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ORTHOGONAL LEAST SQUARE ALGORITHM AND ITS
APPLICATION FOR MODELLING SUSPENSION SYSTEM

ROBIAH AHMAD1 & HISHAMUDDIN JAMALUDDIN2

Abstract. A mathematical model is important to find a dynamic response of a system. The
information obtained from the model could be used for investigation and analysis. Modelling
based on input and output data is known as system identification. One of the issues in system
identification is the parameter estimation and model structure selection where various methods
have been studied including the orthogonal least square algorithm. Orthogonal least square esti-
mation is an algorithm which can determine the structure of a model by identifying the significant
terms contributed to the model and also capable of providing the final values of parameter esti-
mates. The derivation of the algorithm is presented and its application to the modelling of a car
suspension system is included to demonstrate the effectiveness of the algorithm.

Keywords: Orthogonal least square algorithm, dynamic system modelling, system identification,
suspension system model.

Abstrak. Model matematik adalah penting bagi mendapatkan sambutan dinamik sesuatu sistem.
Maklumat yang diperolehi boleh digunakan untuk mengkaji dan menganalisis sistem tersebut.
Pemodelan yang dilakukan berdasarkan data masukan dan keluaran bagi sesuatu sistem dikenali
sebagai pengenalpastian sistem. Salah satu isu di dalam pengenalpastian sistem ialah anggaran
parameter dan pemilihan struktur model di mana berbagai kaedah telah digunakan termasuk
kuasa dua terkecil ortogon. Algoritma kuasa dua terkecil ortogon adalah satu algoritma yang
boleh menentukan struktur sesebuah model dengan memberikan sebutan signifikan yang
menyumbang kepada model tersebut dan juga dapat memberikan nilai kepada parameter yang
dianggarkan. Penerbitan algoritma ini disampaikan dan aplikasinya kepada pemodelan sistem
suspensi kereta juga dibincangkan untuk membuktikan keberkesanan algoritma ini.

Kata kunci: Algoritma kuasa dua terkecil ortogon, model sistem dinamik, pengenalpasti sistem,
model sistem suspensi.

1.0 INTRODUCTION

In system identification, a mathematical model is built to describe the behaviour of
a particular system based on its input and output data. It is necessary to use model
to describe the relationships among the system variables. The developed model has
the characteristic performance similar to the unknown system. Many mathematical
models applicable to linear and non-linear systems have been proposed in assisting
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the system identification problem. In the proposed model, it should contain the
estimated parameters, which later will be adjusted to match the true system. This
process of estimating the parameter is called parameter estimation.

Many techniques for parameter estimation have been studied such as the recur-
sive least square method [1], recursive instrumental variable method, recursive pre-
diction error technique [2], maximum likelihood method [3] and orthogonal least
square (OLS) estimation technique [4]. In the OLS technique, the orthogonal func-
tion will calculate each parameter in the model to be estimated one at a time. The
Error Reduction Ratio (ERR) test, which is the by product of the OLS algorithm,
will show percentage reduction that each term makes with respect to the output
mean squared error and will indicate the significance of each term in the model.
Therefore, OLS is capable of determining the model structure and estimating the
parameters of the unknown system. This could lead to a parsimonious model. Ap-
plications of OLS for modelling linear-in-the-parameter systems have been success-
fully applied in various areas [4–6].

The study of the orthogonal least square algorithm applied to a car suspension
system based on a quarter-car model is presented in this paper. The implementation
of OLS algorithm for subset model selection is derived and examined. The validity
of the estimated model is then tested to confirm that the model fits adequately to the
true system.

The rest of the paper is organised as follows. Section 2 describes system identifica-
tion and parameter estimation using orthogonal least square estimation. The effec-
tiveness of OLS is tested using simulated examples. Section 3 reviews the suspen-
sion system. Section 4 shows the application of OLS to a car suspension system.
Some simulation results are presented in this section. The conclusion reviews and
summarises the main contribution of the paper.

2.0 ORTHOGONAL LEAST SQUARE PARAMETER ESTIMATION

The study of system identification is important in engineering and science where a
mathematical model is built to describe the behaviour of a particular system or
process based on the input and output data. The steps involved in system identifica-
tion are data acquisition, determination of a model structure, parameter estimation
and model validation as shown in Figure 1.

