

77:18 (2015) 1–9 | www.jurnalteknologi.utm.my | eISSN 2180–3722 |

Jurnal

Teknologi

Full Paper

A LIGHTWEIGHT ONE-PASS AUTHENTICATION

MECHANISM FOR AGENT COMMUNICATION

IN MULTI-AGENT SYSTEM BASED APPLICATIONS

Olumide Simeon Ogunnusi, Shukor Abd Razak, Abdul Hanan

Abdullah

Department of Computer Science, Faculty of Computing,

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor,

Malaysia

Article history

Received

15 May 2015

Received in revised form

1 July 2015

Accepted

11 August 2015

*Corresponding author

shukorar@utm.my

Graphical abstract

Abstract

The social nature of mobile agent and its ability to carry its principal’s confidential

information necessitate the need to secure its communication with other agent(s)

in an agent system. Most importantly, an agent communication security

mechanism must be able to prevent unknown or visiting agent from participating in

legitimate agent communication. Most of such mechanisms adopt two-pass

authentication technique without due consideration of the enormous overheads

generated by the mechanisms. These overheads are more noticeable in multi-

agent system based applications with large number of agents such as smart grid.

The main focus of this paper therefore, is to design a lightweight mechanism for

agent communication confidentiality protection in a local area network (LAN) or

intranet using one-pass authentication approach. The proposed mechanism

adopted both symmetric and asymmetric cryptosystems to protect agent

certificate transmission between task agents and agent execution host. The results

show that the memory utilization, communication and computation costs of the

proposed mechanism are remarkably lower than that of the two-pass

authentication based mechanisms.

Keywords: One-pass authentication, two-pass authentication, agent

communication, confidentiality protection

© 2015 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

Confidentiality protection in agent communication is

bothered on ascertaining that no external agent

takes part in agent communication or have access to

the exchanged information [1, 2]. This could be

achieved in two ways: one is by isolating the external

agent to a neutral host and deprive it from

communicating with legitimate agents in other hosts;

two, is by applying a strong cryptographic

authentication scheme to fence out and kill external

agent with fake identity. JADE fundamentally secured

agent communication channel (ACC) using secured

socket layer (SSL) but deficient in preventing man-in-

the-middle (MITM) attack. In the proposed security

model, authenticity is established using digital

signature, agent certification, and cryptographic

authentication of certificates.

Rossebo and Bræk [3] identified two techniques

that could be used for agent authentication: one-

pass authentication and two-pass authentication

techniques. One-pass authentication pattern involves

communication between two parties, in this study,

between task agents and execution host in the form

of one-way asynchronous message passing for agent

identity establishment. This is referred to as unilateral

one-pass authentication approach. Conversely, two-

pass authentication involves mutual communication

between a pair of entities such as agent pair. This

study has adopted the combination of symmetric and

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0 20 40

C
o

m
m

u
n

ic
a

ti
o

n
 c

o
st

 (
s)

No. of agents

Proposed mechanism (1PA)

Existing mechanisms (2PA)

2 Ogunnusi O. S., Shukor, A. R., Abdul, H. A. / Jurnal Teknologi (Sciences & Engineering) 77:18 (2015) 1–9

asymmetric cryptographic schemes to facilitate the

privacy of certificate transmission between task

agents and execution host. While using the combined

cryptosystems, the research is focusing on the best

manner to minimize the overheads the propose

security mechanism impose on the host network.

The rest of the paper is organized as follows: Section

2 presents the related work while the proposed

security mechanism is described in Section 3. In

Section 4, the experimental procedure is discussed.

The comparative cost analysis of existing and

proposed mechanisms are presented and discussed

in Section 5 while Section 6 gives the implementation

details with the comparative analysis of results.

Section 7 concludes the paper and presents future

work.

