

77:13 (2015) 49–66 | www.jurnalteknologi.utm.my | eISSN 2180–3722 |

Jurnal

Teknologi

Full Paper

REVIEW ON SQL INJECTION PROTECTION

METHODS AND TOOLS

Muhammad Saidu Aliero*, Imran Ghani, Syeed Zainudden,

Muhammad Murad Khan, Munir Bello

Department of Computer Science, Faculty of Computing,

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor,

Malaysia

Article history

Received

15 April 2015

Received in revised form

29 September 2015

Accepted

12 November 2015

*Corresponding author

Msaidua2000@gmail.com

Graphical abstract

Abstract

SQL injection vulnerability is one of the most common web-based application vulnerabilities

that can be exploited by SQL injection attack. Successful SQL Injection Attacks (SQLIA) result in

unauthorized access and unauthorized data modification. Researchers have proposed many

methods to tackle SQL injection attack, however these methods fail to address the whole

problem of SQL injection attack, because most of the approaches are vulnerable in nature,

cannot resist sophisticated attack or limited to scope of subset of SQLIA type. In this paper we

provide a detailed background of SQLIA together with vulnerable PHP code to demonstrate

how attacks are being carried out, and discuss most commonly used method by programmers

to defend against SQLIA and the disadvantages of such an approach. Lastly we reviewed most

commonly use tools and methods that act a firewall for preventing SQLIA, finally wean alytically

evaluated reviewed tools and methods based on our experience with respect to five different

perspectives. Our evaluation results point out common trends on current SQLI prevention tools

and methods. Most of these methods and tools have problems addressing store-procedure

attacks, as well as problems addressing attacks that take advantage of second order SQLI

vulnerability. Our evaluation also shows that only a few of these methods and tools considered

can be deployed in all web-based application platforms.

Keywords: Attack, prevention, method, approach, injection, parameters, query

© 2015 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

Study shows that the security of web applications is, in

general, quite poor and demand to use these

applications is very high. Technology and networks

enable organizations to adopt web based

applications as backbone to conduct their day to day

activities. For instance, E-commerce, health care,

transportation, social activities are all now available on

web-based database driving applications. These

applications process data and store the result in back-

end database server where the organization’s related

data are stored. Depending of the specific purpose of

application, most communicate frequently with

customers, users, employees to enable them to use the

service offered by the organization. The fact that these

applications can be invoked by anyone worldwide

drew the attention of attackers who wish to benefit

from these vulnerabilities. According to a report

published on security survey by open web application

security project (OWASP) and SAN security report in

2014, over 63% of web applications worldwide are at

risk of being hacked as a result of their vulnerabilities

[1].

SQLI (SQL injection) vulnerability is the one of web-

based database driving application vulnerabilities that

presents high risks for organizational assets. SQLI

vulnerability results from inappropriate validation of

input from user, which enables the attacker to

manipulate programmer intended queries by adding

new SQL operator, command, keyword, or clause

enabling unauthorized database modification and

bypassing authentication mechanisms.

Researchers have investigated different methods

and different approaches to enable programmers to

secure their queries by applying secure coding in web

application source codes as well as standalone tools

50 Muhammad Saidu Aliero et al. / Jurnal Teknologi (Sciences & Engineering) 77:13 (2015) 49–66

that act as web fire wall from the client side thereby

gaining unauthorized access to restricted data,

performing intercept dynamic queries by user and

checking for existence of SQLIA (SQL injection Attack).

The question to ask is why is it that for the past few

decades, despite efforts by different researchers to

eliminate the problem of SQLIA, there is still no existing

solution that completely eliminates the entire problem

of SQLIA.

In this regard we provide a detailed explanation of

defensive coding practice and problems associated

with defensive coding practice to make programmers

aware of the existing issues in using defensive coding

practice. We also provide evaluation of different

existing detection and prevention methods to prevent

security administrators from blindly choosing tools

advertised by vendors as different vendors claim to

have best tools to tackle the problem. Our evaluation

will also shed light on researchers that are interested in

improving the existing tools. Many researchers have

already made similar efforts in this field; however our

evaluation is different from others by evaluating

methods on different perspective that others have not

done. Figure 1 below shows the organization of this

paper.

Figure 1 Organization of the paper

2.0 BACKGROUND OF SQLIA

Most database driving websites required customers

to be a member in order to have access to the

services they offered. In this case a customer is

expected to register to use the service offered by the

application. Normally registered users have

restrictions on viewing and manipulating data within

applications. Now because of the dynamic feature

of SQL statement and logical knowledge possessed

by other people on how to manipulate the way to

communicate with the database it is easier for an

attacker to have unauthorized access to the system,

bypass authentication mechanisms and

unauthorized data manipulation on backend

database through injection parameters of the

website.

2.1 Injection Parameters

Attackers use injection parameters to inject malicious

code in an application. Many SQLI prevention tools

and methods used today can be deployed in one or

more injection parameters described below.

Injection through User input field: user input fields

are provided in web applications to enable web

application users to request information from backed

database to the user with help of HTTP POST and GET.

These inputs are connected with backend database

using SQL statements to retrieve and render

requested information for users or to allow users to

connect to the system. User input fields are

vulnerable to SQL injection attack if input provided

by the user is not sanitized before sending to the

database engine for processing, which enables

attackers to modify intended queries in order to

perform malicious action in the system.

Injection through cookies: Cookies are structures

that maintain persistence of web application by

storing state information in the client machine. When

a client returns to a Web application, cookies can be

used to restore the client’s state information. If a Web

application uses the cookie’s contents to build SQL

queries, then an attacker can take this opportunity to

modify cookies and submit to the database engine.

51 Muhammad Saidu Aliero et al. / Jurnal Teknologi (Sciences & Engineering) 77:13 (2015) 49–66

Injection through server variables: Server variables

are a collection of variables that contain HTTP,

network headers, and environmental variables. Web

applications use these server variables in different

ways, such as session usage statistics and identifying

browsing trends. If these variables are logged to a

database without sanitization, this could create SQL

injection vulnerability because attackers can forge

the values that are placed in HTTP and network

headers by entering malicious input into the client-

end of the application or by crafting their own

request to the server.

Second order injection: In second-order injections,

attackers plant malicious inputs into a system or

database to indirectly trigger an SQLIA. When that

input is called at a later time when an attack occurs,

the input that modifies the query to construe an

attack does not come from the user, but from within

the system itself.

2.2 Attack Intent

Attacks can also be characterized based on the

goal, or intent, of the attacker. Therefore, each of the

attack types that we provide in Section 2.4includes a

list of one or more of the attack intentions defined in

this section.

Identifying Injectable Parameters: Injectable

parameters are text-input that allow users to request

information from the database. This query request is

sent to the database server though HTTP request, for

example ULR, search box and authentication entries

are considered as text-input. When these text-input

are sending user requests to the database without

proper validation they are considered as injectable

parameters which allow attackers to inject SQL query

attack. Identifying injection parameters is the first

step to perform an attack.

Performing database fingerprinting: after identifying

the injection parameters the second step is to know

the database engine type and version. Knowing this

is very important to an attacker because it enables

him to know how to construct query format

supported by that database engine and default

vulnerability associated with that version as every

database engine employs a different proprietary SQL

language dialect.

Determine database schema: schema is the

database structure. It includes table names,

relationships, and column names. Knowing this

information about database makes it easier for an

attacker to construct an attack to perform database

extraction or data manipulation language.

Database manipulation and extraction: this is

dependent on the intent of the attacker as most

attackers are more interested in getting customer

bank information, creating bogus data modifying

colleague salaries.

Evading detection: this is a method that attackers

use to avoid detection by security mechanisms in the

sense that their actions cannot be detected or

traced.

