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Graphical abstract 
 

 

Abstract 
 

Solving stiff problem always required very tiny size of meshes if it is solved via traditional 

numerical algorithm. Using insufficient of mesh size, will triggered instabilities. In this paper, 

we develop an algorithm applying Harmonic Mean on Euler method to solve the stiff 

problems. The main purpose of this paper is to discuss the improvement of Harmonic Euler 

using Nonstandard Finite Difference (NSFD). The combination of these methods can 

provide new advantages that Euler method could offer. Four set of stiff problems are solved 

via three schemes, i.e. Harmonic Euler, Nonstandard Harmonic Euler and Nonstandard EO 

with Harmonic Euler. Findings show that both nonstandard schemes produce high 

accuracy results.  
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1.0  INTRODUCTION 
 

A finite difference scheme for numerical solution of 

ordinary and partial differential equations is one of the 

most frequently used. One of the disadvantages is that 

the standard finite difference method of the qualitative 

characteristics of the exact solution is usually not 

transferred to the numerical solution. This could have an 

impact on the stability characteristics of the standard 

approach[1]. Besides, in fact, the limit of step size also 

do not reach the standard methods. 

In reality, the nonstandard finite difference method is 

an extension of the standard finite difference method. 

Nonstandard finite difference scheme (NSFD) was 

introduced as an alternative method for solving 

numerous problems in mathematical models engage 

of algebra, biology and differentiation, and the chaotic 

system[1, 2]. Mickens introduced Nonstandard schemes 

in 1988 to resolve some of the issues related to 

numerical instabilities. In general, nonstandard finite 

difference schemes (NSFD) is deemed general finite-

difference schemes by including some of the ‘exact’ 

forms[3]. As a result, there are many advantages by 

using NSFD compared classical techniques. For 

example NSFD provide an efficient numerical solution 

from an aspect of the higher efficiency and better 

accuracy. In this study, many of ideas are motivated by 

the works of Mickens [4-6], Ibijola and Obayomi [7-10], 

K.F. Gurski [11] and Erdogan and Ozis [12].  

In this paper, stiff problems will be solved via some 

modification to Euler method with NSFD. Euler’s method 

is also called a Tangent Line method or one step 

method and is the simplest numerical method to solve 

the problem. This method was developed by Leonhard 

Euler in 1768 and it suitable for quick programming and 

simple implementation[13]. Because of that factors, 

Euler method offer a low cost computational 

application[13]. However, the factor of accuracy and 
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instabilities persuades the authors to modified Euler 

method. We previously modify the traditional Euler 

scheme by adapting Harmonic Mean[14, 15]. The 

primary aim of this investigation is to avoid inaccuracies 

given by a standard finite difference method. As we 

know more complex method and sophisticated solvers 

have been chosen by scholars to replace Euler 

Method[16, 17]. However, a very small step sizes need 

to be used for solving the stiff problem[17-19]. In this 

paper, we apply two nonstandard strategies to avoid 

numerical instabilities and to overcome the need of tiny 

step sizes.  

For this study we proposed a new algorithm that gave 

better solution in solving the stiff problem. Algorithm is a 

step by step procedure to solve a problem[20, 21]. In 

computer science, algorithm is an instruction model 

that giving solution to problems logically in simple 

language[21]. The algorithm contains a set of 

instruction clearly that describe the flow of process. Two 

popular way to convey the algorithm are pseudo code 

and flow chart. The authors choose the pseudo code 

as the algorithm in solving the stiff problem.  After the 

algorithm is constructed, it will be convert into the code 

program. Then, the code was executed to test the 

effectiveness of the algorithm method. The researchers 

used Scilab 5.5.1 to write the code program in this 

research.   

Figure 1 shows the graphical process of this study. At 

the final stage, we proposed two new algorithms via 

combination of Nonstandard Finite Difference (NSFD) 

scheme with Harmonic Euler in this research. The 

proposed algorithm called as Nonstandard Harmonic 

Euler and Nonstandard EO Harmonic Euler.  

 
 
 
 
 
 
 
 
 
 
Figure 1 The flow of construction the new Harmonic Euler 

algorithm 

 
 
2.0  MATERIALS AND METHOD 
 
Currently, NSFD plays an imperative role in the invention 

of reliable numerical methods in various areas in 

Sciences and Engineering. Since, the standard finite 

difference method does not accurately solve some 

sensitive mathematical problems. NSFD offers better 

solution for the problem. NSFD is an extension of the 

standard finite difference method to resolve issues that 

related to numerical instabilities[1, 11]. Research on 

nonstandard scheme was pioneered by Mickens [2, 4-

6]. We consider at least one of the nonstandard 

modeling proposed by Mickens. For this investigation, 

rule#2 [2]of was implemented.  