2.0 RELATED WORK

Confidentiality threat to agent communication is a

treat against the privacy of the information shared or

exchanged by mobile agents. For instance, the

shared information may be confidential information

about the agents’ principals. Agents participating in

the exchange of such private information must be

able to establish the identity of the peer agent with

whom to exchange the information using strong

cryptographic authentication scheme. The existing

mechanisms [Xu, Zhu [4]; Guo, Chang [5]; Ben Ameur,

Zarai [6]] adopt two-pass authentication approach to

establish the identity of entities before communication

is permitted between them.

In two-pass authentication technique, each agent

must possess the certificates of all other agents taking

part in the communication. Contrarily, only the

authenticating platform (host) is required to possess

the certificates of all the agents while each agent

carries only its certificate in the case of one-pass

authentication method. Some agent system security

approaches enforce both internal and external

security. For instance JADE-S add-on [7] for the JADE

agent platform gives the user the privilege to restrict

access to the services of the platform using access

control lists and user authentication. While this method

addresses authentication in the administrative

aspects of platform management, it lacks the

mechanism to assist authentication for agent

interaction and services [1].

Sulaiman and Sharma [8] and Sulaiman, Huang [9]

proposed a multi-agent based security mechanism

(MAgSeM) that is used to improve a traditional non-

agent based system. The authors claimed that as a

result of the interactive, autonomous, extensible and

mobile properties of the agents, the agents were able

to perform their tasks with minimal interaction with the

user. The key to decipher information is kept with the

sender. A token is sent to the receiver to sign and

forward it back to the sender to receive the key to

decipher the information. In this security mechanism,

the sender is in control of the transferred information

while the details of the decryption are unknown to the

receiver. The authors, however, assume that the

communicating agents exchanged certificates via a

secure channel. The type of technology adopted for

agent certification is not specified.

3.0 PROPOSED MECHANISM

The focus of the proposed mechanism is on the

confidentiality protection of agent communication in

a multi-agent system running on LAN or intranet. The

design of the mechanism extends the key distribution

protocol phases of [10] to 5 phases as shown in

Appendices A-1 and A-2.

Phase I - Pre-configuration phase: The security

administrator configures the local keystores and

certificate stores of agent server (AS) and execution

host (EH) which are respectively used for the storage

of public/private key pairs and digital certificates.

Phase II - Initialization phase: At this phase, the local

area network (LAN) or intranet was disconnected

from the internet so as to avert the possibility of

external agent participating in the initialization

process. The reconnection of the LAN/intranet to

internet can be established after this phase. The

activities at this phase are creation of task agents,

generation of RSA keys etc.

Phase III - Appointment and registration phase:

Appointment of EH and the registration of both EH

and other network host(s) take place.

Phase IV - Encryption, Agent certificate signing and

AS signature hashing phase: This phase covers the

secret key encryption, agent certificate signing and

hashing of AS signature.

Phase V - Agent mobility and authentication phase:

At this phase, the task agents are transmitted from the

agent server to the agent execution host and their

identities are verified.

The notational algorithm of the proposed security

mechanism is depicted in Figure 1 while the meanings

of the notations are presented in Table 1.

1. SA: Configure ASks/AScs & EHks/EHcs

2. SA: AS  Request[AS(ki, kj)]

3. AS: AC  Generate[AS(ki, kj)]

4. SA: CA  Request[(AScert); AS(ki, kj)]

5. CA: AS  [(AScert); AS(ki, kj)]

6. SA: AC  Request[Create(TA)]

7. AC: AS  Create(TA)

8. SA: AS  Request[TA(ki, kj)]

9. AS: AC  Generate[TA(ki, kj)]

10. AC: CA  [Request(TAcert); TA(ki, kj)]

11. CA: AS  [Generate(TAcert); TA(ki, kj)]

12. AC: TAks  TA(ki, kj)

13. AC: EHcs  EHcert

14. SA: AS  Request[Generate(TAsk)]

15. AS: AC  Generate(TAsk)

16. AS: TA  Load[TAcert+(ki,kj)+TAsk]

17. AS: Repeat steps 6 to 16 until the req. max. no. of agents is

reached.