Executing Remote Commands: Remote commands

are executable code resident on the compromised

database server. Remote command execution

allows an attacker to run arbitrary programs on the

server. Attacks with this type of intention could cause

entire internal networks to be compromised.

Bypassing authentication: this is the most precious

attack by attacker because it allows them to get

access to the database with user privileges.

Performing privilege escalation: These attacks take

advantage of implementation errors or logical flaws

in the database in order to escalate the privileges of

the attacker. As opposed to bypassing

authentication attacks, these attacks focus on

exploiting the database user privileges.

2.3 Example of PHP Vulnerable Code

Before describing types of SQL injection attack, we

present an example of PHP code that is vulnerable to

SQL injection attack. We use this example in section

2.4 to provide attack examples.

$connection=mysql_connect('localhost','root','') or

die('connection error');

 $dbselect= mysql_select_db('hr')or die('connection

error');

$uname='msaidu';

$pword='123';

$query="SELECT * FROM login WHERE

username='$uname'

 AND password='$pword' ";

$dquery=mysql_query($query);

$tquery=mysql_num_rows($dquery);

if($tquery==Null){

echo 'User Does not exist';

}

else{

echo ‘You are now connected ';

}

$Get_Rows = GetRow(Run("SELECT * FROM

emoloyee"));

$Get_Rows = GetRow(Run("SELECT * FROM salary"));

2.4 SQLIA Types

Attackers use SQLIA to attack web applications and

this attack comes in various types depending on

what attackers want to achieve. However according

to adeghian et al. [23] SQLIA can be classified into

(7) types: Tautologies, Illegal/Logically Incorrect

Query, Union Query, Piggy-Backed Queries, Stored

Procedures, Inference and Alternate Encodings.

1. Tautology attack: this is a type of attack that takes

advantage of “WHERE” clause in SQL statement to

evaluate the results returned by Query in relational

database to be always true. Attackers use this type

of attack to achieve authentication bypassing in

web applications or perform unauthorized database

extraction.

52 Muhammad Saidu Aliero et al. / Jurnal Teknologi (Sciences & Engineering) 77:13 (2015) 49–66

Authentication bypassing all relational database

management system with no exception evaluate

SQL query with “OR 1=1” where clause is always true.

Also in relational database management system

anything followed by comment (--) will not be

processed. For example valid user’s login to the

system by using:

(SELECT * FROM login WHERE username=admin AND

password=admin123);// -----------------------statement (1)

But attacker always finds the way out to bypass

authentication to have access to the system and this

can be achieve by:

(SELECT * FROM login WHERE username=admin or

1=1--- and password =nothing). -----------statement (2).

As you can see in statement 2 admin was used as a

user or 1=1 meaning that connect admin or whoever

exist in the system and comment (---) was used to

ignore password which means password will not be

processed.

Data extractions: most of the users in the system are

only allowed to perform certain actions, for example,

viewing their own profile details but malicious users or

attackers always need more. Attackers try to access

restricted data. An example would be a system

designed for employees to view their own personal

details. Thus employees can only view their profile

nothing more. For example

(SELECT * FROM username, password UNION SELECT

salary, card number FROM pay WHERE

username=admin ---

---statement 1

This statement displays username, password, salary

and credit card number of admin. However, as

attackers are only interested in information that

would help them in making money illegally, they

might inject something like this:

(SELECT * FROM username, password UNION SELECT

salary, cardnumber FROM pay WHERE

username=admin OR 1’=’1---------------------------------------

---statement 2

If you can see the “OR 1=1” transform the “WHERE”

clause as true, at least one record that exists in

database, if not all, will display the following details

about employee: Username, password, salary and

credit card number

2. Illegal or incorrect logical query: knowing the

server, schema, table, and column names make it

easy for attackers to gain unauthorized access to the

system. For example http://localhost/?EmpId=10’.

If you notice at the end of the ULR quote was

inserted after 10. This disturbs the database engine

because when you type something within the quote

it is used to tell the database that this is query and to

process it. So after processing

http://localhost/?EmpId=10’ the database engine

returns the following message saying:

You have an error in your SQL syntax; check the

manual that corresponds to your MySQL server

version for the right syntax to use near '\'' at line 1

telling the attacker the backend database engine

used is MySQL and asking user to check the syntax in

line one.

3. Inference Attack: this attack can be classified into

Blind SQL injection and Timing Attack.

Blind SQL injection attack: this is another method of

doing database fingerprinting. Sometimes database

engines can be configured to hide database error

messages and return generic error to the user when

there is SQL syntax error in the users SQL statement.

This can serve as a method to prevent attackers from

database fingerprinting by using illegal or incorrect

query method. However this does not mean the

database is secure; it only conceals the return

default error message which will be difficult for

attackers who rely on database finger printing as a

first step in carrying out an attack. Thus blind SQL

injection attack can be used to deduce if there is a

security mechanism implemented in the web

application or not. Blind SQL injection attack can be

achieved by asking a series of true or false queries in

the database. In this case attacker tries to inject the

following statements

SELECT * FROM emp_name, emp_address, gender,

from employee where 1=0; drop employee

-------------------------Statement (1)

SELECT * FROM emp_name, emp_address, gender,

from employee where 1=1; drop employee

------------------------Statement (2)

After executing above Boolean malicious SQL

query, an attacker will know if the database is secure

or not. If the same response is delivered (return

generic error message) there is protection

mechanism that has detected an attack and

blocked the query from executing and returned an

error message to the user because all of the

statement contains malicious words. A different

response means that the query has reached inside

the database engine and has been executed.

Therefore the first query will return an error message

because it is an incorrect query while the second

may or may not return any error message because it

was a correct query.

Timing Attacks: In this type of attack the response

time the database takes to respond to users query is

noticed which helps to know some information from

a database. This method uses an if-then statement

for injecting queries. WAITFOR is a keyword along the

branches, which causes the database to delay its

response by a specified time. For example an

attacker can extract information from database

using a vulnerable parameter.

http://localhost/?EmpId=10
http://localhost/?EmpId=10

53 Muhammad Saidu Aliero et al. / Jurnal Teknologi (Sciences & Engineering) 77:13 (2015) 49–66

declare @ varchar (8000) select @s = db_na

me () if (ascii (substring (@s, 1, 1)) & (power (2, 0))) > 0

waitfor delay '0:0:8

4. Union attack: this is most common type of attack

used by attacker in gaining access to restricted data

in other tables. Malicious SQL query can be

appended by attacker to combine with valid SQL

query in order to gain unauthorized access to extra

data. For an example of a malicious attack, consider

the following example where online human resources

in a particular company allow employees to view

only their personal details online. A malicious user

can access extra information such as employee

credit card number for example:

SELECT * FROM emp_name, emp_address, gender,

from employee where emp_id=7;

The above statement displays employee name,

address and gender with identification number 7.

Below statement extracts more data about an

employee:

SELECT * FROM emp_name, emp_address, gender,

from employee where emp_id=7UNION SELECT

credit_card FROM salary;

The above statement provides an attacker with

employee details with the added bonus of the

employee’s credit card number.

Piggery-backend query attack: some of the

database engines support stacked query by default.

This feature creates opportunity for attacker to

perform dangerous action in the database. In this

case a valid query will be terminated by (;) and a

malicious query is added. After processing the valid

query, a malicious query is then executed, unlike in

union query where a malicious query will be joined

with a valid query and processed as a single joined

query. For example:

SELECT * FROM emp_name, ep_address, gender,

from employee where emp_id=7; drop employee

The above query will drop the employee table after

displaying employee information.

Stored Procedure: Stored procedure is a part of

database where programmers could set an extra

abstract layer on the database as security to prevent

SQL injection attack. As stored procedure could be

coded by programmer, so, this part is known as an

injectable web application. Depending on specific

database storage procedure there are different

ways to attack.