Let y(t) be the output of the process or system to be modelled and u(t) is the input
signal that influences the system. The goal is to find a model that can predict future
output using past measurements. A parametric model is used to represent the wide
range of behaviour for the system. In general, the representation of linear-in-the-
parameter models is given as

( ) ( ) ( ) ( )θ ε
−

= +∑
i 1

M

i iy t p t t t (1)
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where t =1,...,N and N is the number of data, M is the number of estimated para-
meters, pi(t) are the regressors, ε(t) is some modelling error which is uncorrelated
with the regressors and θi are the estimated unknown parameters. The objective is
to estimate the parameters θi for i = 0, ..., M.

Model structure determination and parameter estimation are important in system
identification. Orthogonal least square algorithm (OLS) is an algorithm implement-
ing the forward selection method for subset model selection and also capable of
estimating the parameter estimators. The orthogonal least square algorithm trans-
forms the set of regressors pi into orthogonal basis vectors. In OLS, Equation (1) is
transformed into an auxiliary model given as [6]

1
( ) ( ) ( )ε

=
= +∑

M

i i
i

y t w t g t (2)

where gi are constant coefficients and wi(t) are the orthogonal data set constructed as

1
( ) ( ) 0

=
=∑

N

i j
i

w t w t (3)

and i ≠ j.

Figure 1 Stages in system identification

Start

Data acquisition
(simulated / experimental)
and experimental design

Model structures
determination

Parameter estimation

Model validation

Model meets
validation criteria?No

Yes

Untitled-6 02/16/2007, 16:5673



ROBIAH AHMAD & HISHAMUDDIN JAMALUDDIN74

The orthogonal polynomials can be calculated by applying Gram-Schmidt proce-
dures as described by Chen et al. [4]. However, Korenberg et al. [6] defined a
simpler procedure to construct a family of orthogonal polynomials by first defining

0 0
1

1

( ) ( ) 1

( ) ( ) ( )α
−

=

= =

= − ∑
i

i i ji j
j

w t p t

w t p t w t (4)

where i = 1, ..., M and

1

2

1

( ) ( )

( )
α =

=

=
∑

∑

N

i j
t

ji N

j
t

p t w t

w t
(5)

where j = 1, ..., i − 1.
Multiplying equation (4) with wj(t) and taking the expected value for both sides

of the equation gives

2[ ( ) ( )] [ ( ) ( )] [ ( )]α= −j i j i ji jE w t w t E w t p t E w t (6)

where E[] is the expected operator.
Applying the orthogonal property as previously defined in Equation (3), equation

(6) becomes

20 [ ( ) ( )] [ ( )]α= −j i ji jE w t p t E w t (7)

The constant coefficient of αji then can be calculated as

2

[ ( ) ( )]

[ ( )]
α = j i

ji
j

E w t p t

E w t (8)

The next step is to obtain the constant coefficient for the estimated parameter θi.
Equation (2) is multiplied by wj(t), which will give the following equation

1
( ) ( ) ( ) ( ) ( ) ( ) ( )ε

=
= +∑

M

j j i i j
i

w t y t w t g t w t w t t (9)

where ε(t) is uncorrelated with wj(t) and assumed to be independent zero mean
sequence. Using the orthogonal property [Equation (3)] to Equation (9) and taking
the expected value gives

2[ ( ) ( )] [ ( )]−j j jE w t y t g E w t (10)

Untitled-6 02/16/2007, 16:5674



ORTHOGONAL LEAST SQUARE ALGORITHM 75

Hence, the coefficient of parameter estimates can be computed as

2
[ ( ) ( )]

[ ( )]
= i

i
j

E y t w t
g

E w t (11)

where i = 0, ..., M. Thus, the estimated parameters can be calculated by using the
following equation

θ =M Mg (12)

and

1
θ α θ

= +
= − ∑

M

i i ij j
j i

g (13)

where i = M-1, M-2, ..., 1.
Error Reduction Ratio (ERR) is an indication of the significance of each regressor

term towards the reduction in the total mean squared error. It provides the criteria
for forward subset selection. The simple derivation of ERR is summarised in [7] and
is calculated from the equation