18. SA: AS  Request[Appoint(EH)]

19. AS: Appoint(EH)

20. SA: AS  Request[EH(ki, kj)]

21. AS: AS  Generate[EH(ki, kj)]

22. AS: CA  [Request(EHcert); EH(ki, kj)]

3 Ogunnusi O. S., Shukor, A. R., Abdul, H. A. / Jurnal Teknologi (Sciences & Engineering) 77:18 (2015) 1–9

23. CA: AS  [Generate(EHcert); EH(ki, kj)]

24. AS: EH  [EHcert; EH(ki, kj)

25. EH: EHks  EH(ki, kj)

26. EH: EHcs  EHcert

27. SA: AS  Request[(Encrypt(TAcert),sk)]/* sk is the secret key */

28. AS: AC  [Request[(Encrypt(TAcert),sk)]]

29. AC: AS  Encrypt[(TAcert),sk]

30. SA: AS  Request[sign(TAcert, AS(ki))]

31. AS: AC  [Request [sign(TAcert, AS(ki))]]

32. AC: AS  sign(TAcert, AS(ki))

33. AS: Repeat lines 27-32 for all deployed task agents

33. SA: AS  Request[hash(ASsign)]

34. AS: AC  [Request[hash(ASsign)]]

35. AC: AS  hash(ASsign)]

36. SA: AS  Request[Encrypt(sk), EH(kj)]

37. AS: AS  Encrypt(sk, EH(kj))

38. AS: EH  [Encrypt(sk, EH(kj))]

39. SA: AS  Request[TA  (Encrypt(TAcert))]

40. AS: EH  [TA  (Encrypt(TAcert))]

41. AS: Repeat lines 39 & 40 for all deployed task agents

41. SA: EH  Request[hash(ASsign); Compare(hd // hs)]

42. SA: EH  Request[Decrypt((sk), EH(ki))]

43. EH: ks Decrypt((sk), EH(ki)/ *ks is the key store*/

42. EH: cs  Decrypt((TAcert), sk) / *cs is the certificate store*/

43. EH: end

Figure 1 Notational algorithm of the proposed mechanism

Table 1 lgorithm notation and meaning

 Notation Meaning

SA Security administrator

AS Agent server

CA Certificate authority

EH Execution Host

TA Task agent

ki Private key

kj Public key

ks Key store

cs Certificate store

Cert. Certificate

sk Secret key

ASsign AS signature

hd Derived hash value

hs Sent hash value

4.0 EXPERIMENTAL PROCEDURE

When the network was successfully set up, the agent

server encrypts agent certificate with AES secret key

and signed the encrypted certificate before

transmission to the execution platform. It also hashes

the signature with 160-bit SHA-1 algorithm and sends

the hash value and the original signature to the

execution host for authentication. The secret key was

encrypted with RSA public key of execution host

before it was sent to the execution host. On the arrival

of agent and secret key at the execution host, the

execution host hashes the agent server signature

using the same hash function (160-bit SHA-1) and

compares the derived hash value with that sent by

the agent server. Thereafter, execution host decrypts

the secret key with its private key and use the secret

key to decrypt the agent certificate. In this way, we

ensure that no unauthorized agent gained entrance

into the execution platform to exercise man-in-the-

middle attack on private communication among the

legitimate task agents thus we ensure confidentiality

of agent communication based on identity

verification.

5.0 COMPARATIVE COST ANALYSIS OF

EXISTING MECHANISMS WITH OUR PROPOSED

MECHANISM

In this study, the costs of one-pass agent

authentication technique are measured in terms of

memory utilization, communication and computation

costs and the results are compared with that of two-

pass agent authentication approach. For two-pass

agent authentication technique, each task agent

participating in agent communication must possess

the certificates of all other task agents. Appendices

B-1 and B-2 respectively depict the notations used for

one-pass and two-pass authentication techniques

and their corresponding meanings. Three storage

locations are of importance here: the agent server,

task agent keystore and the agent execution host.

