilization bound at each invocation within the

hyperperiod at priority level 6 and as depicts in Figure

4, the task is invoked α6 = 3 times within the

hyperperiod at level 6.

Task

Ti

Ci

Ui

Pi

Attitude Updater (T1)

10

1

0.1

1

Velocity Updater (T2) 15 4 0.3 1

Attitude Sender (T3) 20 10 0.5 2

Navigation Sender (T4) 50 20 0.4 2

Status Display (T5) 50 20 0.4 1

Position Updater (T6) 100 12 0.1 1

Task

Ti

Ci

hi

ai

Attitude Updater (T1)

10

1

10

1

Velocity Updater (T2) 15 4 30 2

Attitude Sender (T3) 20 10 60 3

Navigation Sender (T4) 50 20 300 6

Status Display (T5)

50 20 300 6

Position Updater (T6) 100 12 300 3

186 Habibah Ismail & Dayang N. A. Jawawi / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 179–190

The following Table 5 shows the exact distribution of

the missed and met deadlines for invocations 1 to 3 of

task Position Updater.

Figure 4 Invocation of Position Updater in the hyperperiod

Table 5 The exact distribution of the task

As can been seen, task Position Updater missed its

deadline at its second and third invocations. Using

weakly hard constraints, we can precisely specify the

number of deadline met and missed for the task. So,

task Position Updater’s µ-pattern would be 100. A 0

represents a deadline missed and a 1 a deadline met.

It can miss it at most 2 times during its hyperperiod, (2

times every 3 invocations).
Thus, the weakly hard constraint for task Position

Updater is defined as 1

3

 
 
 

 constraint. Checking

Position Updater’s weakly hard constraint shows that it
is satisfied, despite the miss and we can concluded
that the system is weakly hard schedulable. The main
objective of weakly hard constraints is to guarantee
the tasks meet their timing constraints even though
during execution time there are some deadlines may
be missed. Meanwhile, µ-patterns are used to
determine how the deadline can be missed in terms of
the consecutiveness or non-consecutiveness of such
missed and met deadlines.

10.0 RESULTS AND DISCUSSION

In this section, we give the videophone application

case study as benchmark [24]. A set of benchmark’s

characteristic as given in Table 6. It consists of a set of

tasks and in the second column; we listed the number

of tasks. The range of these tasks execution times and

periods as depicts in the third and fourth columns. The

last column shows utilization. We applied the task set of

videophone application into our experiment and the

results are shown in Table 7.

The cases analysed by Bernat et al. show that soft

real-time systems are not that soft as it is generally

required to specify upper bounds on the number and

pattern of deadlines missed during a period of time

[22]. All parameters of tasks of videophone application

are listed in Table 7.

Table 6 The benchmark

Table 7 Task set of videophone application

VSELP speech encoding has the highest priority

because the task priority was decreasing in each

processor. Consider four tasks in Table 3, where these

tasks needed to be scheduled using 2 processors with

R-BOUND-MP-NFRNS.

On this analysis, processor 1 is the current one with

the tasks has been assigned in order. Moreover, VSELP

speech encoding has been selected and assigned

into processor 1. Afterwards, VSELP speech decoding

has been tried to assign into processor 1, which is

successful due to the T2/T1 = 1.0 and n1 = 2 gives the

utilization sum for these two tasks is 0.75. The task

named MPEG-4 video encoding is attempted to be

assigned into Processor 1 where it fails due to the max

(T1,T2,T3)/min (T1,T2,T3) = 1.65 and n2 = 3 the utilization

sum of these three tasks is 1.2 which resulting the task is

assigned into processor 2. Next, processor 2 is identified

as the current processor. Afterwards, the processor 2

has been assigned with task named MPEG-4 video

decoding. The assignment is successful as T4/T3 = 1.0

and n2 = 2 giving the utilization sum of the tasks of 1.25.

Referring to Figure 5, even though the timing

diagram shows that task video decoding missed its

deadline by fourteen time units, it is weakly hard

schedulable. Then, Figure 6 shows that the task is

invoked α4 = 20 times within the hyperperiod at priority

level 4.

