

77:13 (2015) 37–48 | www.jurnalteknologi.utm.my | eISSN 2180–3722 |

Jurnal

Teknologi

Full Paper

AUTOMATIC GENERATION OF TEST CASES FROM

ACTIVITY DIAGRAMS FOR UML BASED TESTING (UBT)

Oluwatolani Oluwagbemi, Hishammuddin Asmuni*

Soft Engineering Research Group (SERG), Faculty of Computing,

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor

Malaysia

Article history

Received

15 April 2015

Received in revised form

29 September 2015

Accepted

12 November 2015

*Corresponding author

hishamudin@utm.my

Graphical abstract

Abstract

Activity diagrams are one of UML behavioural models suitable for system testing because

it has the capacity to effectively describe the behaviours of systems under development.

In this paper, a technique is proposed that generates test cases from activity diagrams

by constructing an activity flow tree (AFT) which stores all the information extracted from

the model file of the diagram through the help of a parser. Then, we applied an

algorithm to generate test cases from the constructed tree. Test cases were generated

based on the elements of activity diagrams such as activity sequences, associated

descriptions and conditions. The proposed technique generated accurate test cases

that completely tallied with the modeled requirements in the diagram. We utilized all-

paths, basic pair paths, conditions, branches and transition criteria for generating test

cases using ATM withdrawal operation software as a case study.

Keywords: MBT, TCG, UML diagrams, DFT, algorithms

© 2015 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

The complexities associated with system testing have

led to the need for automatic generation of test

cases. This is because, user’s requirements are

becoming larger and organizations are demanding for

robust systems that can serve the needs of their

customers irrespective of their geographical locations.

Therefore, testing a fully integrated system with large

requirements manually, can prove to be a difficult

task. With the constant increase of system sizes, the

concept of automatic design of system test cases is

attracting serious research attention [1]. Test case

generations are the foundation of any testing exercise

[2]. Correctly generated test cases may not only

detect errors in a software system, but also minimizes

the high cost and time associated with software

testing [3]. Unified Modeling Language (UML) is a de-

facto standard for analyzing and modeling user’s

requirements otherwise known as design artefacts.

With UML, software developers can easily analyze and

visualize various views of a system. These views could

be structural, behavioural or other related constraints

envisaged or associated with the development

processes. An activity diagram is used to describe all

possible flows (data, control and objects) of

executions and also good at describing the logical

flow of the system under development [4]. This make it

possible to generate test cases that captures all the

expected functionalities or requirements of the system

under development to aid conformance.

Testing based on design models has a lot of merits

which mainly centers on two major facts. Firstly, testing

can be initiated as soon as the requirements/design

documents become available; thus, saving time, cost,

and detecting errors early during the development

span [5]. Secondly, test cases remain valid even when

codes are slightly modified [4]. With these motivations,

we propose a technique for test case generation using

ArgoUML activity diagram, considering four major

coverage criteria namely; all-paths, basic pair paths,

conditions and branches coverage criteria. This is in a

bid to engender the generation of accurate test cases

XMI/XML

Structure Identifier

Elements Mapper

UML Diagrams

38 Oluwagbemi Oluwatolani & Hishammuddin Asmuni / Jurnal Teknologi (Sciences & Engineering) 77:13 (2015) 37–48

that tallies with the total number of modeled

requirements.

The rest of the paper is structured as follows: section

2 provides the definitions of basic terms and concepts

used in the proposed technique. Section 3 presents

details of the proposed technique. Section 4 discusses

the experimental design issues. Section 5 presents and

discusses the results obtained from the proposed

approach while Section 6 conclude the paper and

suggest area for future research.

2.0 BASIC CONCEPTS AND DEFINITIONS

This section briefly describes UML activity diagrams by

formally defining different elements of activity

diagrams which will be used in the test case

generation. Next, we describe the coverage criteria

utilized for ensuring completeness of test cases during

the generation process.

2.1 Activity Diagrams

Typical activity diagrams consist of about nine major

elements namely; initialization (start), swimlanes,

activity, branch, conditions (guard expressions), fork,

join, merge and end (termination). All these elements

can simply be integrated into nodes and edges. The

nodes represents processes which include action

states, activity states, decisions, swimlanes, forks, joins,

objects, signal senders and receivers while the edges

have to do with occurring sequence of activities,

objects involving the activity, including control flows,

message flows and signal flows [2]. Activity states and

action states are represented with round cornered

boxes. Transitions are shown with arrows. Branches are

depicted with diamond shapes with one incoming

arrow and multiple exit arrows, each labelled with a

Boolean expressions. Forks or joins are shown by

multiple arrows entering or leaving a synchronization

bar. Activity diagram can be used to model the work

flow or complex behaviour of systems or operations.