2 2

2

[ ( )]

[ ( )]
= i i

i
g E w t

ERR
E y t

(14)

The larger the value of ERR, the more significant the term will be in the final model.
Using this order of the significant terms, the final regressors are selected. The proce-
dure continues and the criteria to include the number of terms in the input vector is
based on

1
1 ρ

=
− <∑

rn

i i
i

ERR (15)

where ρt is the desired tolerance.
The use of orthogonal least square algorithm to identify a model structure and

estimate the parameters can be summarised as follows:

(i) Define the values for the maximum input and output lag (nu and ny) as the
input vector.

(ii) Define the value ρt, the criterion to stop regression.
(iii) Form the regressors wi as derived in Equation (4) and (5).
(iv) The coefficient gi is computed from Equation (11).
(v) Error Reduction Ratio (ERR) is computed from Equation (14). The larger the

value of ERR shows that the more significant the term will be in the final
model.
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(vi) The criterion to select the number of terms to be included in the final model is
calculated from Equation (15). For 1-ΣERRi > ρt, steps (3) to (6) are repeated
with the terms that have been selected are excluded.

(vii) The model parameter estimators can then be computed by backward substitu-
tion as given in Equation (12) and (13).

2.1 Model Validity Test

In system identification, model validation is the final procedure after structure selec-
tion and parameter estimation. The objective of model validation is to check whether
the model fits the data adequately without any biased. For a biased and inadequate
model, there is a possibility that the model will poorly predict the system for a
sequence of data. Model validation is important since it can detect terms in the
residuals that give biased result in the parameter estimation. Residuals give informa-
tion of the misfits between the data and model. The tests include:

(a) One Step Ahead Prediction (OSA)

ỹ OSA(t) = f (y(t −1), ..., y(t −ny), u(t −1), ..., u(t −nu)) (16)

where the predicted output is based on the previous input and output data.

(b) Model Predicted Output (MPO)

ỹ MPO(t) = f ( ỹ (t −1), ..., ỹ (t −ny), u(t −1), ..., u(t −nu)) (17)

where the model predicted output is based on the model previous output data.

(c) Error Index

( )
1

2 2

2

( ) ( ))

( )

 ∑ −
 =
 ∑ 

y k y k
error index

y k
(18)

where the accuracy of the predicted model is computed by defining the
normalised root mean square of the residuals.

(d) Correlation Test
The unbiased model should be uncorrelated to the other variables including
the inputs and outputs. Five simple correlation-based tests were briefly de-
scribed in [8]. Therefore, the prediction error sequence should hold the follow-
ing conditions:

ỹ
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φεε(τ ) = 0, τ ≠ 0
φuε(τ ) = 0, for all τ
φεεu(τ ) = 0, τ ≥ 0 (19)
φεεuu(τ ) = 0, for all τ
φεuu(τ ) = 0, for all τ

For a linear model, only the first two tests must be satisfied.

2.2 Validation of OLS Algorithm

The effectiveness of OLS was investigated. Two linear discrete models were simu-
lated for structure selection and parameter estimation using the orthogonal least
square algorithm. The models investigated were:

Model 1: y(t) = 0.1y(t −1) + u(t −1) + e(t)
Model 2: y(t) = 0.1y(t −1) − 0.8y(t −2) + u(t −1) − 0.2u(t −2) + e(t)

where e(t ) is a random white noise. For each model, OLS was tested first without
noise and later with noise corrupting the system. The number of data set is N and
the number of estimator is M. Therefore, the equation can be written in matrix form
as

y = pθθθθθ

where yT = [y(1) y(2) ..... y(N)]
θθθθθT  = [θ1 θ2 ..... θM]
p   = [p1 p2 ... pM]

Model 1
A sequence of 500 output data was generated using u(t) as a zero mean random
sequence without noise corrupting the system. Estimation was performed using the
maximum input and output lag nu = 2 and ny = 3 respectively. The criterion to stop
regression pt is set to 0. The result is summarised in Table 1.