Task Ti Ci

Ui Pi hi ai

VSELP speech

encoding (T1)

40 20 0.5 1 40 1

VSELP speech

decoding (T2)

40 10 0.25 1 40 1

MPEG-4 video

encoding (T3)

66 30 0.45 2 1320 20

MPEG-4 video

decoding (T4)

66 50 0.8 2 1320 20
Task Position Updater

Invocations µ-pattern

1 - 3: 100

Applications Task

type

Num of

tasks

Execution

time (ms)

Period

(ms)

Total

Utilization

INS Weakly

hard

6 1~20 10~100 1.8

Videophone Weakly

hard

4 10~50 40~66 2.0

187 Habibah Ismail & Dayang N. A. Jawawi / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 179–190

Figure 5 Timing diagram for videophone application

Figure 6 Invocation of video decoding in the hyperperiod

Table 8 The exact distribution of the task

Task video decoding

Invocations µ-pattern

1 - 20: 11111 11111 10111 11110

The Table 8 points the exact distribution of missed

and meets deadlines for invocations 1 to 20 of task

video decoding.

As can been seen task video decoding missed its

deadline at its twelve and twenty invocations. Hence,

task video decoding’s µ-pattern would be 11111 11111

10111 11110. Thus, the weakly hard constraint for task

video decoding is defined as 4

5

 
 
 

constraint.

In conclusion, after another case study, named

videophone application has been used for

schedulability tests; the result obtained is the number

of deadlines missed for videophone application is

greater than INS. This is due to the fact that the task set

of videophone application is softer than INS in term of

the toleration of missed deadline. Nevertheless, both

tasksets are weakly hard schedulable.

11.0 PERFORMANCE EVALUATION

In this section, we evaluated the performance of our

weakly hard scheduling approach in terms of the

deadline satisfaction ratio. For the performance

comparison between our proposed scheduling

approach with one of the existing approach, EMRTS-

MK was considered. We use this metric or in other

words, performance measurement parameters in

order to quantitatively evaluate system performance.

Deadline satisfaction ratio derived from Wu and Jin [4],

Kong and Cho [6, 7] and Lee et al. [25] defined as the

number of deadlines satisfaction per total number of

job releases. The deadline satisfaction ratio can be

obtained by:

100%
NumberofSchedulableTasksets

successRatio x
NumberofTotalTasksets



 (Eq. 4)

Figure 7 Deadline satisfaction ratio of tasksets

We show in Figure 7 the deadline satisfaction ratio of

two different algorithms. It shows that, our proposed

scheduling approach provides guaranteed

performance better than EMRTS-MK.

The success ratio is an important metric which we are

greatly concerned about. The success ratio defined as

the number of task sets that are schedulable under a

given scheduling algorithm over the total number of

the task sets. A good algorithm must have a high

success ratio. The Average Meet Ratio is defined as

the following equation [27]:

0

() /
n

i

i

AverageMeetRatio Meet TotalNumberofExecution




 (Eq. 5)

and the Average Miss Ratio is defined:

0

() /
n

i

i

AverageMissRatio Miss TotalNumberofExecution




 (Eq. 6)

188 Habibah Ismail & Dayang N. A. Jawawi / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 179–190

The number of meet of task is defined for Meeti and
the number of miss of task is defined for Missi. n is the
number of tasks.

Figure 8 Meet/Miss ratio of the case study

As shown in Figure 8, the proposed scheduling

approach can effectively increase the meet ratio of
systems with weakly hard real-time tasks as compared
to EMRTS-MK approach. This is because the number of
deadline satisfactions for our proposed scheduling
approach is greater than the existing ones.

The greater value of meet/success ratio
demonstrates that an approach has the better
performance of schedulability.

