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Graphical abstract 
 

 

Abstract 
 

Sensors like rotary encoders are widely used in measuring the speed and position 

of DC motor in applications. Due to expensiveness, calibration complexities of 

these type of encoders, sensorless methods for measurements were used 

alternatively. This paper presents sensorless position control of a wheeled DC 

motor using system identified model. This approach overcome some 

conventional sensorless techniques that uses some approximations. The model is 

developed using black box identification scheme, based on the identified 

model, a model predictive controller was designed to track a desired horizontal 

position of the wheel. Practical experiment shows the concept gives a very good 

estimation of the position and speed and can be used in control application.   
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1.0  INTRODUCTION 
 

Direct current (DC) motors are widely used in almost 

every machine industries and vehicles [1], this leads 

to a numerous work done by researchers to model 

the DC motors [1-8], and also control of position and 

speed of the motor [3, 5, 6]. To mention a few, in [1], 

the DC motor is modelled using electromagnetic 

interferences signals of contact mechanisms 

between the brushes and the collector blades. 

Electro mechanic effects, like cogging and friction, 

and electromagnetic properties generated by eddy 

current and magnetic hysteresis where used in the 

modelling of the DC motor, as shown in [7]. Artificial 

Neural Network in modelling DC motor is presented in 

[2, 3]. In [4], Repulsive Particle Swarm Optimization 

(RPSO) is used in the modelling of the DC motor using 

Non-linear Auto-Regressive with exogenous input 

(NARMAX) approach. 

In position control of DC motors, many approaches 

has been exploited by researchers, some use position 

sensor for the feedback control [3, 5, 9-15]. But these 

sensors have some disadvantages, they are 

expensive, very difficult to calibrate, they are prone 

to measurement noise and so on. To overcome these 

problems, some researcher use sensorless method of 

measuring and therefore control of DC motors [16-

25]. Rotor position is estimated for feedback control 

using extended Kalman filter in [16, 22]. Back-EMF 

sensing methods, like Third Harmonic Voltage 

Integration (THVI), Terminal Current Sensing (TCS), 

Back-EMF Integration and PWM strategies, Terminal 

Voltage Sensing (TVS), sliding-mode observer, model 

reference adaptive System, adaptive observers, are 

fully explained in [19, 20, 23-25]. These sensorless 

techniques have the problems of zero crossings, 

failure of estimation at particular speeds due 

nonlinearity of current and speed of motors [19]. 

0 20 40 60 80
-4

-2

0

2

4

time (sec)

P
o

s
it
io

n
 
(
m

)

Position

 

 

REF

Model

Sensor



18                                     Salinda Buyamin et al. / Jurnal Teknologi (Sciences & Engineering) 77:12 (2015) 17–21 

 

 

Different controllers have been designed in the past, 

to control position of DC motors. Model predictive 

controllers (MPCs) are one of the controllers used for 

controlling all class of motors [26-29]. Due to recent 

advances that increased the computational power 

of micro-controllers and DSP chips made MPC 

applicable in many advance systems [30]. 

In this work, sensorless control of wheeled DC motor 

will be presented. The main contribution is in using the 

identified model of the wheeled DC motor to 

estimate the horizontal position in meters and speed 

of the wheel in meters per second directly. This solves 

the problem of other sensorless that uses the 

measurements of flux or currents in the motor. It also 

remedies calibration issues. Black box system 

identification approach of modelling will be used to 

develop the wheeled DC motor model to directly 

estimate the position and velocity in desired unit. 

Also, using the identified model, MPC will be design 

to track a specified position. The rest of the paper is 

organized as follows, in section II, the model of the 

wheel driven DC motor is derived using system 

identification, the MPC design is explained in section 

III, the results of the experimental implementation 

and validation of the controllers are given in section 

IV, finally section V gives the conclusion of the work. 

 
 
2.0  IDENTIFICATION OF DC MOTOR 
 

Experimental setup and identification of the motor is 

given in this section. 

 

2.1  Experimental Setup 

 

The wheeled DC motor used in this experiment is 

shown in Figure 1. The DC motor used is MY1016Z2-

250W, 24v operating voltage. It has no load speed of 

434rpm and no load current of 1.8A. Its output is 

connected to a pneumatic wheel of radius 130mm 

via a gear as shown in the diagram. B106 rotary 

encoder [31] is used in the experiment, it has 

operating voltage 5v to 24v, pulse of 500P/R and 

maximum shaft speed of 6000rpm. It is designed to 

provide pulse feedback when the shaft is rotated. 

The shaft of the rotary encoder is connected to the 

DC motor and the pulses are recorded using STM32F4 

discovery board which sends the pulses to MATLAB 

Simulink via computer where the horizontal position 

and speed of the wheel are computed and 

recorded. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2  Identification of the DC motor  

 

There are three different modelling approaches 

namely, white-box model which is based on 

mathematical modelling, black-box model, and 

grey-box model which are based on system 

identification [32]. 

a) White-box model: This type of model is based 

on first principles, for instance, a model for a 

physical process derived from the Newton 

equations or Euler Lagrange methods. All 

equations and parameters are obtained by 

theoretical modelling. Their parameters have 

direct interpretation in first principles. 

b) Black box model: This is based on 

measurement of input and output data. The 

model structure and parameters are obtained 

from experimental modelling. To develop black 

box models, no or very little prior knowledge of 

plant is needed. The model parameters have no 

direct relationship to first principles. 

c) Grey-box model: This model is based on both 

insight into the system and experimental data 

obtained. It is a compromise or combination 

between white and black box models. The model 

and structure of this type of model are known, 

only the values of the parameters are estimated 

[33, 34]. 