“Rule 2: Denominator functions for the discrete 

derivatives must, in general, be expressed in terms of 

more complicated functions of the step-sizes than those 

conventionally used. (These denominator functions, 

generally, are functions, that are related to particular 

solutions or properties of the general solution to the 

differential equation).” 

 

Definition 2.1  

A standard Euler method defined by 

𝑦𝑛+1 − 𝑦𝑛 = ℎ𝑓(𝑥𝑛, 𝑦𝑛)                        (1) 

 
According to rule #2, a new step size as a part 

denominator function is replaced as a new one. In this 

research and discussed about new step size. 

 

Definition 2.2 

Define the new step size according to Mickens rule, 

gives the following new finite difference equation for 

the equation 1. 
𝑦𝑛+1− 𝑦𝑛

(
1−𝑒−𝜆ℎ

𝜆
)
= −𝜆𝑦𝑛                       (2) 

Equation 2, will use when a function has fixed λ. The 

Harmonic method will enhance equation 2 in solving 

the stiff problem.  

            
𝑦𝑛+1− 𝑦𝑛

ℎ
= 

𝜆

2
 (𝑦𝑛+1 + 𝑦𝑛)         (3)                                                                    

Equation (3) is the NSFD scheme by Erdogan and 

Ozis[11, 12]. Erdogan and Ozis also used Mickens rule to 

develop equation 3 that called as NSFDEO in this paper.  

 

 

3.0 DEVELOPMENT USING NONSTANDARD IN 
HARMONIC EULER METHOD 
 

This section will be discussed about implementation of 

Nonstandard in Harmonic Euler method. The objective 

of that implementation, to give a better solution. 

Harmonic Euler is one method of the authors [14, 15] 

using modified Euler and concept of average. The 

Harmonic Euler method tries to find an average value 

of a slope for 𝑦, between 𝑥𝑛 + ℎ, by using harmonic 

averaging the slopes at 𝑥𝑛 and 𝑥𝑛+1 [14]. The Harmonic 

Euler method is given in equation (4) 

 

𝑦𝑛+1 = 𝑦𝑛 + ∆𝑡 𝑓(𝑡0  +
∆𝑡

2
, 𝑦0 + (

∆𝑡

2
) (

2(𝑓(𝑡0,𝑦0)∗𝑓(𝑡1,𝑦1))

𝑓(𝑡0,𝑦0)+ 𝑓(𝑡1,𝑦1)
))     (4) 

 

Next, we apply the nonstandard rule to equation (4), 

yield a new scheme called Nonstandard Harmonic 

Euler, as given in equation (5). 

 

𝑦𝑛+1 = 𝑦𝑛 + ∆𝑡 𝑓(𝑡0  +
∆𝑡

2
, 𝑦0 + (

∆𝑡

2
)(

2(𝑓(𝑡0,𝑦0)∗(𝑦0−λ𝑓(𝑡0,𝑦0)∗(
1−𝑒−λ∆𝑡

λ
)))

𝑓(𝑡0,𝑦0)+ (𝑦0−λ𝑓(𝑡0,𝑦0)∗(
1−𝑒−λ∆𝑡

λ
))
))   

                                                                       (5) 
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Next the authors implement equation (3) into the 

equation (4), resulted in a new method called 

Nonstandard EO Harmonic Euler. The Nonstandard EO 

Harmonic Euler equation can be written as an equation 

(6). 
 

𝑦𝑛+1 = 𝑦𝑛 + ∆𝑡 𝑓(𝑡0  +
∆𝑡

2
, 𝑦0

+ (
∆𝑡

2
)

(

 
 
 
 2(𝑓(𝑡0, 𝑦0) ∗ (

𝑦0 + (1 −
λ ∗ ∆𝑡
2
)

(1 +
λ ∗ ∆𝑡
2
)
))

𝑓(𝑡0,𝑦0) + (
𝑦0 + (1 −

λ ∗ ∆𝑡
2
)

(1 +
λ ∗ ∆𝑡
2
)
)

)

 
 
 
 

) 

                   (6) 

 

 

 

4.0 NONSTANDARD HARMONIC EULER 
ALGORITHM 
 

In this section, algorithms for three type of Harmonic 

Euler Methods are displayed. The comparison refer on 

maximum error value. The purpose of this research to 

solve four stiff problem using step size of h=0.001, 0.01 

and 0.1. In Tables 2-5, Harmonic Euler Method (equation 

(4)) will be refer as Scheme 1, Non-standard with 

Harmonic Euler Method (equation (5)) will be refer as 

Scheme 2. While Non-standard EO with Harmonic Euler 

Method (equation (6)) will be refer as Scheme 3. 