The aggregate memory utilized MO2T was derived

from the following expression:

MO2T = MO2AS+MO2TA+MO2EH (1)

The memory consumed at the execution host, agent

keystore, and agent server are respectively MO2EH,

MO2TA, and MO2AS. The storage utilized at each

location is presented in Eq. (2) to (4).

MO2AS=n*(Msta/c+Mpkta/as+Mkta/as)+½*n*Mska+Msas+Mk/as (2)

MO2TA=n2
*(Msta+Mpk/ta+½*Msk/ta)+n*Mk/ta+n*Ms/hv (3)

MO2EH=Maspk+Mk/eh+Mpk/eh (4)

 Similarly, the time for communication between

two entities was also tracked and the aggregate

communication time COM2T was derived as shown in

Eq. (5).

COM2T=COM2AS-CA+COM2AS-EH+COM2AS-TA+COM2TA-TA (5)

The time for communication between certificate

authority and agent server, between agent server

and execution host, between agent server and task

agent, and between agent pair are respectively

COM2AS-CA, COM2AS-EH, COM2AS-TA, and COM2TA-TA. The

communication cost for each of the Eq. (5)

components was determined using similar

mathematical expressions in [11] as shown in Eq. (6) to

(9).

COM2AS-CA=Trcas+Tgsca+Tas/ca+Tca/as+n*(Trac+Tta/as (6)

COM2AS-EH = Tskh+Tehk/eh+Tc/eh+n*Tdta (7)

COM2AS-TA = n*(Ttac/ta + Tsk/tas + Tk/tas) (8)

COM2TA-TA=n*(n- 1)*(Tac/ta+Tesk/ta+Tta/p+Ts/hv/ta) (9)

In the same manner, computation activities take

place at the agent server and the execution host. The

computation time was also tracked at each of these

units and the aggregate computation cost CO2T was

obtained from the following expression:

CO2T = CO2AS+CO2EH (10)

4 Ogunnusi O. S., Shukor, A. R., Abdul, H. A. / Jurnal Teknologi (Sciences & Engineering) 77:18 (2015) 1–9

Where CO2AS is the computation cost at the agent

server while the computation cost at the execution

host is CO2EH. Each of the components’ computation

costs is derived using the expressions below:

CO2AS = Task+Tehk+Tska+Tesa+Thcs+n*(Ttak +Tscak) (11)

CO2EH = n(n-1)*(Tta/h+Tdska+Tdca) (12)

For one-pass agent authentication, message is

transmitted by the task agents by sending their

certificates to the execution host for authentication.

Equations similar to Eq. (1), (5), and (10) were also

used to compute the memory utilization,

communication and computation costs respectively

as shown below.

MO1T = MO1AS+MO1TA+MO1EH (13)

Each component of Eq. 13 was derived using Eq. (14),

(15), and (16)

MO1AS = Msas+Mask+Masp+n*Msta (14)

MO1TA = n*(Msta+Mk/ta) (15)

MO1EH=n*Msta+Mska+Maspk+Ms/hv+Mk/eh+Mpk/eh (16)

Eq. 17 was used for the computation of

communication cost whose components give the

time for communication between two entities as

presented below.

COM1T=COM1AS-CA+COM1AS-EH+COM1AS-TA+COM1TA (17)

Thus,

COM1AS-CA=Trcas+Tgsca+Tas/ca+Tca/as+n*(Trac+Tta/as (18)

COM1AS-EH=n*Tdta+ Tsk/aeh+Tskh+Tehc/aeh+Tssh+Taehk/aeh (19)

COM1AS-TA = n*Ttac/ta (20)

COM1TA-EH = n*Ttac/eh (21)

To compute the computation cost of the proposed

mechanism, the computation activities at the agent

server and the execution host were aggregated as

expressed in Eq. 22.