5. Alternate encoding: most of the SQL injection

mechanisms that use filters prohibit the use of quote

(‘) in the SQL statement which can be used in

constructing different kinds of malicious query

requests to the database. In this case for an attacker

to bypass such a filter he has to convert SQL query

into alternative encoding such as hexadecimal, ASCII

or Unicode. Converting SQL query into alternate

encode enables them to carry out their attacks. For

example

"0; exec (0x73587574 64 5f177 6e), " and the result

query is: SELECT accounts FROM login WHERE

username=" AND password=0; exec (char

(0x73687574646j776e))

The above example uses the char () function and

ASCII hexadecimal encoding. The char () function

takes hexadecimal encoding of character(s) and

returns the actual character(s). The stream of

numbers in the second part of the injection is ASCII

hexadecimal encoding of the attack string. This

encoded string is translated into the shutdown

command by the database when it is executed.

6. Piggery-backend query attack: some of the

database engines support stacked query by default.

This feature creates opportunity for attacker to

perform dangerous action in the database. In this

case a valid query will be terminated by (;) and a

malicious query is added. After processing the valid

query, a malicious query is then executed, unlike in

union query where a malicious query will be joined

with a valid query and processed as a single joined

query. For example:

SELECT * FROM emp_name, ep_address, gender,

from employee where emp_id=7; drop employee

The above query will drop the employee table after

displaying employee information.

7. Stored Procedure: Stored procedure is a part of

database where programmers could set an extra

abstract layer on the database as security to prevent

SQL injection attack. As stored procedure could be

coded by programmer, so, this part is known as an

injectable web application. Depending on specific

database storage procedure there are different

ways to attack.

54 Muhammad Saidu Aliero et al. / Jurnal Teknologi (Sciences & Engineering) 77:13 (2015) 49–66

3.0 PROTECTION OF SQLIA

Researchers have proposed various methods to

handle problems of SQL injection attack. These

methods start from development of best practice to

automatic tool for detecting and preventing SQL

injection attack. Each method comes with its own

advantages and drawbacks, but none of the

methods were able to solve the entire problem of

SQL injection attack.

3.1 Defensive Coding Practice

The main cause of SQL injection vulnerability is

improper validation of user input. Input validation is a

method by which programmers apply defense code

practice to secure each static query manually. One

of the objectives of defensive programming is to

write secure queries so that it behaves in a

predictable manner despite unexpected inputs or

user actions. Below are some of the common ways

by which programmer apply defensive coding in an

application.

Input type checking/Data type validation:

sometimes programmers make simple mistakes by

allowing input fields to accept different types of data

without realizing that an attacker can take this

opportunity to insert malicious input to database

engine. SQL injection attacks can be performed by

injecting commands into either a string or numeric

parameter. Even a simple check of such inputs can

prevent many attacks. For example, in the case of

numeric inputs, i.e. if the field is a phone number, the

programmer can simply reject any input that

contains characters other than digits. This method

however cannot guaranty that it will fully stop the

SQL injection but it makes the process harder for the

attacker.

Encoding of inputs: sometimes an attacker issues

SQL injection attack with a statement that always

returns a value of true so that to the database

engine interprets user input as SQL so that when

backend database engine executes such a

statement it allows the user to bypass authentication

mechanisms or use meta-characters to perform an

illegal query in order to trick the database engine

into providing the attacker with some secret

information about the backend database. Applying

encoding practice such as hashing, encryption,

conversion of input into ASCI format prevents

attackers from tricking database engines.

White listening/Positive pattern matching: there are

two primary concepts of pattern matching, blacklist

and white list. Blacklisting involves checking if the

input contains unacceptable data while white listing

checks if the input contains acceptable

data. Programmer should establish input validation

routines that filter bad input and allow good input.

This approach is generally called positive validation.

Identify all input: Parameterized query is a type of

query which has some placeholders. In these queries

instead of making dynamic queries by

concatenating the parameters with SQL statement, it

will replace the placeholders with the value of

parameters at the runtime.

3.1.1 Disadvantages of Defensive Coding

Most programmers prefer to go straight ahead to

secure their queries in application layer without

realizing the effect when security mechanisms are

exposed to attack or new queries are created in the

future which force programmers to update each

query manually. Below are the most common

problems with defensive coding practice.

Defensive coding practice is prone to human errors;

it is very difficult to exactly and correctly apply to all

sources of input. In fact most vulnerability found in

web application is because of programmer’s mistake

for not adding the security check or inappropriately

applied [24].

White listing or blacklisting produce false positives

especially when programmers decide to block SQL

keywords such as “WHERE”, “SELECT” or operators

such as “AND”, “OR” or single quote. This approach

clearly results in a high rate of false positives because

in many applications, SQL keywords can be part of a

normal text entry, and SQL operators can be used to

express formulas or even names (e.g., O’Brian,

Randy, Orton).

Using stored procedures or prepared statements to

prevent SQLIA: Unfortunately, stored procedures and

prepared statements can also be vulnerable to

SQLIA unless developers carefully apply defensive

coding guidelines.

3.2 Detection and Prevention Methods

To overcome problems in defensive coding

approach researcher proposed different methods to

overcome the problem of defensive coding. This

method can be categorized into static and dynamic

methods.

In static method programmers try to prevent SQL

injection attack by identifying SQL injection

vulnerability by specifying all injection parameters

even before the application is used for the first time

[22]. This method is mostly language specific while

dynamic method usually employs the use of a

combination of two or more methods. In defensive

coding the difference is that security mechanisms are

standalone software tools that work by intercepting

HTTP requests and doing intermediate validation.

Sometimes we might have hybrid tool that exercise

both static and dynamic approach, of which a good

example is AMNESIA [7]. This section provides an

inside to the strengths and weaknesses of existing

SQLI prevention tools.

In [3] a method is proposed that uses static code

analysis to detect SQL injection vulnerability and

prevent attacker from exploiting such vulnerability in

java web-based application. In this approach PQL

was used as a syntactic model for queries library,

55 Muhammad Saidu Aliero et al. / Jurnal Teknologi (Sciences & Engineering) 77:13 (2015) 49–66

which allow users to define vulnerability patterns in a

familiar Java-like syntax. Any piece of code that

accepts input parameters from user and are passed

to the backend database are marked tainted and

tracked until it used in a sink. The advantage of this

approach is that it enables detection of all potential

security violations early, even without executing the

application. However this approach requires source

code application to carry out this function. In

addition, it cannot detect unknown patterns of SQL

injection attack.

R-WASP tool is proposed in [4] to detect and

prevent SQL injection attack. The tool intercepts

dynamic queries entered by the user and breaks

them into tokens of SQL keywords, operators and

characters in order to track existing malicious input in

the query. If all input tokens are found to be trusted

then the query is considered to be safe and allowed

processing by database engine. Otherwise action is

performed as defined by the programmer. Using SQL

keywords, operators, and characters to find the

malicious input in a dynamic query is problematic in

nature, as it is possible to have a valid query with

delete or drop keywords

DIGLOSSIA is method that prevents SQLIA by

computing shadow values for the results of all string

and character array operations that depend on user

input [5]. In this approach programmer defines valid

queries in the form of a tree-like structure to compare

against dynamic queries entered by the user. When

input query is sent to database the tool intercepts the

query and tries to construct a tree like a dynamic

query based on queries already defined by the

programmer and also computes the shadow of the

entered query storing it in the shadow value table

indexed by the address of the memory location for

the original value, performing both grammar and

shadow checks using a dual parser. Using the dual

parser to detect injected code is based on the idea

that query strings can be parsed to either its original

grammar, or the shadow grammar. If the tool cannot

produce tree-like structure of query, the tool rejects

the query and reports a code injection attack.