Table 1 Estimated parameters for Model 1

Terms Estimated value ERRi

u(t − 1) 1.000 0.99E + 00
y(t − 1) 0.100 0.10E − 01
u(t − 2) −6.55E − 10 4.05E − 19
y(t − 3) −1.32E − 9 4.05E − 19
y(t − 2) −2.56E − 10 2.63E − 20
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Table 1 shows that the estimated parameters are close to the correct values of the
true system. The values of ERR for the term y(t −1) and u(t −1) are significantly
higher than the other terms, indicating that OLS can pick up the correct terms of the
true system with very small prediction errors.

The effectiveness of OLS is further investigated for the system corrupted with
noise. A set of 500 output data generated using u(t ) as a zero mean random se-
quence, and e(t ) as a white noise sequence. The result is summarised in Table 2. It
shows that the ERR values for u(t −1) and y(t −1) are again significantly higher than
the other terms.

Model 2
A sequence of 500 output data was generated using u(t ) as a zero mean random
sequence without noise corrupting the system. Estimation was performed using the
maximum input and output lag nu = 4 and ny = 4 respectively. The criterion to stop
regression ρt is set to 0. The result is summarised in Table 3.

Table 2 Estimated parameters for Model 1 with noise

Terms Estimated value ERRi

u(t − 1) 1.0391 0.5050
y(t − 1) 0.0975 0.0083
u(t − 2) −0.0051 8.2467E − 04
y(t − 2) −0.0570 7.7110E − 04
y(t − 3) −0.0059 3.4710E − 06

Table 3 shows that the values of ERR for terms u(t − 2), y(t − 2), u(t − 1) and
y(t − 1) are significantly higher that the other terms indicating again that OLS still can
pick up the correct term of the true system with small prediction errors.

Table 3 Estimated parameters for Model 2

Terms Estimated value ERRi

u(t − 1) 0.99456 2.244E − 01
y(t − 2) −0.80121 1.642E − 01
u(t − 2) −0.20218 2.839E − 03
y(t − 1) 0.10214 2.555E − 03
y(t − 3) 0.14494E − 02 6.859E − 07
y(t − 3) 0.19253E − 02 2.165E − 07
y(t − 4) −0.8164E − 03 1.015E − 07
y(t − 4) −0.5577E − 04 7.893E − 10
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The algorithm is repeated for the system corrupted with noise. The result is
summarised in Table 4. The ERR values for u(t − 2), y(t − 2), u(t − 1) and y(t − 1) are
again significantly higher than the other terms and those terms are selected. This
study shows that OLS is able to pick the correct terms for systems with or without
noise.

Table 4 Estimated parameters for Model 2

Terms Estimated value ERRi

u(t − 1) 0.996o3 2.030E − 01
y(t − 2) −0.75957 1.649E − 01
u(t − 2) −0.18977 3.302E − 03
y(t − 1) 0.08274 2.434E − 03
y(t − 3) −0.2034E-01 4.954E − 07
u(t − 3) −0.4813E-01 5.224E − 07
y(t − 4) 0.35601E-01 4.839E − 07
u(t − 4) 0.79048E-02 1.516E − 10

3.0 SUSPENSION SYSTEM

Modelling vehicle suspension system has been studied for many years. To simplify
a car suspension system, most of the works such as those described in [9] and [10]
use a quarter-car model and consider the vehicle motion is in vertical direction. The
model for the quarter-car suspension system used in this study is shown in Figure 2.

Assuming u is the system input and y, the vertical motion of the system as the
output, the transfer function for the system can be obtained. By applying Newton's
second law to the above system, the equation of motion is given as [11]

Figure 2 A schematic diagram of the quarter car model

m2 = sprung mass
m1 = unsprung mass
k2  = suspension stiffness
k1  = tyre stiffness
b   = suspension damping

m2

m1

k2 b

y

x

k1k2
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2

2 12

2

2 22

( ) ( )

( )

 = − + − + −  

 = − − − −  

1
d x dy dx

m k y x b k u x
dt dtdt

d y dy dx
m k y x b

dt dtdt

(20)

Using Laplace transform and later eliminating X(s) in the two equations, the trans-
fer function Y(s)/U(s) for the system can be determined as follows

1 2
4 3 2

2 1 1 2 1 2 1 2 2 1 1 2

( ) ( )
( ) ( ) [ ( ) ]

+=
+ + + + + + +

Y s k bs k
U s m m s m m bs k m m m k s k bs k k

The values of the suspension and hydraulic system parameters for the simulation
are summarised in Table 5 [9].