The proposed technique focuses on UML activity

diagrams which model both the work flows and

operations of a system under development to

generate test cases. Figure 1 shows an example of an

activity diagram. In order to automatically analyze the

activity diagram for artefacts extraction, the

associations and concepts of an activity diagram are

defined as follows:

Definition 1: An activity diagram is a tuple

where: },...,,{ 21 naaaA  , are finite set

of activity states; },...,,{ 21 ntttT  are finite set of transition

states; },...,,{ 21 ncccC  are finite set of conditions (guard

expressions) and ic is in the corresponding transition 1t .

)()(ACTCTAF  , is the flow relationship

between the activities and transitions.

AaI  , is the initial activity state; FaF  is the final

activity state. There is only one transition t such that

FtaI ),(while Fat I ),(' and FtaF ),(' for any
't .

Figure 1 Activity diagram for ATM cash withdrawal operation

Definition 2: A test case TC generated from activity

diagram AD, is the traversals of sequences of activities

},...,,{ 21 naaa , where),..,1(, niai  are collections of activities

within the diagram and type
1a and

na are start and

end nodes respectively while, type is

either branch, fork, join, action, decision or merge.

However, a transition must exist for any
ia and

1ia (

1...1  ni), otherwise, it is considered to be a parallel

activity. Parallel activities and decision points must be

taken into cognizance during the test case generation

process. Fork and join actions signify the synchronized

behaviour of activities, which requires that all parallel

activities are executed during system testing.

Contrarily, branch and merge activities signify the

optional behaviour of actions which requires that only

one of optional behaviours is executed during system

testing.

Definition 3: Let },,,,{ FI aaCFTAD  be elements of an

activity diagram; the current state denoted by CS for

any transition t is defined as *t, t*, representing pre-set

and post-set of t respectively. For the latter, },{ FTA  will

hold while for the former },{ FAT  will exist. Invariably,

enabled (CS) represents the set of transitions that are

linked with all out-going edge flows of CS. Therefore,

enabled (CS) =)}(*t|{ CSt  . Similarly, firable(CS)

},,,,{ FI aaCFTAD 

)1(, niiai 

39 Oluwagbemi Oluwatolani & Hishammuddin Asmuni / Jurnal Teknologi (Sciences & Engineering) 77:13 (2015) 37–48

represents the set of transitions that are fired from CS;

meaning, firable(CS) =)}(enabledt|{ CSt  .

Definition 4: Let be elements of an

activity diagram; the concurrent transition for current

state CS is defined as the set of exercised or visited

transitions)firable(CS},...,,{ 21 nttt where,

NULLt**t),1(,  njiji and

NULLt*t*.)1(},,...,,{ (CS) enabled(21  tsniitttt n

Definition 5: Activity flow tree (AFT) is a directed graph

containing nodes and edges where each node and

edge in the activity graph denoting all the extracted

information from the model file of the activity diagram

based on its elements. The nodes represent the

processes which include action states, activity states,

decisions, swimlanes, forks, joins, objects, signal senders

and receivers while edges represent occurring

sequence of activities as mentioned previously.

2.2 Test Coverage Criteria

Test coverage criteria are rules that enhances the

generation of comprehensive test cases based on the

number of elements to cover or visit within a diagram.

The proposed technique utilized five major criteria

namely; all-path coverage, basic-pair path coverage,

condition coverage, branch (decision) and transition

coverage.

a. All-path in an activity diagram is defined to be

sequences of activities where an activity in that

path is exercised exactly once. It also ensures that

every loop in an activity diagram is exercised

either zero or once in order to cover all iterations

and transitions.

b. The basic-pair path coverage criterion ensures

that test cases are generated from concurrent

activities contained in an activity diagram. It is a

complementary path emanating from a set of

basic path where identical set of activities exist for

each basic path. This is executed by visiting the

concurrent nodes in forward and reverse

successions at least once.

c. Condition coverage criterion ensures that test

cases are generated from a true and a false result

as well as all possible combinations of condition

outcomes in each decision.

d. Branch (decision) coverage criterion generates

test cases from each reachable decision made

true by some actions and false by others.

3.0 PROPOSED TECHNIQUE

The starting point for UML-based testing is the

extraction of artefacts contained in the test model

which describes the expected behaviour of the system

under test (SUT) and, determines the behaviour of

each component or unit of the software. Models

developed in formal methods are transformed into

some textual representation supported by the

modelling tool (usually XMI format). A model parser

front-end reads the model text and creates an internal

model representation (IMR) of the abstract syntax. A

transition relation generator creates the initial state

and the transition relation of the model as an

expression, referring to pre-and post-states in order to

extract artefacts. The proposed parsing process

supports the use of UML for creating test models.