Otherwise, it compares the query with its shadow to

check whether the query is syntactically isomorphic,

and that the code in the shadow query is not

tainted. If either condition fails, it considers the

dynamic query as an attack. The problem with this

approach is that when users input non-malicious

queries that are supported by database engine but

violate the rule of query code in DIGLOSSIA it will

consider that query as an attack. This method is

totally based on the idea that when the web

application submits the query any input type by the

user will considered as an attack.

SQLUnitGen is proposed in [6]. The tool uses static

analysis to detect and prevent SQL injection attack. It

uses unit case that is library that lists a number of

attack patterns which helps to detect existing SQL

injections in a dynamic query. This method cannot

detect new or existing attacks whose pattern has not

been addressed in the unit test library.

Researchers in [7] have proposed AMNESIA that

usesa combination of static analysis and runtime

monitoring to detect and prevent SQL injection

attack. In static phase, AMNESIA uses static analysis

to build models of the different types of queries an

application can legally generate at each point of

access to the database. In its dynamic phase,

AMNESIA intercepts all queries and checks to see if

the query complies with model defined in the static

phase. If the query matched the model it allows

execution in the database engine, otherwise it is

blocked. The accuracy of AMNISIA depends on the

accuracy of the developed Queries model. The

authors show in the evaluation that their method was

capable of addressing all attacks.

Valeur and colleagues in [8] proposed intrusion

detection that utilizes multiple anomaly detection

models to detect attacks against back-end SQL

databases based on machine learning approach. In

this approach HTTP POST, and GET request are

intercepted and IDS selects what features of the

query should be modelled using training data set in

training phase. This starts when feature vectors are

created by extracting all tokens marked as constant

and inserting them into a list in the order in which

they appear in the query. After features were

extracted then different statistical models are used

depending on what data type model is selected. If a

dynamic query does not match the model, the query

will consider it as an attack. After evaluation IDS was

found to be effective in detecting all kinds of SQL

injection attack with false positive result.

WebSSARI is static-based methods that detect un-

sanitized input parameters that result in injection

vulnerability by monitoring the information flow [9]. In

this approach, static analysis is used to check taint

flows against preconditions for sensitive functions. The

analysis detects the parameters by which

preconditions have not been met and can

sanitization functions that can be automatically

added to the application to satisfy these

preconditions. The WebSSARI system works by

considering as sanitized an input parameter that has

passed through a predefined set of filters. In their

evaluation, the authors were able to detect security

vulnerabilities in a range of existing applications. The

drawback of this approach is adequate

preconditions for sensitive functions cannot be

accurately expressed, thus some filters may be

omitted.

CANDIDis queries-model based method to detect

and prevent SQL injection attacks [10]. In this

approach dynamic queries are mined at runtime

and compared with legitimate query statements in a

model. If the result is not the same, it is a SQL injection

attack. CANDID’s natural and simple approach turns

out to be very powerful for detection of SQL injection

attacks.

SQLrand use key-based randomization of SQL

instructions method to check for SQLIAs at runtime

[11]. This enables programmers to develop queries

using instruction randomization without using SQL

56 Muhammad Saidu Aliero et al. / Jurnal Teknologi (Sciences & Engineering) 77:13 (2015) 49–66

keywords. In this approach when attacker modifies

the dynamic SQL query and sends to the database

the proxy will intercept it and compare it with queries

that the programmer created using instruction

randomization which enablesSQLrand to detect

malicious queries since dynamic queries were not

created using instruction randomization.

Experimental evaluation shows the effectiveness of

this approach but this approach has a number of

drawbacks. First, the security of the key may be

compromised by looking at the error logs or

messages. Furthermore, the approach imposes a

significant infrastructure overhead because it requires

the integration of an encryption proxy for the

database.

Two methods similar SQL DOM [12] and Safe Query

Object [13] provide efficient way to prevent SQLIA by

changing query-development process. In these

methods’ queries to the database are decoded so

as to prevent attacker from gaining unauthorized

access to the database. These methods provide an

effective way to prevent SQL injection problems by

changing the query-building process from an

unregulated one that uses string concatenation to a

systematic one that uses a type-checked API. Within

their API, they are able to systematically apply

coding best practices such as input filter and rigorous

type checking of user input. By changing the

development paradigm in which SQL queries are

created, these methods eliminate the coding

practices that make most SQLIAs possible. Although

effective, these methods have the drawback that

they require developers to learn and use a new

programming paradigm or query-development

process. Furthermore, because they focus on using a

new development process, they do not provide any

type of protection or improved security for existing

legacy systems.

Security Gateway is proposed in [14] which

intercept dynamic queries in order to enforce the

specified policy. The security gateway acts as an

application level firewall; its job is to intercept,

analyze and transform all HTTP messages as well as

checking HTTP requests, After analyzing the HTTP

message it then rewrites it in HTML in HTTP responses,

annotating it with Message Authentication Codes

(MACs) in order to protect the query request which

may have been maliciously modified by clients. This

method is very effective in identifying modified

dynamic queries, however this approach is human-

based and, like defensive programming, requires

developers to know not only which data needs to be

filtered but also what patterns and filters to apply to

the data.

SQLProb is a model-based that combines both

static and dynamic analysis to detect and prevent

SQLIA [15]. In static phase query a collector was used

to generate parse tree structure of legitimate queries

from query repository as defined by the programmer

which will be used to compare semantic structure of

dynamic query. However, in dynamic phase when

user inputs queries, the queries are compared

against semantic tree structure of legitimate queries

created in phase and if the structure of dynamic

query matches with the structure in a generated tree

like structure query, queries are allowed; otherwise

they are prevented and consider as malicious. This

method employs a similar approach used by [5] and

the accuracy of this approach depends on how

accurate was the parser tree model that was

developed.

Similarly SQLGuard uses queries-model based

method to check if dynamic query conform model of

legitimate queries [16]. In this methods input queries

dynamically generate, through concatenation, a

string representing an SQL statement and

incorporating user input which generates and returns

a new key by the database. SQLGuard validates

dynamic queries by building two parse tree structures

of dynamic query. First tree structure has

unpopulated user tokens for dynamic query the

second tree is the result of parsing the string with

these nodes filled in with user input. The two trees are

then compared for matching structure. If the

structure marched, the query is allowed for

execution; otherwise it is blocked. This approach

tends to be slow as data comparison takes much

time to process in tree structure model as each node

must be processed. The accuracy of this approach

depends on whether or not the attacker discovered

the key.

In [17] machine learning method is proposed that

uses Bayesian algorithm to detect and prevent SQL

injection attack. In this approach monitor capture

dynamic SQL query HTTP POST and GET, send it to

converter which breaks SQL statement into a number

of keywords based on black space in statement and

calculate the length of dynamic SQL query. It also

calculates the number of keywords present in such a

query and sends a numeric value of length and

keyword of dynamic query to the classifier. The

classifier then calculates the probability of SQL

injection in dynamic query based on results received

from the converter, and then compares the

probability of SQL injection calculated with one

defined by user threshold as training dataset which

consists of the probability of legitimate query and

probability of malicious query. When the probability

of dynamic SQL query calculated by classifier

matches the probability of legitimate query in

training dataset the query is allowed; otherwise it is

blocked. One important thing in this method is that it

simulates a high number of attack patterns in training

data including blind SQL injection attack which is

very difficult to address. However this method

requires programmers to fully define and carefully

train data set because the accuracy of this

approach depends on how accurate was the

trained data.

Similarly proposed method in [18] uses machine

learning to detect and prevent SQL injection attack.