CO1T = CO1AS+CO1EH (22)

We have,

CO1AS = Task+Tehk+Tska+Tesa +Thcs +n*(Ttak+Tscak) (23)

CO1EH = Tdskt+n*(Tesk+Tcs) (24)

6.0 IMPLEMENTATION DETAILS WITH

COMPARATIVE ANALYSIS OF RESULTS

Java programming language and Java Agent

Development Framework (JADE) [[7, 12, 13]] were

used to implement and test the proposed

mechanism. JADE is an agent system development

framework aimed at developing multi-agent systems

and agent based applications conforming to

Foundation for Intelligent Physical Agents (FIPA)

standards. The application was tested on a LAN with a

server having Intel Core i5 processor with 2.40GHz

speed, 4GB RAM and Windows Ultimate (64 bits)

operating system with Oracle virtualbox running

Ubuntu Linux operating system (1GB RAM) used for the

execution environment for the task agents. The

application is made up of two program modules

running on two different JADE platforms connected

by a local area network. Linux box is the agent

execution environment where the task agents run

while the Agent Controller and certificate authority

agent run on the Windows machine. During the

experiment, the task agents are sent to the execution

host one after the other while there are sufficient

resources at the execution host. The main JADE

container resides on agent server while other hosts

have JADE platform running on them.

6.1 Results Analysis

Analysis of the performance of the mechanism

implemented on two-pass agent authentication

technique and the proposed mechanism are carried

out in terms of memory utilization, communication

and computation costs of providing agent

communication confidentiality protection as

illustrated in Figures 2, 3, and 4. In this section, we

verify our mechanism performance by

implementation results. Both the proposed and

existing mechanisms were executed 5 times for every

number of agents considered and analyses of the

memory utilization, communication and computation

costs were performed. In all, 40 agents were

considered starting from 2 being the minimum

number of agents in a multi-agent system. The

communication cost was regarded as the average

time required for an entity to send message to

another entity. Similarly, the computation cost is the

average time a processor devoted for each sub-

operation such as encryption, key generation, hash

value comparison, decryption, digital signature etc.

1) Memory utilization

The average storage utilized by the existing and

proposed mechanisms are measured respectively

using Eqs. (1) and (13). Figure 2 depicts the memory

utilization comparison of the two mechanisms. From

the plot, it can be observed that the existing

mechanisms use more storage which becomes more

and more noticeable as the number of agents

increases. This implies that the existing mechanism

incurred greater memory overhead compared to the

proposed mechanism.

5 Ogunnusi O. S., Shukor, A. R., Abdul, H. A. / Jurnal Teknologi (Sciences & Engineering) 77:18 (2015) 1–9

Figure 2 Comparison of confidentiality verification storage

Utilization

2) Communication cost

The communication time required to provide

confidentiality protection for agent communication is

analyzed in Section 5 while Eqs. (5) and (7) present

the mathematical models used to compute the time

for communication between two entities for every

number of agents considered. This is further expressed

graphically in Figure 3. The Plot shows that the existing

mechanism takes higher communication time to

provide agent communication confidentiality

protection compared to the communication time

needed by the proposed mechanism. These

mechanisms were implemented and tested on the

system with configuration of 4GB RAM and 2.4GHz

Intel Core i5 processor.

Figure 3 Comparison of confidentiality verification

Communication cost

3) Computation cost

The computation cost of providing confidentiality

protection for agent communication is also analyzed

in Section 5 for both the existing and the proposed

mechanisms. The computation costs for the existing

and proposed mechanisms were determined using

Eq. (10) and (22) respectively. Figure 4 shows the

comparative aggregate computation costs needed

to provide agent communication confidentiality

protection for each number of agents injected into

the network due to key generation, asymmetric and

symmetric encryption, hashing, and signing of

certificates. It could be observed in Figure 4 that the

magnitude of the computation cost differential is

minimal with small number of agents but it becomes

more prominent as the number of agents increases.

For example, 40 agents with computation cost

difference of 18.84s in favour of the proposed

mechanism with 49.3% improvement over the existing

mechanisms. Consequently, as the number of agents

injected into the network increases, the cost gain of

the proposed mechanism over the existing one, in

terms of computational complexity, is more evident.