The structure of the SUT is expressed by composite or

block diagrams, and behaviour is specified by means

of state machines, activity or sequence diagrams. The

parser front end reads model exports from different

tools in XMI format and transforms it into intermediate

representations. The intermediate model

representation of extracted artefacts is capable of

representing abstract syntax trees for a wide variety of

formalisms. These artefacts form the basis of test case

generation process and a conformance relations

method is defined to determine the consistency

between the test model and test cases. The root of the

XMI file can consist of several child-nodes. However,

the area of interest for the extraction process is

principally the model sub-tree, which houses the

structure that contains all the artefacts to be parsed.

The elements of the sub-tree are descriptions of the

expected functionalities of the SUT. Furthermore, there

are some special tags of XMI such as the

documentation and extension or stereotype which

aids the insertion of new data or information about the

model without distorting the original model contents.

The proposed extraction process has the capacity of

retrieving additional artefacts included in the model or

model file. As shown in Figure 2, structure identifier is

responsible for the extraction of artefacts from the

extension tags which is mapped with the contents of

the entire file. Given that every child-node of the root

represent a classifier or an association in the meta-

object facility (MOF) meta-model, the proposed

extraction method is capable of serializing these

descriptive elements of XMI file with the help of a

conformance checker which identifies every MOF

classifier as a separate child-node of the root and nest

classifiers as a child-node representing their

composition characteristics.

For large software projects, the complexity level can

be high, hence the need to design a scalable

extraction algorithm. Features that are not meant to

be nested, like the name of a class, are identified by

XML properties of the node (that could also be a node

without identifier). Every property belongs to its node

and it is not related with any other node, since it

describes a characteristic of that specific node. This

assertion helps in extracting distinct artefacts between

elements. For the extraction process, XMI values were

considered as the elements which can have identifiers

(IDs) or without an identifier (ID).

},,,,{ FI aaCFTAD 

40 Oluwagbemi Oluwatolani & Hishammuddin Asmuni / Jurnal Teknologi (Sciences & Engineering) 77:13 (2015) 37–48

Figure 2 Proposed technique

To extract artefacts, the name and value of an

element is identified and parsed. This was achieved by

exploring the elements IDs to create global and local

identifiers to uniquely identify the nodes and edges of

an XMI file. This way, every node could have a

property that uniquely identifies it and reachable

without relying on its path from the root. These IDs were

useful for matching the contents of the dependency

flow tree (DFT) for conformance checking. A major

merit of the proposed method is that, elements can be

Artefacts
Transformer

Parsed
Artefacts

Transition relation
generator

Dependency Flow
Tree (DFT)
Generator

Test case
generator

Specific test
cases Map Classes

Concrete test
cases

Map Sequences

Structure Identifier

Stereotypes

Conformance
Checker

Modeling Tool

Model (XMI)

Extractor (Parser)

DFT

Test procedure
generator

Map Messages

Best test
path

Elements Mapper

41 Oluwagbemi Oluwatolani & Hishammuddin Asmuni / Jurnal Teknologi (Sciences & Engineering) 77:13 (2015) 37–48

identified and parsed whether such have IDs or not.

For elements without IDs, the strings contained in the

namespaces of the elements are extracted and an

XMI tree generated automatically.

3.1 The Parser

The parser deals with the process of extracting the

artefacts into concrete target test cases suitable for

test execution. To generate comprehensive test cases,

it is important to develop robust artefacts extraction

strategies capable of supporting the construction of

test artefacts from UML models for the generation of

target-based test cases. To solve this crucial concern,

a new extraction-based test derivation technique,

called the Artefacts extractor is proposed. The essence

of this is to ensure that the artefacts extracted from the

UML models are refined to reflect a chronological

mapping between the source model and XMI file. That

is, artefacts in XMI files are mapped to correlate to the

requirements in the UML model so as to generate

comprehensive test cases. The artefacts extractor

refines and provide the details associated with the

methods and processes of UML-based test design and

generation, and focuses on how to link testable model

artefacts into useful test cases, so that they can be

used to generate test scenarios, test sequences, test

operations and test elements. The artefacts extractor

utilizes series of correlation steps during the extraction

process in order to ensure completeness of the

artefacts with respect to contents of the UML models

and model elements at different modeling levels.

3.2 The Structure Identifier

The primary objective of the proposed approach is to

aid the concise extraction of artefacts from formal

models so as to enhance the generation of test cases

that provides an efficient way of defining

transformations, mappings, and refinements of the

extracted artefacts. This was accomplished by using

ArgoUML as the modeling tool to model requirements

of users using activity diagram. The structure identifier is

therefore, responsible for detecting additional

elements added to an existing diagram or XMI file for

extraction. It consist of a meta-modeling mapping

technique which provides an avenue of using the

abstract syntax and semantics of additional model

variables for the extraction process. This allows the

extraction to happen at the metamodel level. The

transformation process is defined at the metamodel

level, while the transformation execution is

implemented in the model level. The meta-modeling is

the key in this structure. A transformation tool is then

saddled with the responsibility of reading, writing and

transforming the contents of XMI file. Secondly, the

transformation rules are based on MOF but for more

robust hierarchical meta-modeling architecture.