Additionally, the purpose of the comparison table in
Table 9 is to evaluate the proposed scheduling analysis
approach with existing approach based on the
selected characteristics. Immonen and Niemelä used
a framework to compare some methodologies [26],
which they called Normative Information Model-based
Systems Analysis and Design (NIMSAD). This framework
offers an essential learning model to evaluate the
crucial elements of any problem-solving scenario [27].
NIMSAD consists of four categories: context, user,
content, and evaluation. Thus, the approaches or
models are classified into these categories.

The first is the context category in which the

classification of the method/approach is made by

examining the viewpoint of the problem situation. In

the user category, as the second category, the

method/approach is examined from the viewpoint of

the users. In the third category, the content of the

method/approach itself is taken into account to

examine in detail. The fourth category is the evaluation

category that includes the method/approach

validation. Elements in each category are defined to

examine some specific requirements of the

model/approach. In Table 9, the results of the

evaluation are shown based on the specified criteria.

Table 9 Results of the evaluation between the existing

approach and proposed approach

Category Criterion
Kong and

Cho (2012)

Proposed

Approach

Context
Scope of

Applicability

Do not

propose any

hybrid

scheduling

technique

Proposed a

hybrid

scheduling

technique

User
Required

Extra Works

To study one

scheduling

algorithm for

static and

dynamic

schemes used

To study

partitioned

scheduling

approach, an

exact

schedulability

analysis and

deadline

models

Content

Scheduling

Approach

Energy-

constrained

Multiprocess

or Real-Time

Scheduling

(EMRTS-MK)

Hybrid

schedulability

analysis

consists of R-

BOUND-MP-

NFRNS,

hyperperiod

analysis and

deadline

models

(weakly hard

constraints

and µ-

pattern)

Schedulability

Test

Pfair Worst-case

utilization

bounds and

bin-packing

algorithm

Performance

Measurement

Parameter

Dynamic

failure ratio

and success

ratio

Deadline

satisfaction

ratio (meet

and miss ratio)

Predictability

To maximize

the quality

of

multimedia

services

under both

energy and

weakly hard

real-time

constraint.

To guarantee

the

satisfaction of

the timing

requirements

of weakly hard

real-time

systems.

Validation

Maturity of

the Proposed

Approach

Dynamic

Voltage

Scaling

(DVS)

Inertial

Navigation

System and

videophone

application

189 Habibah Ismail & Dayang N. A. Jawawi / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 179–190

12.0 CONCLUSION

In conclusion, this study has described the

schedulability analysis of weakly hard real-time tasks

on multiprocessor. The results analyses were

investigated through an experiment with the INS and

videophone application case studies. In this paper, we

presented an offline static schedulability analysis in

order to schedule periodic weakly hard real-time tasks.

We have focused on partitioned scheduling

approach.

 We use R-BOUND-MP-NFRNS partitioned scheduling

algorithm under the rate monotonic algorithm in order

to assign each of task into processors. From the

schedulability tests, task Position Updater missed its

deadline, thus to guarantee the system is predictable,

we analysed the task using hyperperiod analysis and

deadline models/temporal constraints in order to know

precisely the number of deadline met and missed for

the task. To demonstrate the efficiency of our

proposed approach, another case study is used as

benchmark. Our results showed that, although the task

Position Updater and video decoding missed their

deadline, however, it is weakly hard schedulable This is

because, the simulation result showed that the system

is predictable due to the fact that, most deadlines are

indeed met using exact schedulability analysis and we

can obtain the number of deadlines missed and met

for each task using deadline models. Most importantly,

the proposed approach presented here can

guarantee that both deadlines and timing constraints

of the systems are successfully satisfied.

We also evaluated the performance of the proposed

approach in terms of the deadline satisfaction ratio.

For comparison, EMRTS-MK was considered as existing

approach for deadline-constrained tasks on

multiprocessor. The Matlab simulation tool is used to

simulate the performance. Our experimental studies

validate our results analysis and evaluation showed the

effectiveness of the proposed approach and has the

better performance of schedulability compared to

EMRTS-MK approach in terms of achieves a higher

success ratio. In fact, compared with existing

approach, the proposed approach provides higher

meet ratio of systems with weakly hard real-time tasks

on multiprocessor.