In this method training dataset was constructed by

analyzing source code program of the application

and calculating the entropy of static SQL query. The

57 Muhammad Saidu Aliero et al. / Jurnal Teknologi (Sciences & Engineering) 77:13 (2015) 49–66

main purpose of entropy is to count the average

amount of information needed to identify the class

model of a training dataset. In this case entropy of all

static queries that are implemented in a website was

calculated which was used to construct training

dataset which will be used later for comparison.

When a user issues SQL query the entropy of dynamic

SQL query is calculated and compared with entropy

in training data. If a match is found the query is

allowed to execute in database engine; otherwise it

is blocked and prevented from parsing to the

database engine. Using entropy in machine learning

to classify queries has advantages over using

probability as used because it produced better

results. When data are categorized instead of using

continuous-valued, small changes in SQL query will

yield a great effect when the entropy of that query is

calculated. The disadvantage of this method is that it

requires analysis of the application of the source

code.

Hossain Shahriar and Mohammad Zulkernine in [19]

proposed method that uses anomaly-based method

to detect and prevent SQL injection attack. In this

approach black space method was used in breaking

SQL stamen into keywords but here length of the

query was not considered. After tokenizing SQL

statement user action was then considered in

generating training dataset in which system user was

categorized into three namely visiting user, normal

user and admin and a different role was assigned to

each. This user classification helps classifier to

determine which model to use in training data to

compute and compare probability of SQL injection in

user query. For example in normal user query

keywords considered as malicious are dropped so

when visiting users issue SQL statements with drop

keywords this query will be automatically considered

as malicious before computing probability which

allows the method to use two probabilities in

computing user queries. The first is prior probability

which assumes the query is malicious if it contains

some malicious keywords and posterior probability

which can be obtained after comparing calculated

probability of dynamic query against its model in

training. Advantage of using prior probability and

posterior probability is that they help to reduce false

positive result. However the issue of stacked query

was not addressed in this method which allowed

attackers to perform piggy backend query attack.

In [20] pattern matching method is proposed to

detect and prevent cross-site scripting (XSS) and SQL

injection attack. In this approach programmer

created files which contain attack patterns of both

XSS and SQL injection attack. HTTP request to

database will be intercepted and compared to

dynamic query with set of attack patterns in

programmer define threshold. If the query is found to

contain attack patterns defined by the programmer

the query will be blocked and a report is generated.

This method was found to be effective after

evaluation; however it cannot guarantee protection

for attack patterns that were not included in the

programmer predefined threshold.

4.0 EVALUATION

In this section, we evaluate tools and methods

considered with respect to deployment

requirements, attack types, injection parameters,

defensive coding practice, and evaluation

parameters. Similar evaluation was done in [21] but

authors did their evaluations based on only 3

categories of the 5 done in this paper.

4.1 Evaluation based on Attack Type

We analysed and evaluated each proposed method

as shown in Table 1. To ensure particular tool or

method is capable of addressing a particular attack

we used analytical evaluation based on our

experience. We have not assessed any of the tool or

method in real time practice for the reason that most

tool or method’s implementation codes are not

available or some methods are not implemented.

4.2 Evaluation with Respect to Injection Parameters

We analyzed each of the methods with respect to

their handling of the various injection mechanisms

described (See Section 2.1.) We used “yes” to

indicate parameter and “no” to indicate that the

tool cannot address that parameter in Table 2.

4.3 Evaluation based on Author’s Evaluation

Parameters

We have also evaluated and analyzed each

proposed method with respect to parameters such

as efficiency, effectiveness, flexibility, performance

and stability. Table 3 shows the summary of the

evaluation that helps in choosing an appropriate

tool.

For example the Table 3 shows which programming

language could be supported by the specific tool.

Also, by flexibility, types of SQL injection attack which

are addressed by that tool could be identified. In

flexibility “All/s” means that the tool can stop all types

of attack successfully and “All/p” means that the tool

can stop all the attack types partially, and “number”

indicates the number of attacks prevented by the

tool. In effectiveness we used percentage effectives

mentioned by author after testing method ranging

from 100- 93.3. In efficiency we used F.P to represent

false positive report by the tool and F.N to represent

false negative.

In programming we specifically mentioned

particular languages supported by the tool and we

also used Comport/all to indicate tool support in any

programming environment. In performance we used

words like “noticeable” to indicate that the tool take

a longer time to do processing, “unnoticeable” to

58 Muhammad Saidu Aliero et al. / Jurnal Teknologi (Sciences & Engineering) 77:13 (2015) 49–66

indicate it took a longer time but the user did not

mind, “negligible” to indicate it took time but not

noticeably, efficient to indicate small difference in

query processing time when such tools were

implanted and when they are not, and we used quit

efficient to indicate the best tool that take less time.

4.4 Evaluation Based on Deployment Requirements

We analysed each method based on the criteria as

shown below in Table 4. We used “yes” to indicate

that the tool requires particular criteria and “no” to

indicate that criteria is not required for that particular

tool. We evaluated each method with respect to the

following criteria:

1. Code modification: Most of the developed security

mechanisms are based on user defined threshold

database. For example trained dataset, anomaly

detection model or predefined library pattern.

2. Pattern matching: sometimes programmers prefer

to design security mechanisms based on accept and

don’ts accept pattern similarities of user input.

3. Application automation: sometime administrators

are required to do some jobs manually. In such cases

the security mechanism does not perform decisions

of prevention or adding abnormal behaviour in

anomaly detection model but rather alert the

administrator to make decisions manually when

certain abnormal behaviour is encountered. This

could not always be what the administrator needs;

sometimes it could be a limitation of the security to

address the scope of security requirement.

4. Additional infrastructure: some security

mechanisms rely on infrastructure in order to

accomplish their action and this may not be

necessary.

5. Tokenization of input: Tokenization is the process of

breaking the query into meaningful elements called

tokens. The list of tokens becomes inputs for further

processing which is classification.

4.5 Evaluation based on Common Development

Errors

We have analysed and classified protection methods

with respect to the defensive coding practice as

described in Section 3.1. Table 5 shows summary of

this evaluation.

Table 1 Evaluation based on attack type

Approach Tautology Illegal/in

correct

Piggy-

backend

Inference Alternate

encode

Stored

procedure

Union

R-WASP[4]





 x 

 

DIGLOSSIA[5]

- -

-

- - - -

SQLUnitGen[6]    x 

X 

AMNESIA[7]   

  X 

IDS[8]

o o o o o o o

WebSSARI[9]       

CANDID[10]

o o o o o o o

SQLrand[11]

 X 



x X 

DOM[12]

     X



SafeQuery[13]



    X 

Security

Gateway[14]

- -

- - - -

-

SQLProb[15]

o

o o o o o o

59 Muhammad Saidu Aliero et al. / Jurnal Teknologi (Sciences & Engineering) 77:13 (2015) 49–66

“•” indicates that a method can successfully stop all attacks of that type.

 “×” indicates that a method was not able to stop all attacks of that type.

“◦” indicates that a method can address the attack type considered, but cannot provide any guarantee of completeness.

“-“indicates that a method can address the attack type considered, but cannot provide guarantee of completeness due to

limitation of it underline approach.

Out of seventeen (17) tools and methods

considered, six(6) of them, DIGLOSSIA [5],IDS [8],

WebSSARI [9], CANDID [10], Security Gateway [14]

and SQLProb [15] focus on addressing all types of

SQLIAs considered. However the effectiveness of the

tools and methods considered for addressing

particular types of SQLIAs considered varies

depending on approach used, in developing tool or

method, and its ability to be deployed in various

injection parameters described,(See Section 2.1).

To describe the effectiveness of the methods four

symbols were used in Table 1.