3.3 XMI Model Transformer

The basic advantage of the proposed model

transformer is in its ability of specifying the

transformation strategy at the meta-model level.

Figure 3 shows the basic structure of the proposed

model transformer. A transformation engine takes XMI

of the source model as input, execute them through

set of rules to generate an output model in a textual

format. This means that, the output of the

transformation engine is a refinement of the XMI. A XMI

is regarded as a file containing the textual descriptions

of the model elements that are in consonance with a

metamodel element via the instantiation relationship.

Metamodel based transformations use only the

elements of the meta-models, thus the transformation

description is expressed in terms of the two meta-

models. The XMI file of the underlying model of the SUT

was used to extract the textual syntax defined by the

metamodel. Since XMI provides a textual syntax in a

form that most programming languages conform to,

the internal storage of the extracted artefacts was

built on tree, where the nodes and edges in the tree

are constructs of the XMI file. However, to capture

more complicated constructs like loops, mathematical

formulations were used to depict the relationships of

different constructs. Considering its tree structure and

such relationships, the transformation process was

executed on the Elements and Attributes which signify

Nodes and Edges. This enhances the transformation of

the abstract syntax and semantics of the XMI file.

Based on the proposed method, a template based

model transformation was designed to obtain the

information necessary for test cases from the artefacts

repository. A set of interchangeable templates can be

provided for model transformation between different

versions of XMIs. Meta-modeling is a critical part of the

transformation approach. It provides a mechanism of

unambiguously defining modeling languages,

ArgoUML in our case. It is the prerequisite for a model

transformation tool to access and make use of the

models. The fact that XMI notations have textual

syntaxes makes it possible to extract artefacts in an

unambiguous manner. The method utilized in this

research is based on trees as abstract data types.

42 Oluwagbemi Oluwatolani & Hishammuddin Asmuni / Jurnal Teknologi (Sciences & Engineering) 77:13 (2015) 37–48

Figure 3 XMI model transformation process

In this context, a requirement is designated as node

while the attributes describing the functionalities of

each requirement are considered to be edges. The

proposed approach accepts input in XMI format. As

mentioned previously, this research utilized the

ArgoUML tool due to the fact that, it is open source.

Therefore, the diagram is first exported to XMI format.

After exporting in XMI format, the proposed approach

converts the artefacts into a tree by identifying the

requirements with specific xmi:id as nodes and the

xmi:dref as edges. Each requirement with their

respective attributes is identified by the pseudo code

described below:

startRequirement(String rName,

// “r = requirement" name

 Attributes atts//

endRequirement(rName)

The “start and end requirement” shows that, each

requirement and its attributes should be visited once to

extract all its artefacts. This cycle is completed for all

the requirements and attributes contained in the XMI

file. Therefore, the first task in test cases generation is to

develop a parser that is capable of extracting

artefacts from model files of UML diagrams. After

parsing artefacts, an output is generated. Algorithm 1

shows the artefacts extraction algorithm while Listing 1

shows the rules.

INPUT:

1. N = Artefacts lists from XMI file.

 s: an ID of the first artefact.

 d: an ID of the last artefacts.

2. T (V, E) be a tree graph with a set of V nodes

 and set of E edges; where V, E is the number

of

 requirement and attributes respectively.

PARAMETERS:

3. R(s,d), is a nonnegative number that stands for

 the artefacts where “s” start node and “d” is

 last node.

4. i, j; loop index, T (2, i) is array of vertexes

source;

 T (3, j) is array of vertexes attributes.

5. T (3, j) is array of edges; T (3, i) is array of

Nodes.

6. For each node and edge VE (i, j), Extraction is

 executed from the shortest path of the origin

to

 final node.

OUPUT:

7. R: Extracted artifacts.

8. INITIALIZATION:

9. // All nodes are identified with their

 corresponding edge //Applying Rule 1//

10. For each edge, do the operation in two steps

 as follows:

11. set ArtefactsArray[1... node-1] =

 ArtefactsArray(node) = n; //Applying Rule 2//

BEGIN

12. for all N; j = first to last edge // j is set to

 be the artefacts at edges; i = is set to be

 the artifacts at node

13. if (T(2 , j) = i) // k is set to be end of node

 of edges.

14. Artifacts = ArtifactsArray(i) + T(3i, j);

15. end if

16. end for

17. end for

18. for i = first to last edges

19. while (the origin (k) is the same in T)

20. if (T(3 , i,j) = ArtefactArray(i)⊆

 ArtefactArray(j)//Applying Rule 3//

21. T(k) = T(2 , i); Extract artifacts// else

22. i = i + 1; k = T(i , j);

23. end if

24. end while

25. end for

26. END

Algorithm 1 Artefacts extraction

a. Rule 1: If the current element is a node, the

algorithm pauses and extracts artefacts.

b. Rule 2: If the artefacts of the current node have

been extracted, the algorithm checks to ensure

that, all the attributes has been visited and

extracted.