Figure 4 Comparison of confidentiality verification

Computation complexity

7.0 CONCLUSION AND FUTURE WORK

This paper presents a one-pass authentication

technique for agent communication confidentiality

protection against intrusion and its attendant private

information leakage to third party. Our proposed

mechanism was evaluated on the basis of memory

utilization, communication and computational

complexities and compared with the existing

mechanisms that adopt two-pass authentication

approach. The results show that the proposed

mechanism performed better as shown in Figures 2, 3,

and 4. Our mechanism is motivated from centralized

agent authentication approach as a measure to

reduce overheads on network. However, instituting a

parallel or concurrent authentication of agents on the

execution platform and establishing fault tolerance

defense for the platform, we give a new direction as it

will further reduce the overheads the mechanism

imposes on the host network and enhances its

reliability.

Acknowledgement

This research is supported by Universiti Teknologi

Malaysia through grant: Q.J130000.2513.08H30 and

Federal Polytechnic, Ado-Ekiti, Nigeria.

0

500

1000

1500

2000

2500

0 10 20 30 40

M
e

m
o

ry
 U

ti
liz

a
ti
o

n
 (

k
b

)

No. of Agents

Proposed mechanism (1PA)
Existing mechanisms (2PA)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0 10 20 30 40

C
o

m
m

u
n

ic
a

ti
o

n
 c

o
st

 (
s)

No. of agents

Proposed mechanism (1PA)

Existing mechanisms (2PA)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

0 10 20 30 40
C

o
m

p
u

ta
ti
o

n
 c

o
st

 (
s)

No. of agents

Proposed mechanism (1PA)

Existing mechanisms (2PA)

6 Ogunnusi O. S., Shukor, A. R., Abdul, H. A. / Jurnal Teknologi (Sciences & Engineering) 77:18 (2015) 1–9

References

[1] Braubach, L., K. Jander, and A. Pokahr. 2013. A Practical

Security Infrastructure for Distributed Agent Applications, in

Multiagent System Technologies. Springer. 29-43.

[2] Stallings, W. 2007. Network Security Essentials: Applications

and Standards. Pearson Education India.

[3] Rossebo, J. E. and R. Bræk. 2006. Towards a Framework of

Authentication and Authorization Patterns for Ensuring

Availability in Service Composition. In Availability, Reliability

and Security, ARES 2006. The First International Conference

on. IEEE.

[4] Xu, J., W.-T. Zhu, and D.-G. Feng. 2011. An efficient Mutual

Authentication and Key Agreement Protocol Preserving

User Anonymity in Mobile Networks. Computer

Communications. 34(3): 319-325.

[5] Guo, C., C.-C. Chang, and C.-Y. Sun. 2013. Chaotic Maps-

Based Mutual Authentication and Key Agreement Using

Smart Cards for Wireless Communications. Journal of

Information Hiding and Multimedia Signal Processing. 4(2):

99-109.

[6] Ben Ameur, S., et al. 2014. A Lightweight Mutual

Authentication Mechanism for Improving Fast PMIPV6-

Based Network Mobility Scheme. In Network Infrastructure

and Digital Content (IC-NIDC), 2014 4th IEEE International

Conference on. IEEE.

[7] Vila, X., A. Schuster, and A. Riera. 2007. Security for a Multi-

Agent System based on JADE. Computers & Security. 26(5):

391-400.

[8] Sulaiman, R. and D. Sharma. 2011. Enhancing Security in E-

Health Services Using Agent. In Electrical Engineering and

Informatics (ICEEI), 2011 International Conference on. IEEE.

[9] Sulaiman, R., X. Huang, and D. Sharma. 2009. E-Health

Services with Secure Mobile Agent. In Communication

Networks and Services Research Conference, 2009.

CNSR'09. Seventh Annual. IEEE.

[10] Ismail, L. and E. Barka. 2008. Key Distribution Framework for

a Mobile Agent Platform. In Next Generation Mobile

Applications, Services and Technologies, 2008. NGMAST'08.

The Second International Conference on. IEEE.