 

4.1  Harmonic Euler Algorithm 

 
1 Start 

2.  Problem Equation  

3. Set x, y, h, y(n) , k and a value. 

4. Start processing time 

5. Condition loop (𝑛 ≤ 𝑘) for 

             a. Calculate exact solution 

                             b. Set A  𝑓 (𝑥𝑛+1, 𝑦𝑛+1) 

            c. Set B  𝑓 (𝑥𝑛, 𝑦𝑛) 

                            d. Set C    𝑦𝑛 +  ℎ/2 * [2 ∗ (𝐴 ∗ 𝐵)/  𝐴 + 𝐵] 

                            e. Set D  𝑓 (𝑥𝑛 +  ℎ/2,    𝐶) 

                             f. 𝑦𝑛+1  𝑦𝑛 + h * D 

                            g. calculate maximum error, |exact -𝑦𝑛| 

      End for  

6. Print value, location, exact solution and 𝑦  at   

    maximum error. 

7. End processing time. 

8. Print processing time. 

9.  End 

 

 

 

4.2  Nonstandard with Harmonic Euler Algorithm 

 
1 Start 

2.  Problem Equation  

3. Set x, y, h, y(n) , k and a value. 

4. Start processing time 

5. Condition loop (𝑛 ≤ 𝑘) for 

       a. Calculate exact solution 

       b. Calculate nonstandard scheme, 

 (1- exponent( λ* ℎ))/ λ 

       c. Set A  𝑓 (𝑥𝑛+1, 𝑦𝑛+1) 

       d. Set B  𝑓 (𝑥𝑛 , 𝑦𝑛) 

       e. Set C    𝑦𝑛 +  ℎ/2 * [2 ∗ (𝐴 ∗ 𝐵)/  𝐴 + 𝐵] 

       f. Set D  𝑓 (𝑥𝑛 +  ℎ/2,    𝐶) 

      g. 𝑦𝑛+1  𝑦𝑛 + h * D 

      h. calculate maximum error, |exact -𝑦𝑛| 

         End for  

6. Print value, location, exact solution and 𝑦  at 

maximum error. 

7. End processing time. 

8. Print processing time. 

9.  End 

 

4.3  Nonstandard EO with Harmonic Euler Algorithm 

 
1 Start 

2.  Problem Equation  

3. Set x, y, h, y(n) , k and a value. 

4. Start processing time 

5. Condition loop (𝑛 ≤ 𝑘) for 

      a. Calculate exact solution 

      b. Calculate nonstandard EO scheme, 

           {𝑦𝑛 ∗ [1 − ( λ/2) * ℎ]} / ∗ [1 + ( λ/2) * ℎ] 

      c. Set A  𝑓 (𝑥𝑛+1, 𝑦𝑛+1) 

      d. Set B  𝑓 (𝑥𝑛 , 𝑦𝑛) 

      e. Set C    𝑦𝑛 +  ℎ/2 * [2 ∗ (𝐴 ∗ 𝐵)/  𝐴 + 𝐵] 

      f. Set D  𝑓 (𝑥𝑛 +  ℎ/2,    𝐶) 

      g. 𝑦𝑛+1  𝑦𝑛 + h * D 

      h. calculate maximum error, |exact -𝑦𝑛| 

    End for  

6.  Print value, location, exact solution and 𝑦  at    

     maximum error. 

7.  End processing time. 

8.  Print processing time. 

9.  End 
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5.0  NUMERICAL RESULT 
 

This section discusses the results of the four stiff problems 

with three different step sizes. Table 1 refers to a set of 

problem with exact solution in ordinary differential 

equations. 

 

Table 1 Set of Stiff Problem Ordinary Differential Equation 
 

 Equation Initial Values Interval of Integration Source 

     

1. 𝑦′ = −0.5𝑦 

Exact solution : 𝑦(𝑥) = 𝑒−0.5𝑥 
𝑦 (0) =  1 0 ≤ 𝑥 ≤ 20 [22] 

 

2 𝑦′ = −𝑦 

Exact solution : 𝑦(𝑥) = 𝑒−𝑥 
𝑦 (0) =  1 0 ≤ 𝑥 ≤ 20 [22] 

3 𝑦′ = −30𝑦 

Exact solution : 𝑦(𝑥) = 𝑒−30𝑥 
𝑦 (0) =  1 0 ≤ 𝑥 ≤ 20 [22] 

4 𝑦′ = −10(𝑦 − 1)2 

Exact solution : 𝑦(𝑥) = 1 +
1

1+10𝑥
 

 

y (0) =  2 0 ≤ 𝑥 ≤ 0.1 [19] 

 

 

Four stiff problems are tested by using three type of 

Harmonic Euler methods discussed in section 6.0. The 

following Table 2 to Table 5 displays the results of the 

stiff problems. The result shown in the tables are 

comparisons of maximum error with Scheme 1, 

Scheme 2 and Scheme 3. 