Table 5 Suspension and hydraulic parameters

Variables Meaning Value

m2 Sprung mass 253 kg

m1 Unsprung mass 26 kg

k2 Suspension stiffness 12 000 N/m

k1 Tyre stiffness 90 000 N/m

b Suspension damping 1 500 N/m/sec

4.0 SIMULATION AND EXPERIMENTAL RESULTS

A linear model can be represented as a set of mathematical equation. Representa-
tions based on equations include difference equation for discrete time system and
differential equation for continuous time system. The suspension system model in
this study is represented by ARMAX (AutoRegressive Moving Average with exog-
enous input) model as described by equation below [12]:

( ) ( ) ( ) ( )
( ) ( ) ( )

1 2

1 2

1 2

1 2

= − + − + + −

+ − + − + + −

ny y

nu y

y t a y t a y t ......... a y t n

b u t b u t .......... b u t n

where u(t) is the input. The number of data set is N and the number of estimator set
is M.

To implement the OLS algorithms to the suspension system, the simulated input
and output data were collected using MATLAB [13] and SIMULINK [14] based on
the above transfer function. For the estimation set, a sequence of 634 random data
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points were generated and the model was assumed to have 10 possible terms. At the
last stage, OLS yields the following result as shown in Table 6.

The value of ERR for u(t-4) is significantly smaller than the other terms. Therefore,
this term can be excluded from the final model. The response for the estimation set of
the model is plotted in Figure 3 where the one-step ahead prediction was used as model
validation. The figure shows that the predicted output is indistinguishable from the sys-
tem output. Figure 4 shows the prediction errors for the system.
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Table 6 Estimated model of suspension system

Terms Estimated value ERRi

u(t − 1) 2.5125E + 0 3.309E + 0
y(t − 2) −1.6624E + 0 2.627E + 0
y(t − 3) −7.8741E + 1 1.731E + 0
y(t − 4) 1.5532E + 0 3.918E + 1
y(t − 5) −7.2316E − 1 1.939E − 2
y(t − 6) 1.0434E − 1 8.855E − 3
u(t − 2) −5.6518E − 4 5.300E − 3
y(t − 3) −7.5995E − 3 2.015E − 3
u(t − 1) 1.0456E − 2 3.653E − 4
u(t − 4) −3.8109E − 4 4.919E − 7

Figure 3 y vs. yosa (estimation set) Figure 4 Error (estimation set)

Figure 5 y vs. yosa (test set) Figure 6 Error (test set)
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A set of test data was generated to further validate the fitted model. A one and a
half cycle square wave was used as the input. The system output was generated
using the transfer function Y(s)/U(s). The one step ahead prediction of the fitted
model was then obtained. Figure 5 shows the one step ahead prediction superim-
posed on the system output. Figure 6 shows the prediction errors for the system.

 The maximal residuals between the output and the estimated ones are between
±0.05 and ±0.01. It shows that the model contains the possible terms and possible
structure of the true system using OLS algorithm. The one step ahead prediction on
both estimation and test sets are very close to the system output. This indicates that
the fitted model using OLS is adequate in representing the system. Other validation
tests such as model predicted output and correlation tests are not investigated for
this case as they are beyond the scope of this paper.

5.0 CONCLUSIONS

This paper has described the application of the orthogonal least square estimation
for the selection of a model structure and parameter estimation of unknown dyna-
mic system. A suspension system based on a quarter car model is used for case
study. In this algorithm, each parameter can be estimated independently using a
simple procedure. Additional terms that need to be added can easily be done with-
out the need for restructuring the previous coefficients since the significant of each
term is indicated by the ERR test. It is a measure of the reduction in error that
resulted when a term is added to a particular model because ERR assigned a weight
to the relative importance of the term to the model.

The results showed that the algorithm correctly combines structure determination
and parameter estimation of the system. The model is then tested with model valid-
ity test to confirm the unknown structure. For further work, the extension of OLS to
other systems can be investigated to include linear and non-linear systems.
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