XMI

Model
Elements Namespaces

 Elements Level Transformation

Rule Sets

 Attributes Level Transformation

ARTEFACTS

 Parent and
Child Nodes

Nodes and Edges

43 Oluwagbemi Oluwatolani & Hishammuddin Asmuni / Jurnal Teknologi (Sciences & Engineering) 77:13 (2015) 37–48

c. Rule 3: The extracted artefacts are then

represented in an arraylist.

Listing 1 Rules Set

3.4 DFT Generator

An XMI file contains many references to other

elements inside the document, but it can also have

references to elements that appear in other

documents. This necessitated the proposal of the

dependency flow tree (DFT) generator algorithm

aimed at storing all the extracted artefacts before test

case generation. XMI elements contain attribute

names and variables that are useful for test case

generation. For the extraction process, the elements

like <UML:Namespace.ownedElement> and

<UML:TaggedValue. type> was used. Algorithm 2

depicts the DFT generator concept.

1: Input: Extracted artefacts;

2: Ouput: DFT

3: initTgt.DFT XMI file [L]

4: for i = 1 to L do

5: XMI file (createNodes.elements; edges.attributes)

6: addElement (Nodes [edge.attributeSize])

7: end for

8: ModelTgt(visitList (element.descriptions, DFT)

9: for i = 1 to L do

10: XMI file = DFT

11: end for

Algorithm 2 DFT Generation

The DFT generator algorithm is responsible for

building a dependency flow tree based on the

extracted artefacts. The dependency tree is built

based on the number of Nodes and Edges contained

in the XMI file and using the algorithm verifies that the

extracted artefacts of a given XMI file are well

structured with their respective Nodes and Edges.

3.5 Test Case Generator

The test cases are generated based on coverage

criteria using Algorithm 3. It generates test cases with

either pairwise or triple coverage. Pairwise coverage is

sufficient for good test case generation. The seeming

ineffectiveness of test case generation techniques has

to do with low coverage criteria. In the proposed

approach, more coverage criteria were used and

mapped to avoid redundancy during test case

generation.

1: Input: Dependency flow tree (DFT).

2: Output: Set of test cases.

3: elementStack=Ø

4: userObjectStack=Ø

5: decisionStack=Ø

6: resultStack=DFT.rootNode

7: for all nodes of DFT do

8: while DFT.node==expextedOutput.node do

9: userObjecteStack.push(child node of

 DFT.node)

10: end while

11: end for

12: for all elements of userObjectStack do

13: repeat

14: if elementStack[top] ≠ alt.node

||loop.node||

 par.node|| break.node

 ||DFT.EndNode then

15: resultStack.push(elementStack.pop) == {push

 elementStack top element in resultStack and

 pop the top element from elementStack}

16: resultStack.push(child node of resultStack[top]

in

 DFT) {push child node of resultStack top element

 into resultStack.}

17: else if elementStack.[top] == DFT.EndNode then

18: Mark the last decision node in resultStack as

 visited

19: while resultStack[top] ≠ decisionStack[top] do

20: resultStack.pop {pop the top element from

 resultStack.}

21: end while

22: decisionStack.pop {Pop the top element from

 decisionStack.}

23: else if elementStack[top] == ||alt.node||

 break.node || loop.node

 then

24: decisionStack.push(elementStack.pop) {pop top

 element of elementStack and push it into

 decisionStack and resultStack.}

25: for all Child nodes of resultStack[top] in DFT do

26: if Child node is not Marked Visited then

27: elementStack.push(Child Node) {push all

 child nodes of

 resultstack[top] in DFT, if marked as visited

 and insert into elementStack}

28: end if

29: end for

30: else if elementStack[top] == par.node then

31: resultStack.push(resultStack[top] and all its child

 nodes in DFT

32: runningStack.push(child nodes of

resultStack[top]

 in DFT)

33: else if elementStack.top ==

 UserObjectStack.CurrentNode then

34: resultStack.push(elementStack.pop) {Pop the

 top element from

 elementStack and push it into resultStack.}

35: Print resultStack

36: if decisionStack ≠ Ø then

37: while resultStack[top] ≠ decisionStack[top]

do

38: resultStack.pop {pop the top element from

 resultStack.}

39: end while

40: end if

41: if decisionStack ≠ Ø then

Algorithm 3 Test Case Generation

44 Oluwagbemi Oluwatolani & Hishammuddin Asmuni / Jurnal Teknologi (Sciences & Engineering) 77:13 (2015) 37–48

4.0 EXPERIMENTAL DESIGN

A prototype tool named as UBTCG (UML based test

case generator) has been developed. The

implementation was executed with Java language

(Java 2) using NetBeans IDE 6.1. Input of UBTCG is the

XMI files of UML diagrams. Activity diagrams for various

software specifications were drawn and subsequently

exported in XMI file format. UBTCG visualizes the

dependency flow tree and display generated test

cases as output. UBTCG consists of two main

components: DFTGenerationUnit and

TestCaseGenerationUnit. DFTGenerationUnit first parses

the XMI of UML diagrams and then converts it into a

dependency flow tree. Taking DFT as the input,

TestCaseGenerationUnit traverse the DFT and

generate test cases. The two components:

DFTGenerationUnit and TestCaseGenerationUnit are

described below:

4.1 DFT Generation Unit

This component parses the XMI representation of UML

diagrams using an improved parser. This parser is

capable of reading and extracting information from

the XMI file or document of any activity diagram to

conduct model-based testing. This component

comprises of two main classes: ImprovedParser, and

DFTGenerator. The ImprovedParser class implements

the event-handlers startElement(), endElement(),

characters(), and endDocument() to interface with

the parser. In the event-handler startElement(), the

tagged elements starting with the names are:

“ownedAttribute”, “lifeline”, “fragment”, “operand”,

“guard”, “specification”, “argument”, “body”,

“ownedParameter”, “message” and

“packagedElement”, “ownedOperation”,

“ownedBehavior”, “guard”, and “ownedParameter”.

Depending on type of tagged elements, they were

categorized as “MessageEvent”, “Fragment”,

“CallEvent”, “Object”, “Class”, “Lifeline”, “Operand”,

“Message”, “Operation”, “Parameter”, Transition”,

and “Guard”. When multiple tagged elements start

with the same name, then the value of the attribute

“XMI type” is used. For example, tagged elements

specifying the element name and call event start with

the same name “packagedElement”. In order to

distinguish them, the attribute “XMI type” has the value

as “uml:CallEvent” or “uml:Element”. For each

processed tagged element, the associated meta-

information of the UML diagram is retrieved from the

parser and stored by means of instance variables: Id,

Name, ClassId, ObjectId, FragmentType, Guard,

SendEventId, ReceiveEventId, CallEventId,

MessageType, OperationId, MessageId, and LifelineId

of the class named Parser. After processing the

tagged element, only relevant variables would have

meaningful values, and the rest would have the null

value.

4.2 Test Case Generation Unit

The main task of this component is to generate test

cases by traversing the dependency flow tree in test

cases. It consists of two main classes:

ElementListCreator and TestCaseDisplayer. The code

of TestCaseDisplayer was developed by taking two

arraylists into cognizance DFTNodeList and DFTEdgeList

as the input; the ElementListCreator object creates a

list of elements by using node and edge specifications.

To display the test cases in a chronological form,

different methods such as start tree(), addln(), and

end tree() were implemented in Java to create test

cases by calling the methods getElementSource(),

getTree(), and writeTreeToFile(). UBTCG supports

different menu options for selecting an XMI file,

displaying XMI file, parsing selected XMI file, starting

conversion, and display dependency flow tree in

textual forms. In this usage scenario, the XMI file is

selected and converted into a DFT and the DFT is

traversed to generate test cases. The option

“generate tree” is chosen to view the DFT and the

option “generate test cases” is selected to view the

generated test cases.

5.0 RESULTS AND DISCUSSION

The percentage of criteria coverage is used to

evaluate the accuracy or quality of test case

generation approaches [6, 7]. The dataset used for the

experiment consisted of the XMI file generated from

the activity diagram shown in Figure 1. The formula for

calculating the percentage of coverage criteria is

depicted in Equation 1 [8]. The accuracy of the

proposed approach is shown in Table 1. It indicates

the number of elements contained in the UML

diagram which were exercised in the generated test

cases. From the results, it is clear that the proposed

approach was comprehensively able to generate test

cases based on all the criteria defined for coverage.

Further analysis shows that the test cases are consistent

and conformed to all the artefacts contained in the

XMI file (Figure 4).

CE : Elements coverage

tcsE : Number of elements exercised in the test cases

tsUMLE : Number of elements in the UML diagram











 100

tsUML

tcs
C

E

E
E (1)

45 Oluwagbemi Oluwatolani & Hishammuddin Asmuni / Jurnal Teknologi (Sciences & Engineering) 77:13 (2015) 37–48

Table 1 Accuracy of the proposed approach

Elements

tcsE

tsUMLE

Accuracy

Activities 10 10 100%

Branches 3 3 100%

Conditions 4 4 100%

Fork 1 1 100%

Join 1 1 100%

Basic path 19 19 100%

Total 38 38 100%

The approach was also tested with other activity

diagrams for three different software applications,

namely library, ordering and cellular phone systems.