 

 

Table 2 Results for Problem 1 

Method h=0.001 h=0.01 h=0.1 

 

Scheme 1 0.00E+00 1.00E-06 8.90E-05 

Scheme 2 0.00E+00 1.00E-06 8.30E-05 

Scheme 3 0.00E+00 1.00E-06 8.30E-05 

    

 

Table 3 Results for Problem 2 

Method h=0.001 h=0.01 h=0.1 

 

Scheme 1 0.00E+00 3.00E-06 4.09E-04 

Scheme 2 0.00E+00 3.00E-06 3.54E-04 

Scheme 3 0.00E+00               3.00E-06 3.55E-04 

    

 

Table 4 Results for Problem 3 

Method h=0.001 h=0.01 h=0.1 

 

Scheme 1 3.00E-05 6.16E-03 inf 

Scheme 2 2.90E-05 4.13E-03 2.26E+39 

Scheme 3 2.90E-05 4.21E-03 2.90E-05 

    

 

Table 5 Results for Problem 4 

Method h=0.001 h=0.01 h=0.1 

 

Scheme 1 4.00E-06 6.27E-04 5.00E-01 

Scheme 2 4.00E-06 5.31E-04 2.76E-01 

Scheme 3 3.40E-05 3.98E-03 3.10E-01 

    

 

 

6.0  DISCUSSION 

 
In this study, a solution of each method is compared 

with the exact solution using maximum error. About 

three different step sizes are used for testing in each 

problem. Those values are 0.001, 0.01 and 0.1. The 

different step size will give impact in the solution stiff 
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problems using Harmonic Euler Method and NSFD 

schemes.  

Table 2 shows maximum error for stiff problem 1. All 

schemes produced “exact result” when using small 

step size which is 0.001. Solution for step size 0.01, all 

schemes gave the same maximum error which is 

1.06E-06. When using larger step size, 0.1 increase all 

maximum error to 8.30E-05. 

Table 3 shows maximum error for stiff problem 2. In 

this table, all scheme gave zero for the value of 

maximum error when used step size 0.001.  After took 

step size 0.01, all scheme gave the small value of 

maximum error which is 3.00E-06. Only scheme 2 gave 

the smallest value of maximum error when used larger 

step size which is 3.54E-04.  

Table 4 illustrated for stiff Problem 3. Value of small 

maximum error at step size 0.001 gave the answer 

2.90E-05 when used Scheme 2 and Scheme 3. 

Scheme 3 also gave the small value of maximum error 

which is 4.13E-03 when used step size 0.01. When used 

a larger step size 0.1, scheme 1 scheme 2 produces 

unstable result for maximum error. Only scheme 3 

gave the small value of maximum error which is 2.90E-

05. 

For the last table as refer to Table 5 presented for stiff 

Problem 4. In this table Scheme 2 gave the smallest 

value of maximum error when used different step sizes. 

For h=0.001, the maximum error value was 4.00E-06. 

When used step size 0.01, the answer of maximum 

error value was 5.31E-04 and for largest step size gave 

value which is 2.76E-01. 

We can conclude that (all discussed stiff problems) 

that using Nonstandard scheme is better than 

standard scheme for all step sizes. Thus the stiff 

problem can used NSFD scheme for avoid numerical 

instabilities and overly small step sizes. 

 

 

7.0  CONCLUSION 
 

The nonstandard schemes have been tested 

numerically in terms of their consistency with known 

behavior of an analytic solution. NSFD scheme is 

applied to Harmonic Euler to give better solutions. 

Otherwise NSFD method are used to avoid numerical 

instabilities and slightly small step sizes in stiff problems. 

The results are presented in the tables which provide 

comparison of the exact solution using maximum error 

with Scheme 1, Scheme 2 and Scheme 3. The tables 

definitely show that NSFD schemes approaching the 

exact solution, although using huge step sizes. The best 

NSFD scheme is the Nonstandard EO with Harmonic 

Euler Method   since it can give an accurate result 

while other methods are unstable as shown in Table 4. 
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