The tick dot symbol (“•”) as can be seen in Table 1

was used for R-WASP [4], SQLUnitGen [6], AMNESIA

[7], WebSSARI [9] SQLrand [11], DOM [12] and

SafeQuery [13].This indicates that these methods or

tools can guarantee protection of particular SQLIAs

type considered. However, out of these methods

only WebSSARI [9] was able to successfully prevent all

types of SQLIAs considered because of its

deployment in various injection parameters, (See

Table 2).

The “◦” and “-” are used in Table 1 to indicate that

method or tool can partially detect and prevent

SQLIAs type considered without guaranteeing that a

given methods will prevent future attack of similar

type addressed.

We used (“◦”) for methods that implement anomaly

or machine learning based approach to detect and

prevent SQLIAs. The reason is that these approaches

use sets of typical application queries as input data

set to train the protection model, thus any query that

goes against the model might result in false positive

or false negative. IDS [8] and methods such Joshi et

al. [18], Hossain Shahriar and Mohammad Zulkernine

[19] and Puspendra Kumar, R. K. Pateriya [20] use

trained queries models to monitor the application at

runtime to identify dynamic queries that do not

match the models. The effectiveness of these

methods is highly dependent on quality of training

data set used and how good the model was trained,

as poor training data set and model result in false

positive and negative. Thus, the effectiveness of

methods and tools implementing these approaches

is considered partial using circle (“◦”) symbol as

shown on Table 1.

Other methods considered as partial are methods

that use errors related problem approach to detect

SQLIAs as errors related problem is only one of the

many possible causes of SQL injection vulnerability.

DIGLOSSIA [5], SQLGuard [16] and Hong Cheon, et

al. [17] are methods that implement this approach.

We also considered Security Gateway [14] to be in

same category because it works based on Security

Policy Descriptor Language (SPDL), allowing the

programmer to set the constraints, rules and to

specify how transformation should be applied to

injection parameters as dynamic queries flowing from

client to side to database server. This approach not

only required programmer to know which data to be

filtered but also how filter pattern should be applied.

This means that poor filter results in false positive and

false negative.

In summary information in Table 1 shows that stored

procedure attack seems to be a difficult attack to be

addressed by many of the tools and methods

considered this because the code that generates

the query is stored and executed on the database

and most of the methods considered focus on

preventing attack on queries that are generated

with applications. Based on our analysis WebSSARI [9]

is considered to be the best tool for preventing

SQLIAs. However it is important to note that we did

not take precision into account in our evaluation,

that is to say many of methods and tools considered

are based on conservative analysis that may result in

false positive.

Information in Table 2 shows that none of the tools

or methods considered can be deployed to detect

or prevent attack that exploits second order SQLI

vulnerability. This is due to the fact that second order

SQLIV is not a problem of sanitizing sensitive function

Hong Cheon, et

al. [17]

-

- - -

- X

-

Joshi et al. [18]

o

o o

o o X

-

Hossain Shahriar

and Mohammad

Zulkernine [19]

o

X o

o o X

o

Puspendra Kumar,

R. K. Pateriya [20]

o o o

o o X

o

60 Muhammad Saidu Aliero et al. / Jurnal Teknologi (Sciences & Engineering) 77:13 (2015) 49–66

but is intentionally created by attackers through

vulnerable parts of the application (not necessarily

through Login. Add user page or ULR attacker may

also use file inclusion attack to exploit dynamic file

include) and reside in application database.

It is important to note that only three tools can be

deployed on server side. One of these tools is Security

Gateway [14] because it uses filters to interpret a

query string in the same way that the database

would. Other methods that can be deployed well in

server side are developer based methods which are

DIGLOSSIA [5] and WebSSARI [9].

It is also important to note that half of the methods

considered can examine queries in cookie fields and

all methods considered can examine login search

and ULR with the exception of Hossain Shahriar and

Mohammad Zulkernine [19] and Puspendra Kumar, R.

K. Pateriya [20] which are not capable of preventing

authentication bypassing.

Likewise information shows that none of the tools or

methods was able to prevent attacks that exploit

second order SQLI vulnerability which is also one of

the trends for current SQLI vulnerability scanners, both

black and white box.

Information in Table 3 shows that most of the tools

and methods considered do not have False alarm

problems after being evaluated by original author(s)

with the exception of WebSSARI [9] and IDS[8] which

report 10.3% false positive, no false negative and

0.06% false positive, no false negative respectively

using metrics called accuracy.

It is important to note that none of the tools

considered detect and prevent less than 95% of

SQLIAs considered. However, tools that achieved

100% effectiveness are either language specific or

are designed to prevent certain number of SQLIAs

considered. For example, R-WASP[4] achieved 100%

effectiveness but has only been designed to prevent

six (6) SQLIAs out of seven(7) considered and

designed to only work correctly on .Net framework

applications. Similarly, SQLProb [15] achieved 100%

effectiveness and was able to prevent all SQLIAs

considered partially but may not work or achieve

100% effectiveness when deployed in other

applications such as PHP based, or .Net framework

applications rather than Java based applications.

It is also important to note that average

performance of tools and methods considered is

negligible and this performance may or may not

change with change of equipment for evaluation.

This evaluation is based on what original author(s)

mentioned in the paper after the method or tool has

been evaluated. Thus, evaluation result may or may

not change when re-evaluated experimentally by

different researchers.

Similarly information shows that that seven (7) out of

seventeen tools and methods considered use

pattern matching methods to detect SQLIAs which is

similar to blacklist or white list, While eight (8) perform

input type checking at runtime.

In general all of the SQLI prevention tools and

methods considered are developed using one or

more defensive coding approaches described (See

section 3.1).Except DIGLOSSIA [5] and Hong Cheon

et al. [17] which work by scanning source code of

application and applying taint value to the function

that may give room to SQLIA.

Information in Table 4 indicates that most of the

tools and methods considered do not require the

programmer to modify the queries model when a

new page is inserted in an application. However tools

such as SQLUnitGen [6], AMNESIA [7], required the

programmer to modify queries model due to the fact

that these tools use static approach to build legal

models of different types of queries an application

can access for any access to database. Methods

that use static approach to build models of different

queries require the programmer to either rewrite

code to use a special intermediate library to work

with model or manually insert new query(s) into a

model so that user input will be considered as a

dynamically generated query. Similarly, methods

such as Hossain Shahriar and Mohammad Zulkernine

[19] and Puspendra Kumar, R. K. Pateriya [20]

required trained data model to be modified when

new page is added in an application. This is because

these methods are based on anomaly and machine

learning approaches that use specific inputs as

training data set (specific SQL keywords, clauses and

operators) to train its queries model. Therefore, these

approaches also require the programmer to retrain

queries model when a new page is added with

different inputs from previous inputs.

Similarly Information on Table 4 shows that most of

the tools and methods considered are fully

automated in terms of detecting SQLIAs with the

exception of Security Gateway [14], DOM [12], and

SafeQuery [13]. We considered Security Gateway

[14] as manually specifically because it is based on

proxy filter that allows users to set constraints on web

client access to database and this filter is apply

manually defending on the purpose of the

application. DOM [12], SafeQuery [13] are not

available (N/A) and as result it was not mentioned by

authors and we were not able to predict its degree

of automation.

For prevention, eleven out of seventeen (17)

reviewed tools and methods carry out prevention

automatically. Two (2) are semi-automatic. One is

WebSSARI [9] which works by tracing taint flow

against precondition for sensitive function in

application source code and provides suggestion

filter and sanitization function that can be added

automatically to meet precondition requirements.