The proposed approach displayed exciting results by

generating comprehensive test cases as well. The

overall results including that of ATM software are

displayed in Figure 4.

Figure 4 Test case generation from activity diagrams for other

software applications

The research contributions borders on adequate test

coverage criteria with high accuracy. A modification

of the concept of depth-first-search traversals was

used to generate test cases. In trees, it is possible for a

node to have more than one parent especially when

different edges, starting at different nodes exist.

Because the parent node is not unique, a node’s set of

siblings will also not be unique. Worse still, it is possible

for a node to simultaneously be the sibling and the

child of the current node. In these cases, a depth-first-

search algorithm will be unable to carry out traversals

effectively because it will not be able to visit the entire

node since it is meant to dwell within the connected

component from the root node. Therefore, to address

this problem, a modified algorithm was developed to

visit all the nodes of a tree and their corresponding

edges exactly once. To avoid redundancy, visited

nodes are marked. Table 2 shows comparisons of the

proposed approach with existing ones.

Test case generation is an important part of testing. It

determines to a very large extent the success of the

overall testing exercise. This paper proposed an

approach for generating unambiguous test cases from

XMI file of UML diagrams. The proposed approach

overcame the difficulties of attributing all information

in XMI tagged elements to extract artefacts. The

transformational process associated with the DFT into

test case generation process is automated. The

proposed approach provided solution to limitations of

existing systems such as low accuracy and erroneous

or redundant generation of artefacts or test cases. The

prototype tool UBTCG was implemented based on the

descriptions of the proposed approach and the tool is

capable of generating DFT and test cases

automatically. Screenshots of the proposed tool for

DFT and test case generations for the activity diagram

in Figure 1 are shown in Figures 5 and 6 respectively.

5.1 Comparison with Previous Approaches

In Table 2, descriptive analysis of some of the activity

diagram-based test case generation approaches are

enumerated with their limitations. However, in the

proposed technique, an approach for comprehensive

generation of test cases from XMIs of activity diagrams

is presented based on a conformance checker that

identifies unwanted or distorted strings of the name

attributes of an XMI file and structure identifier which

distinctively identify the various numbers of nodes and

edges contained in an XMI file. Secondly, algorithms

were designed to extract the key information

contained in the model’s XMI file. Thirdly, we visualized

the refined and mapped contents of the XMI file to a

directed tree and test cases were automatically

generated by traversing the tree. Activity diagrams of

typical software applications were converted to their

XMI equivalent and used to determine the

performance of the proposed approach. A prototype

tool was implemented and results show that, the

proposed approach can generate test cases

automatically that completely conforms to the total

number of modelled requirements.

46 Oluwagbemi Oluwatolani & Hishammuddin Asmuni / Jurnal Teknologi (Sciences & Engineering) 77:13 (2015) 37–48

Figure 5 Dependency flow tree generation screenshot

Figure 6 Generated test cases screenshot

47 Oluwagbemi Oluwatolani & Hishammuddin Asmuni / Jurnal Teknologi (Sciences & Engineering) 77:13 (2015) 37–48

Table 2 Descriptive summary of test case generation approaches based on activity diagrams

S/No Source Tool Used Criteria Validation Prototype Limitation

1 Li et al. [9] Rational

Rose

Basic-path

coverage

ATM √ Satisfaction of more coverage

criteria

2 Patel and Patil,

[10]

UML 2.0

Basic, simple

and activity

path criteria

ATM √ The generalization of test case

generation algorithm to cater for

various the various test coverage

criteria within the same test

derivation framework

3 Farooq et al. [11] UML 2.0 Sequential

and

concurrent

coverage

Enterprise

customer

commerce

system

× Expansion to other aspects of

activity diagram such as data

flow and high level design

artifacts with adequate coverage

criteria

4 Jena et al. [12] UML 2.0 Activity

coverage

criteria

ATM × Development of an implemented

tool

5 Heinecke et al.,

[13]

UML 2.0 All-path Account

report

system

√ Integration with other UML tools

6 Pechtanun and

Kansomkeat, [14]

UML 2.0 Path ATM × Implementation of a support tool

that can generate test cases from

other UML diagrams

7 Chen et al.[15] UML 2.0 Activity,

transition,

key path

and

interaction

coverage

ATM √ Validation with large- scale

requirements

8 Nayak and

Samanta [16]

UML 2.0 Control flow Cell

Phone

System

(CPS)

× Extension to enable generation of

test cases corresponding the test

vectors and with other UML

models with dependencies

9 This work ArgoUML All-Path, All

basic-pair

path,

decision and

condition

coverage

criteria

ATM,

Library,

Ordering &

Cell Phone

systems

√ Extension to other diagrams and

validation in real-life scenario

6.0 CONCLUSION AND FUTURE WORK

In this paper, the proposed approach utilized four

different coverage criteria for the generation of test

cases. A parser algorithm was implemented to parse

artefacts from an activity diagram model file to

generate a DFT which contains the extracted

information. The DFT consists of nodes and edges.