In this work, black box identification approach will 

be used in the modelling of the wheeled DC motor 

so that the output of the model will be the desired 

position in meters, and velocity in meters per second. 

The advantage of this approach is all the 

unmodelled uncertainties like gear ratios, gear 

frictions, and approximations of parameters, like 

motor inductance, that will be encountered when 

using white box approach, are overcome in this 

approach. The following steps are carried out in the 

identification. 

a) Selection model inputs and outputs: The input is 

the applied voltage to the DC motors using PWM 

signal. The outputs are the wheel horizontal 

position and speed in meters and meters per 

second respectively. 

b) Selection of excitation signals: Random PWM 

signal shown in Figure 2 is used. 

Figure 1 Wheeled DC motor setup 

http://en.wikipedia.org/wiki/First_principles
http://en.wikipedia.org/wiki/Newton%27s_laws_of_motion
http://en.wikipedia.org/wiki/Newton%27s_laws_of_motion
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c) Model estimation algorithm: Weighted least 

square method is employ using MATLAB ssest 

command for the estimation. Before the 

estimation, a filter is used to smoothing the noisy 

speed measurement from the encoder. 

d) Model validation: After identification, the 

model is validated as shown in Figure 3 and 4 for 

the position and speed respectively.  

The effect of the filter incorporated in the 

identification is seen clearly in Figure 4. The identified 

model in state space is given in Eq. 1. 

 

 

 

𝐴 = [

−1.333 7.031
−2.939 −1.179

−0.42 −3.491
14.85 0.9376

−3.443 −20.04
−2.551 −5.397

−28.43 0.1822
−70.18 −11.46

], 

𝐵 = [

−0.3208
0.3304

−0.2069
−1.852

] 

𝐶 = [
104 −74.58 50.87 −36.96
0.3189 1.599 −0.8143 0.5318

]      (1) 

 
 
3.0  MPC CONTROLLER DESIGN 
 
MPC is based on the solution of an online optimal 

control problem where a receding horizon approach 

is used such that for any current state vector x(k) at 

time k, an optimal control problem is solved over 

some future interval taking into account current and 

future constraints [35]. The aim of controller is to set 

the predictive output of a system as close as possible 

to the desired set point. The model of the system is 

used to predict the future evolution of the system to 

optimize the control signal. Given a system in Eq. 2. 

 

 𝑥 ̇ = 𝐴𝑚𝑥(𝑡) + 𝐵𝑚𝑢(𝑡), 
 𝑦(𝑡) = 𝐶𝑚𝑥(𝑡)                                                 (2) 

 

We define the auxiliary variables; 

   𝑧(𝑡) = �̇�(𝑡), 𝑦(𝑡) = 𝐶𝑥(𝑡)                        
We choose a new state variable vector 

𝑥(𝑡) = [𝑧(𝑡)𝑇 𝑦(𝑡)𝑇]. 
The new augmented state model is given in Eq. 3. 

[
�̇�(𝑡)

�̇�(𝑡)
] = [

𝐴𝑚 0𝑇
𝑚

𝐶𝑚 𝐼0𝑞𝑥𝑞
] [

𝑧(𝑡)

𝑦(𝑡)
] + [

𝐵𝑚

0𝑞𝑥𝑚
] �̇�(𝑡) 

 

𝑦(𝑡) = [0𝑚 𝐼𝑞𝑥𝑞] [
𝑧(𝑡)

𝑦(𝑡)
]                (3) 

Where Iqxq is identity matrix with dimension qxq, 

0qxq is zero matrix. The new model matrix is 

𝐴 = [
𝐴𝑚 0𝑇

𝑚

𝐶𝑚 𝐼0𝑞𝑥𝑞
] , 𝐵 = [

𝐵𝑚

0𝑞𝑥𝑚
] , 𝐶 = [0𝑚 𝐼𝑞𝑥𝑞] 

The cost function is given in Eq. 4. 

𝐽 = ∑ 𝑥(𝑘𝑖 + 𝑚|𝑘𝑖)𝑇𝑄𝑥

𝑁𝑝

𝑚=1

(𝑘𝑖 + 𝑚|𝑘𝑖)

+ ∆𝑈𝑇𝑅∆𝑈      (4) 
Where Q and R are positive definite weighing 

matrices, and ∆U is future control trajectory with 

length Nc. Np is the prediction horizon. Figure 5 shows 

the control block diagram. An embedded integrator 

is added to the design as shown in Eq. 3. The design 

parameters are given in Table 1. 

 

Table 1 MPC parameters 

 

Parameter symbol value 

Prediction horizon Np 30 

Control horizon Nc 4 

Sampling time t 0.02 

State weighting matrix Q I4x4 

Output weghting matrix R 0.1 
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4.0  RESULTS AND DISCUSSION 
 

The experimental result of the position tracking 

controller is shown in this section. Figure 6 and 7 

shows the position tracking of 2m step signal and 2m 

sine wave signal respectively, while Figure 8 shows 

the speed during the sine wave signal position 

tracking. 

The black box identified model gives acceptable 

estimation of the position and speed of the wheeled 

DC motor. 

 

 

5.0  CONCLUSION 

 

Black box identification of wheeled DC motor for 

sensorless measurements and MPC position controller 

design using the model is presented in this paper. The 

controller was designed based on the identified 

model, and the model was used as an estimator of 

the wheel position for tracking purpose. The model 

accurately gives an acceptable estimation of both 

the position and speed. This sensor-less concept can 

be used in many applications and replace expensive 

sensors. 
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