The second one is Joshi et al. [18], while four (4) other

methods generate report/alarm to enable the

administrator to make decisions. For example

Puspendra Kumar, R. K. Pateriya [20] uses anomaly

detection method to statically build anomaly pattern

and score of static queries which will later be

compared against anomaly pattern and score of

dynamic queries requested by users. If the anomaly

pattern of dynamic query matched with anomaly

pattern of static query, the query is considered as an

61 Muhammad Saidu Aliero et al. / Jurnal Teknologi (Sciences & Engineering) 77:13 (2015) 49–66

attack. Otherwise if anomaly score reached a

certain percentage, an alarm should be sent to

administrator to analyze the query manually.

Half of the tools and methods considered use

tokenization approach i.e break down dynamic

query into keywords, operators and clauses and use

this for further processing) while other half don’t.

In case of additional infrastructure most of the tools

and methods require programmer training or training

data while few of them do not require any additional

infrastructure at all. More parameter such as

infrastructure or tokenization imply more processing

resources, therefore application performance can

be affected by having more infrastructure and

tokenization activities.

Thus, among the tools and methods considered

DIGLOSSIA [5] is the best tool that do not consumes

much processing power or require programmer

intervention in combating with SQLIAs.

Table 2 Evaluation based on injection parameters

“Yes” indicates that tool or method can prevent attack or be deployed in that injection parameter

 “No” indicate that tool or method cannot prevent attack or be deployed in that injection parameter

Approach URL Login

Search Cookies Server Side

Second Order

R-WASP [4]

Yes Yes Yes Yes No

No

DIGLOSSIA [5]

Yes Yes Yes Yes Yes No

SQLUnitGen [6] Yes Yes Yes

No

No

No

AMNESIA [7] Yes Yes

Yes No No No

IDS [8]

Yes Yes

Yes Yes No No

WebSSARI [9] Yes Yes

Yes Yes Yes No

CANDID [10]

SQLrand [11]

DOM [12]

SafeQuery [13]

Security

Gateway [14]

SQLProb [15]

SQLGuard [16]

Hong Cheon,

et al. [17]

Joshi et al. [18]

Hossain

Shahriar and

Mohammad

Zulkernine [19]

Puspendra

Kumar, R. K.

Pateriya [20]

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

Yes

Yes

No

No

No

No

Yes

No

No

No

No

Yes

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

62 Muhammad Saidu Aliero et al. / Jurnal Teknologi (Sciences & Engineering) 77:13 (2015) 49–66

Table 3 Evaluation with based on Author’s Evaluation Parameters

“All/S” means that the tool can successfully stop all types of attack

“All/p” means that the tool can partially stop all the attack types.

“Digital number was used” to indicate numbers of attack type’s tool can prevent.

“F.P” represents false positive report by the tool.

“F.N” represent false negative reported by the tool

“N/A” indicates the parameter considered is not available.

Approach

Efficiency

Effectivenes

s

Flexibility

Stability

Performa

nce

Program

ming

Equipment for evaluation

R-WASP[4]

F.P=0, F.N=0

100%

6

.Net

Framewor

k

Windows XP machine, Pentium 40GB,

1GB RAM , MySQL server, IIS 7.0

N/A

DIGLOSSIA

[5]

F.P=0, F.N=0 95%-96.1% All/P Comport/

All

Intel(R) dual core3:30 GHz machine

with 8G of RAM.

Unnotice

able

SQLUnitGen

[6]

F.P=0, F.N=0 100% 5 Java N/A N/A

AMNESIA [7] F.P=0, F.N=0 100% 6 Java N/A Negligibl

e

IDS [8] F.P=0.06%,

F.N=0

N/A All/P

Comport/

All

Server: 2GHz Pentium 4 1GB of RAM

Linux.2.6.1 Apache web

server(v2.0.52), the MySQL

database(v4.1.8), and PHP-

Nuke(v7.5).

Negligibl

e

WebSSARI [9] F.P=10.3%,

F.N=0

N/A All/S Comport/

All

N/A

N/A

CANDID [10]

F.P=0, F.N=0

N/A

100%

All/P Java Client: 2GHz Pentium processor and

2GB RAM Server: a Red Hat

Enterprise GNU/Linux Machine

Noticeab

le

SQLrand [11]

N/A N/A 4 Java Client: x86 machines, Server: RedHat

Linux,

Negligibl

e

DOM [12]

N/A N/A 5 .NET

Framewor

k

N/A

Unnotice

able

SafeQuery

Objects [13]

F.P=0, F.N=0 N/A 5 Java N/A

Efficient

Security

Gateway

[14]

N/A 99%

All/P Comport/

All

Server: AMD Opteron 150 machine,

4GB RAM Linux.

Client: 2 GHz AMD Athlon XP, 256MB

RAM, Linux.

Quite

efficient

SQLProb [15] N/A 95% All/P Java

Virtual Machine with 1 GB RAM ,

Fedora 9.

MySQL 5.0.27 database server

Noticeab

le

SQLGuard[16

]

F.P=0, F.N=0 N/A 6 J2EE Web server: Windows 2000 machine

733MHz, 256MB RAM.

Efficient

63 Muhammad Saidu Aliero et al. / Jurnal Teknologi (Sciences & Engineering) 77:13 (2015) 49–66

Table 4 Evaluation Based on Deployment Requirements

“Yes” means particular criteria is required for the tool to effectively detect malicious input or to perform

detection and prevention using the tool.

“No “means particular criteria is not required by the tool to effectively detect malicious input or to perform

detection and prevention using the tool.

Approach

Modify

code

based

Detection

Prevention

Additional Infrastructure

Input

tokenization

R-WASP [4]

No

Automatic

Generate

Alarm

.NET, MSIL

Yes

DIGLOSSIA [5]

No Automatic

Automatic

No

Unit Testcase

No

SQLUnitGen [6] Yes Automatic

Automatic

No

AMNESIA [7] Yes Automatic

Automatic

No No

IDS [8]

No Automatic

Generate

Report

Training Data Yes

WebSSARI [9] No Automatic

Semi-

Automatic

No Yes

CANDID [10]

SQLrand [11]

DOM [12]

SafeQuery [13]

Security

Gateway [14]

SQLProb [15]

SQLGuard [16]

Hong Cheon,

et al. [17]

Joshi et al. [18]

Hossain

Shahriar and

Mohammad

Zulkernine [19]

Puspendra

Kumar, R. K.

Pateriya [20]

No

No

No

No

No

No

No

No

No

No

Yes

Automatic

Automatic

N/A

N/A

Manually

Specified

Automatic

Automatic

Automatic

Automatic

Automatic

Automatic

Automatic

Automatic

Automatic

Automatic

Automatic

Automatic

Automatic

Automatic

Semi-

Automatic

Automatic

Generate

Report

No

Proxy, programmer

Training, Key Management

Training Data

Training Data

Training Data

Proxy Filter

Training Data Proxy

Key Management

Training Data

Training Data

No

Yes

Yes

No

No

No

No

Yes

Yes

No

Yes

No

64 Muhammad Saidu Aliero et al. / Jurnal Teknologi (Sciences & Engineering) 77:13 (2015) 49–66

Table 5 Evaluation with based on Evaluation Parameters

“Yes” means particular criteria is required for the tool to effectively detect malicious input or to perform detection and prevention

using the tool.

“No “means particular criteria is not required by the tool to effectively detect malicious input or to perform detection and

prevention using the tool.

“N/A” means we were not able to identify particular tool criteria.

Approach

Input type

checking

Encoding of input

Identification of input

source

Positive pattern matching

R-WASP [4]

Yes No

Yes

Yes

DIGLOSSIA [5]

No Yes Yes No

SQLUnitGen [6] Yes No

Yes

Yes

AMNESIA [7] Yes Yes

Yes No

IDS [8]

Yes No

Yes No

WebSSARI [9] Yes Yes

Yes Yes

CANDID [10]

SQLrand [11]

DOM [12]

SafeQuery [13]

Security

Gateway [14]

SQLProb [15]

SQLGuard [16]

Hong Cheon,

et al. [17]

Joshi et al. [18]

Hossain

Shahriar and

Mohammad

Zulkernine [19]

Puspendra

Kumar, R. K.