[11] Srivastava, S. and G. Nandi. 2014. Self-Reliant Mobile Code:

A New Direction of Agent Security. Journal of Network and

Computer Applications. 37: 62-75.

[12] Board, J. 2005. Jade Security Guide. JADE-S Version, 2.

[13] Bellifemine, F. et al. 2002. Jade Programmer’s Guide. Jade

version, 3.

7 Ogunnusi O. S., Shukor, A. R., Abdul, H. A. / Jurnal Teknologi (Sciences & Engineering) 77:18 (2015) 1–9

APPENDIX A

Agent

server (AS)

Task Agents
Agent

execution

host (EH)

Security

administrator

(SA)
AS

keystore
EH

keystore

27. Agent cert. signing
request

28. Signed agent cert. sent

30. Hash request
sent

31. Message
digest sent

32. Msg digest +
AS signature.

26. Agent cert.
signing request

29. AS signature
hashing request

Agent

controller

(AC)

23. Agent cert.
encryption with

secret key request
24. Agent cert.
encryption with

secret key request

25. Encrypted agent
cert. sent to AS

A
ct

iv
it

ie
s

23
 -3

2
ar

e
re

pe
at

ed
 fo

r
al

l t
he

 t
as

k
ag

en
ts

33. Request for
secret key

encryption with
public key of EH

34. Request to send
encrypted secret key

to EH
35. Encrypted secret

key sent to EH.

36. Request to
load encrypted
TA cert. into TA
& send it to EH 37. TA with

Encrypted cert.
send to EH

Phase IV: Encryption,

Agent certificate

signing and AS

signature hashing phase

A
ct

iv
it

ie
s

41
 -

43
 a

re
re

pe
at

ed
 fo

r
al

l t
he

 t
as

k
ag

en
ts

41. Request to decrypt
TA cert. with secret key

42. EH takes
secret key &
decrypt TA

cert.

38. Request to hash AS
sign. & compare derived

hash value with sent
hash value

39. Request to decrypt
secret key with EH

private key

Phase V: Agent
mobility and

authentication phase

43. Authenticated TA

40. EH decrypts
secret key &

send to keystore

 Figure A1 Phases I, II and III of the proposed mechanism

8 Ogunnusi O. S., Shukor, A. R., Abdul, H. A. / Jurnal Teknologi (Sciences & Engineering) 77:18 (2015) 1–9

APPENDIX B

Agent

server (AS)

Task Agents
Agent

execution

host (EH)

Security

administrator

(SA)
AS

keystore
EH

keystore

27. Agent cert. signing
request

28. Signed agent cert. sent

30. Hash request
sent

31. Message
digest sent

32. Msg digest +
AS signature.

26. Agent cert.
signing request

29. AS signature
hashing request

Agent

controller

(AC)

23. Agent cert.
encryption with

secret key request
24. Agent cert.
encryption with

secret key request

25. Encrypted agent
cert. sent to AS

A
ct

iv
it

ie
s

23
 -

32
 a

re
re

pe
at

ed
 f

or
 a

ll
th

e
ta

sk

ag
en

ts

33. Request for
secret key

encryption with
public key of EH

34. Request to send
encrypted secret key

to EH
35. Encrypted secret

key sent to EH.

36. Request to
load encrypted
TA cert. into TA
& send it to EH 37. TA with

Encrypted cert.
send to EH

Phase IV: Encryption,

Agent certificate

signing and AS

signature hashing phase

A
ct

iv
it

ie
s

41
 -

 4
3

ar
e

re
pe

at
ed

 f
or

 a
ll

th
e

ta
sk

ag

en
ts

41. Request to decrypt
TA cert. with secret key

42. EH takes
secret key &
decrypt TA

cert.

38. Request to hash AS
sign. & compare derived

hash value with sent
hash value

39. Request to decrypt
secret key with EH

private key

Phase V: Agent
mobility and

authentication phase

43. Authenticated TA

40. EH decrypts
secret key &

send to keystore

Figure B1 Phases IV and V of the proposed mechanism

9 Ogunnusi O. S., Shukor, A. R., Abdul, H. A. / Jurnal Teknologi (Sciences & Engineering) 77:18 (2015) 1–9

APPENDIX C

Table C1 Notations used in the expressions for one-pass agent authentication technique

Notation Meaning Notation Meaning

Msas Memory for storing AS certificate with its public key in AS.