Moreover, the results of the comparisons were

derived using the selected criteria to show the

differences between the approaches. It can be

concluded that the proposed scheduling analysis

approach can make the weakly hard real-time tasks

more predictable based on used a tighter

schedulability analysis and utilization-based tests

performance metric.

Regarding this approach, designers can provide

more predictable weakly hard real-time systems based

on using weakly hard scheduling technique consists of

exact analysis such as hyperperiod analysis combining

with deadline models or temporal constraints, namely

weakly hard constraints and µ-patterns. Also, our

approach can be useful on any multiprocessor system

provided that worst-case bound delays can be

obtained.

Acknowledgement

The authors would like to thank profoundly to the

Zamalah Scholarship from UTM, the Research Grant

University (RUG) Vote No. 05H75, Ministry of Science,

Technology and Innovation Malaysia (MOSTI) Vote No.

4S064, the Universiti Teknologi Malaysia (UTM) for their

financial support and not forgotten, the Software

Engineering Research Group (SERG) and EReTSEL lab

members for their help.

References

[1] Klein. M. H. 1993. A Practitioner’s Handbook for Real-Time

Analysis: Guide to Rate Monotonic Analysis for Real-Time

System. Boston: Kluwer Academic Publisher.

[2] Bernat, G. and Burns, A. 2001. Weakly Hard Real-Time

Systems. IEEE Transactions on Computers. 50(4): 308-321.

[3] Carpenter, J., Funk, S., Holman, P., Srinivasan, A., Anderson,

J. and Baruah, S. 2004. A Categorization of Real-Time

Multiprocessor Scheduling Problems and Algorithms.

Handbook on Scheduling Algorithms, Methods and Models.

Chapman Hall. CRC. 30.1-30.19.

[4] Wu, T. and Jin, S. 2008. Weakly Hard Real-Time Scheduling

Algorithm for Multimedia Embedded System on

Multiprocessor Platform. 1st IEEE International Conference

on Ubi-Media Computing. Lanzhou. 320-325. August.

[5] Hamdaoui, M. and Ramanathan, P. 1995. A Dynamic Priority

Assignment Technique for Streams with (m,k)-firm Deadlines.

IEEE Transactions on Computers. 44(12): 1443-1451.

[6] Kong, Y. and Cho, H. 2011. Guaranteed Scheduling for

(m,k)-firm Deadlines-Constrained Real-Time Tasks on

Multiprocessors. 12th International Conference on Parallel

and Distributed Computing, Applications and Technologies.

18-23.

[7] Kong, Y. and Cho, H. 2012. Energy-Constrained Scheduling

for Weakly Hard Real-Time Tasks on Multiprocessors.

Computer Science and Convergence. Lecture Notes in

Electrical Engineering. 114: 335-347.

[8] Oh, D. I. and Baker, T. P. 1998. Utilization Bounds for N-

Processor Rate Monotonic Scheduling with Stable Processor

Assignment. Real-Time Systems. 15: 183-193.

[9] Andersson, B. and Jonsson, J. 2003. The Utilization Bounds of

Partitioned and Pfair Static Priority Scheduling on

Multiprocessors are 50%. In Proceedings of the 15th

Euromicro Conference on Real-Time Systems. 33-40. July.

[10] Lauzac, S., Melhem, R. and Mosse, D. 1998. An Efficient RMS

Admission Control and its Application to Multiprocessor

Scheduling. In Proc. of the IEEE Int’l Parallel Processing

Symposium. Orlando: Florida. 511-518. March.

[11] Anderson, B. 2003. Static-Priority Scheduling on

Multiprocessors. PhD Thesis, Department of Computer

Engineering. Chalmers University of Technology. Göteberg:

Sweden.

[12] AlEnawy, T. A. and Aydin, H. 2005. Energy-Aware Task

Allocation for Rate Monotonic Scheduling. 11th IEEE Real-

Time and Embedded Technology and Application

Symposium. 213-223. March.