Consequently, a modified search algorithm was

developed to generate test cases from the DFT by

visiting all the nodes and edges exactly once. To

avoid redundant generation of test cases, visited

nodes and edges are marked to signify that, they

have been visited. To further test for robustness of the

proposed approach, other activity diagrams were

drawn for different software applications and the

proposed approach was able to efficiently generate

test cases from all the activity diagrams. In the future,

it will be expedient to validate this approach with

experts in real setting and extend the approach to

cater for other diagrams.

References

[1] Sharma, M. and Mall, R. 2009. Automatic Generation of

Test Specifications for Coverage of System State

Transitions. Information and Software Technology. 4(51):

418-432.

[2] Linzhang, W., Y. Jiesong, Y. Xiaofeng, H. Ju, L. Xuandong,

and Z. Guoliang. 2004. Generating Test Cases from UML

Activity Diagram based on Gray-box Method. 11th Asia-

Pacific Software Engineering Conference (APSEC04).

Busan, Korea. Nov. 30-Dec. 3 2004. 284-291.

[3] Li, H. and L. C. Peng. 2007. Software Test Data Generation

using Ant Colony Optimization. International Journal of

Computer, Electrical, Automation, Control and

Information Engineering. 1(1): 137-140.

[4] Swain, R. K. Panthi, V. and Beher, P. K. 2013. Generation of

Test Cases using Activity Diagram. International Journal of

Computer Science and Informatics. 2(2): 2231-5292.

[5] Swain, S. K. and Mohapatra, D. P. 2010. Test Case

Generation from Behavioral UML Models. International

Journal of Computer Applications. 6(8): 6-11.

[6] Lam, S. S. B. Raju, M. L. Ch, S. Srivastav, P. R. 2012.

Automated Generation of Independent Paths and Test

48 Oluwagbemi Oluwatolani & Hishammuddin Asmuni / Jurnal Teknologi (Sciences & Engineering) 77:13 (2015) 37–48

Suite Optimization using Artificial Bee Colony. Procedia

Engineering. 1(30): 191-200.

[7] Sun, C. A., B. Zhang, J. Li. 2009. TSGen: A UML Activity

Diagram-Based Test Scenario Generation Tool.

International Conference on Computational Science and

Engineering (CSE'09). Vancouver, BC. 29-31 Aug. 2009.

853-858.

[8] Far, B. H. 2010. SENG 421: Software Test Metrics. Chapter

10, Lecture Notes, Department of Electrical & Computer

Engineering, University of Calgary, Canada. [Online].

From:

http://www.enel.ucalgary.ca/People/far/Lectures/SENG4

21/10/. [Accessed on Jan. 15, 2015].

[9] Li, L. Li, X. He, T. Xiong, J. 2013. Extenics-based Test Case

Generation for UML Activity Diagram. Procedia Computer

Science. 17(1): 1186-1193.

[10] Patel, P. E., N. N. Patil. 2013. Testcases Formation Using UML

Activity Diagram. International Conference on

Communication Systems and Network Technologies

(CSNT2013). Gwalior. 6-8 April 2013. 884-889.

[11] Farooq, U., C. P. Lam, H. Li. 2008. Towards Automated Test

Sequence Generation. Australian Software Engineering

Conference (ASWEC2008). Perth. WA. 26-28 March 2008.

441-450.

[12] Jena, A. K., S.K. Swain, D. P. Mohapatra. 2014. A Novel

Approach for Test Case Generation from UML Activity

Diagram. International Conference on Issues and

Challenges in Intelligent Computing Techniques (ICICT).

Ghaziabad. 7-8 Feb. 2014. 621-629.

[13] Heinecke, A., T. Bruckmann, T. Griebe, V. Gruhn. 2010.

Generating Test Plans for Acceptance Tests from UML

Activity Diagrams. 17th International Conference on

Engineering of Computer Based Systems (ECBS2010).

Oxford. 22-26 March 2010. 57-66.

[14] Pechtanun, K., Kansomkeat, S. 2012. Generation Test Case

from UML activity Diagram based on AC Grammar.

International Conference on Computer & Information

Science (ICCIS). Kuala Lumpur. 12-14 June 2012. 895-899.

[15] Chen, X., N. Ye, P. Jiang, L. Bu, X. Li. 2011. Feedback-

directed Test Case Generation based on UML Activity

Diagrams. 5th International Journal of Secure Software

Integration & Reliability Improvement Companion (SSIRI-

C2011). Jeju Island. 27-29 June 2011. 9-10.

[16] Nayak, A. and Samanta, D. 2011. Synthesis of Test

Scenarios using UML Activity Diagrams. Software & Systems

Modeling. 10(1): 63-89.