Msta Memory for storing the certificate of a task agent.

Mska Memory for storing the secret key of a task agent.

Mask Memory for storing public key of AS.

Masp Memory for storing private key of AS.

Ms/hv Memory for storing AS signature and hash value sent by AS

 to EH.

Trcas Time taken for AS to request for its own certificate from CA.

Tgsca Time taken for CA to send AS certificate to AS.

Tas/ca Time taken for AS to request for EH certificate from CA.

Tca/as Time taken for CA to send EH certificate to AS.

Trac Time taken for AS to request for a TA certificate from CA.

Tta/as Time taken for CA to send a TA certificate to AS.

Tskh Time taken for AS to send its public key to EH.

Tssh Time taken for AS to send its signature & hash value to EH.

Tsk/aeh Time taken for AS to securely transmit secret key to EH.

Tehc/aeh Time taken for AS to send EH certificate to EH.

Taehk/aeh Time taken for AS to send EH public/private key pair to EH.

Tska Time to generate secret key for TA.

Tesa Time to encrypt secret key in TA with public

 key of EH.

Tscak Time to sign the cert. of TA with private key

 of AS.

Tdskt Time to decrypt secret key of TA with EH

 private key.

Tcs Time to decrypt TA cert. with secret key.

Tesk Time for EH to hash original sign. of AS and

 comp. derived hash value with the hash

 value

 sent by AS.

Task Time to generate RSA keys for AS.

Tehk Time to generate RSA keys for EH.

Ttak Time to generate RSA keys for TA.

Thcs Time to hash signature of AS in TA cert.

Tdta Time taken for AS to transmit TA to EH.

n No. of task agents injected into the

 network

Table C2 Notations used in the expressions for two-pass agent authentication technique

Notation Meaning Notation Meaning

Msas Memory for AS certificate with its public key in AS.

Tehk/eh Time for AS to securely send EH public/private key pair to

 EH.

Tesk/ta Time to transmit encrypted secret key from one agent to

 another.

Mk/ta Mem. for public key of a task agent in each task agent

 keystore.

Mpk/ta Mem.for private key of a task agent in each task agent

 keystore.

Msk/ta Mem. for the secret key of a task agent in each task agent

 keystore

Ms/hv Mem. for AS signature and hash value in each task agent

Msta/c Mem. for a task agent certificate in each agent certificate

 store.

Tisha Time for AS to send its signature and hash value to a task

 agent in EH.

Ttac/ta Time for AS to insert task agent certificate into TA

Tsk/tas Time for AS to insert secret key into task agent keystore

Tk/tas Time for AS to insert public/private key pair into task agent

 keystore.

Tac/ta Time for each task agent to send its certificate to another

 task agent

Tta/p Time for task agent to send its public key to another task

 agent.

Mk/eh Mem. for public key of EH.

Mpk/eh Mem. for private key of EH.

Mska Mem. of AS for the secret key of a task

 agent.

Tdta Time for AS to transmit a task agent to EH.

Tskh Time for AS to send its public key to EH.

Mask Mem. for public key of AS.

Mcta/as Mem. for certificate of task agent in AS.

Mpkta/as Mem. for public key of task agent in AS .

Mpk/as Mem. for AS private key in its keystore.

Tta/h Time taken by TA to hash signature of

 another TA and compare the derived hash

 value with the hash value sent by the

 agent.

Tdca Time for TA to decrypt its certificate using

 the secret key.

Tdska Time taken for TA to decrypt the secret key

 in its certificate with its private key.

Trcas Time taken for AS to request for its own

 certificate from CA.

Ts/hv/ta Time for a task agent to send its signature

 and hash value to another task agent.

n No. of TAs injected to the network.