[13] Fisher, N., Baruah, S. and Baker, T. P. 2006. The Partitioned

Scheduling of Sporadic Tasks According to Static Priorities.

18th IEEE Euromicro Conference on Real-Time Systems. 127-

137.

[14] Niemeier, M., Wiese, A. and Baruah, A. 2011. Partitioned

Real-Time Scheduling on Heterogeneous Shared-Memory

190 Habibah Ismail & Dayang N. A. Jawawi / Jurnal Teknologi (Sciences & Engineering) 77:9 (2015) 179–190

Multiprocessors. 23rd Euromicro Conference on Real-Time

Systems. 5-8 July. 115-124.

[15] Chishiro, H. and Yamasaki, N. 2012. Experimental Evaluation

of Global and Partitioned Semi-Fixed-Priority Scheduling

Algorithms on Multicore Systems. 15th IEEE International

Symposium on Object/Component/Service-Oriented Real-

Time Distributed Computing. 11-13 April.

[16] Fan, M., Han, Q., Quan, G. and Ren, S. 2014. Multi-Core

Partitioned Scheduling for Fixed-Priority Periodic Real-Time

Tasks with Enhanced Rbound. 15th IEEE Int’l Symposium on

Quality Electronic Design. 284-289.

[17] Lopez, J. M., Garcia, M., Diaz, J. L. and Garcia, D. F. 2004.

Utilization Bounds for EDF Scheduling on Real-Time

Multiprocessor Systems. Real-Time Systems. 28(1). October.

[18] Muller, D. and Werner, M. 2011. Towards Exact Thresholds for

Scheduling n Tasks on m Processors Based on Partitioned

EDF. 17th IEEE Real-Time and Embedded Technology and

Applications Symposium.

[19] Baruah, S. 2011. The Partitioned EDF Scheduling of Sporadic

Task Systems. 32nd IEEE Real-Time Systems Symposium. 116-

125. Vienna.

[20] Coffman, E. G., Galambos, G., Martello, S. and Vigo, D.

1998. Bin-Packing Approximation Algorithms: Combinational

Analysis. Kluwer Academic Publishers. Ed. D. Z. Du and P. M.

Pardalos.

[21] Liu, C. L. and Layland, J. W. 1993. Scheduling Algorithms for

Multiprogramming in a Hard Real-Time Environment. Journal

of the ACM. 20(1): 46-61.

[22] Bernat, G. and Burns, A. 2001. Weakly Hard Real-Time

Systems. IEEE Transactions on Computers. 50(4): 308-321.

April.

[23] Borger, M. W. 1987. VAXELN Experimentation: Programming

a Real-Time Periodic Task Dispatcher Using VAXELN Ada 1.1.

Technical Report. CMU/SEI-87-TR-032 ESD-TR-87-195.

November.

[24] Shin, D., Kim, J. and Lee, S. 2001. Intra-Task Voltage

Scheduling for Low-Energy Hard Real-Time Applications. IEEE

Design and Test of Computers. 18(2): 20-30.

[25] Lee, L-T., Tseng, C-Y. and Hsu, S-J. 2007. An Adaptive

Scheduler for Embedded Multiprocessor Real-Time Systems.

IEEE Region 10 Conference (TENCON’07). 1-6, Taipei.

[26] Immonen, A. and Niemelä, E. 2008. Survey of Reliability and

Availability Prediction Methods from the Viewpoint of

Software Architecture. Software and Systems Modeling.

7(1): 49-65.

[27] Kheong, L. S. and Jayaratna, N. 2009. Framework for

Structuring Learning in Problem-Based Learning. Retrieved

Feb 11, 2011, from

http://pbl.tp.edu.sg/Understanding%20PBL/Articles/lyejayar

artna.pdf.

http://pbl.tp.edu.sg/Understanding%20PBL/Articles/lyejayarartna.pdf
http://pbl.tp.edu.sg/Understanding%20PBL/Articles/lyejayarartna.pdf