Pateriya [20]

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

No

No

No

Yes

N/A

Yes

Yes

No

Yes

No

No

No

No

No

No

Yes

No

No

Yes

No

No

No

No

No

Yes

65 Muhammad Saidu Aliero et al. / Jurnal Teknologi (Sciences & Engineering) 77:13 (2015) 49–66

Information in Table 5 shows that most of the

methods and tools perform input type checking due

to the fact that many of the prevention methods are

actually applying one or more defensive coding best

practices to the code base. This is in contrast to

DIGLOSSIA [5] and Hong Cheon et al. [17] which

work by scanning source code of application and

applying taint value to the function that may give

room to SQLIA. It is important to note that seven (7)

out of seventeen tools and methods considered use

pattern matching methods to detect SQLIAs which is

similar to blacklist or white list as described in (section

3.1). In general most of the SQLI prevention tools and

methods considered are developed using one or

more defensive coding approaches described in

section 3.1.

5.0 CONCLUSION AND FUTURE WORK

In this paper we present background of SQLIA,

highlight defensive coding practice and its

disadvantages, provide a review of different tools

proposed by different researchers and analysis those

tools based on different perspectives such as attack

types, common development errors, deployment

requirements and checking input and author

evaluation.

Our evaluation result show common trends on

current SQLI prevention measure. Only a few of these

methods and tools can be deployed in all web-

based application platforms and Most of these

methods and tools have problems addressing store-

procedure attacks, as well as problems addressing

attacks that take advantage of second order SQLI

vulnerability

Future work should focus on evaluating the

methods in a real time practical application.

Acknowledgement

This research was fully supported by Universiti

Teknologi Malaysia Johor Bahru, Malaysia. Authors

would like to acknowledge Faculty of Computing for

supporting this work.

References

[1] Tudor, J. 2013. Web Applications Vulnerability statistic

2013. [Online] From; http://sitic.org/wp-

content/uploads/Web-Application-Vulnerability-Statistics-

2013.pdf [accessed on 17 September 2015].

[2] OWASPD-Open Web Application Security Project 2014.

Top ten most critical Web Application Security Risks.

[Online]. From; http://cwe.mitre.org/cwss/archive.htm

[accessed on 17 September 2015).

[3] Livshits, V., and M. S. Lam 2005. Finding Security Errors in

Java Programs with Static Analysis. Technical Report.

[4] Medhane, M. 2013. R-WASP: Real Time-Web Application

SQL Injection Detector and Preventer. International

Journal of Innovative Technology and Exploring

Engineering (IJITEE). 2(5): 327-330. ISSN: 2278-3075.

[5] Son, S., k. S. McKinley, and V. Shmatikov. 2013. Diglossia:

Detecting Code Injection Attacks with Precision and

Efficiency. Proceedings of the 2013 ACM SIGSAC

conference on Computer & Communications Security.

1181-1192.

[6] Shin, Y., L. Williams, and T. Xie 2006. SQLUnitgenTest Case

Generation for SQL Injection Detection. North Carolina

State University, Raleigh Technical report, NCSU CSC TR.

[7] G.J. Halfond, W., and A. Orso. 2005. Combining Static

Analysis and Runtime Monitoring to Counter SQL-Injection

Attacks. In Proceedings of the Third International ICSE

Workshop on Dynamic Analysis (WODA 2005). 22-28.

[8] Valeur, F., and G. Vigna 2005. A Learning-based

Approach to the Detection of SQL Attacks. Detection of

Intrusions and Malware, and Vulnerability Assessment.

Springer Berlin Heidelberg. 3548: 123-140.

[9] Nguyen-Tuong, A., S. Guarnierie, J. Shirley and D. Evans

2005. Automatically Hardening Web Applications Using

Precise Tainting. Springer US. 181: 295-307.

[10] Bandhakavi, S., P. Bisht, and P. Madhusudan 2007.

CANDID: Preventing Sql Injection Attacks Using Dynamic

Candidate Evaluations. Proceedings of the 14th ACM

conference on Computer and Communications Security.

12-24.

[11] W. Boyd, S., W., A. D. Keromytis. 2005. SQLrand: Preventing

SQL Injection Attacks. Applied Cryptography and Network

Security. Springer Berlin Heidelberg. 3089: 292-302.

[12] McClure, R., and I. H. Kruger. 2005. SQL DOM: Compile

Time Checking of Dynamic SQL Statements. 27th IEEE

International Conference on Software Engineering. St.

Louis, USAS, 18-21 May 2005. 88-96.

[13] R. Cook, W., and S. Rai. 2005. Safe Query Objects:

Statically Typed Objects as Remotely Executable Queries.

27th IEEE International Conference on Software

Engineering. St. Louis, USAS, 18-21 May 2005. 97-106.

[14] Scott, D., and R. Sharp. 2002. Abstracting Application-

Level Web Security. Proceedings of the 11th international

conference on World Wide Web. Hawaii, USA, 7-11 May

2006. 396-407.

[15] Liu, A., Y. Yaun, and D. Wijesekera 2009. SQLProb: A Proxy-

Based Architecture Towards Preventing SQL Injection

Attacks. Proceedings of the 2009 ACM Symposium on

Applied Computing. ACM. 2054-2061.

[16] Buehrer, G., B. W. Weide, and P. Sivilotti 2005. Using Parse

Tree Validation to Prevent SQLinjection Attacks. 5th

International Workshop on Software Engineering and

Middleware. 106-113.

[17] Cheon, E., Z. Huang, and Y. Lee 2013. Preventing SQL

Injection Attack Based on Machine Learning. International

Journal of Advancements in Computing Technology. 5(9):

967-974.

[18] Joshi, A., and G. V. 2014. SQL Injection Detection Using

Machine Learning. IEEE International Conference on

Control, Instrumentation, Communication and

Computational Technologies. 1111-1115.

[19] Shahriar, H., and M. Zulkernine. 2012. Information-theoretic

Detection of SQL Injection Attacks. IEEE 14th International

Symposium on High-Assurance Systems Engineering.

Miami, USA. 9-11 January 2014. 40-47.

[20] Kumar, P., and R. Pateriya. 2013. Enhanced Intrusion

Detection System for Input Validation Attacks in Web

Application. International Journal of Computer Science

Issues (IJCSI). 10(1): 435-437.

[21] Tajpour, A., S. Ibrahim, and M. Sharifi. 2012. Web

Application Security by SQL Injection Detection Tools. IJCSI

International Journal of Computer Science Issues (IJSCI).

9(2): 332-339.

[22] Xin-hua, Z., and W. Zhi-Jian. 2010. Notice of Retraction A

Static Analysis Tool for Detecting Web Application

Injection Vulnerabilities for ASP Program. 2nd IEEE

International Conference on e-Business and Information

System Security. Wuhan, China. 22-23 May 2010. 1-5.

[23] Sadeghian, A., M. Zamani, and A. Manaf. 2013. Taxonomy

of SQL Injection Detection and Prevention Methods. IEEE

66 Muhammad Saidu Aliero et al. / Jurnal Teknologi (Sciences & Engineering) 77:13 (2015) 49–66

International Conference on Informatics and Creative

Multimedia. Kuala Lumpur, Malaysia. 4-6 September. 53-

56.

[24] G. J. Halfond, W., J. Viegas and A. Orso. 2006.

Classification of SQL Injection Attacks and

Countermeasure.. IEEE International Symposium on Secure

Software Engineering. Washington DC, USA, 13-15 March

2006. 87-96.

