

77:20 (2015) 33–38 | www.jurnalteknologi.utm.my | eISSN 2180–3722 |

Jurnal

Teknologi

Full Paper

MOBILE ROBOT PATH OPTIMIZATION ALGORITHM USING

VECTOR CALCULUS AND MAPPING OF 2 DIMENSIONAL

SPACE

Ammar Zahari*, Amelia Ritahani Ismail, Recky Desia

Department of Computer Science, Kulliyyah of Information and

Communication Technology, International Islamic University

Malaysia (IIUM), P.O. Box 10, 50728 Kuala Lumpur, Malaysia

Article history

Received

15 May 2015

Received in revised form

1 July 2015

Accepted

11 August 2015

*Corresponding author

ammar.zahari@live.com

 ̀

Graphical Abstract

Abstract

This research explores path integration in mobile robot navigation and path optimization

technique using vector calculus. A simulated robot in a simulated environment is used to

test the algorithm that is to be developed. The simulated robot is equipped with a sonar

sensor and several infrared sensors on its chassis. Mobile robot navigation in an unknown

environment is very crucial as It not only has to be concerned about reaching its

destination but also to avoid obstacles that may be in the way. This algorithm can

effectively allow a mobile robot to navigate an unknown environment without collision

into obstacles.

Keywords: Robotics, mapping, artificial intelligence

© 2015 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

Autonomous robotic has long been a field of interest

among researchers. Programmable robot with the

ability to multi-task and navigate treacherous terrains

where it would be otherwise dangerous for a human to

traverse are highly desirable. Vast amount of accurate

sensors that are equipped by the robot are capable of

calculating and processing information in fractions of

the time it would take a human to do. This has become

an ambitious area of research in the last few decades

[1].

Research on mobile robot navigation and mapping

has become increasingly popular these days [2] [3] [4]

[5] [6]. This paper aims to develop a simple algorithm or

Finite State Machine (FSM) that can navigate an

unknown environment and accomplish a simple task.

The fundamental aspect of a decentralized mobile

robot system is the ability to make decisions without

communicating commands with a control center. We

will explore the behavior of a mobile robot to navigate

with precision using its own sensors and information. The

need for a decentralized mobile robot system to

identify its location is critical in navigating an unknown

environment. We proposed an algorithm based on

simple vector calculus and path integration. To achieve

this goal the mobile robot must be able to construct a

map based on its environment, to localize itself in it and

to move from one point to another by simulating

foraging behavior of insects. The scope of this paper is

limited to a single simulated robot in a simulated world.

Physical robots or multiple robots are not used in this

paper.

Robotics is a machine that senses and converts into

action using computers. Typically robots have sensors

such as vision, force, tactile as internal states [7]. Actions

that are performed are provided by arms, grippers,

wheels and sometimes legs [7]. Artificial Intelligence is a

vast field of study. In its essence it is related to

incorporating problem solving skills with the though

process that is present in complex biological organisms

[8]. Mobile robotics as the name implies are robotics

that is mobile as opposed to static robots.

Ants and termites are social insects, they cooperate

with each other to achieve certain tasks for example

foraging and navigation. There are many species of

34 Ammar Zahari et al. / Jurnal Teknologi (Sciences & Engineering) 77:20 (2015) 33–38

ants that use many different methods for navigation.

One of those methods is landmark-based navigation

where the ants would use the environment around

them as a beacon or check-points during navigation

[9]. Ants also use a form of path integration, a record of

its distance and direction traveled is updated in an

accumulator [10].

Path integration is a simple navigation method. It

continuously computes its current location based on its

past location and trajectory, this means that to return to

its original location, instead of taking a direct route, the

path will be retraced from its entire trajectory [11].

2.0 RELATED WORK

Cong et al. in [3] applies fuzzy logical in their self-

navigating robots. A fuzzy logic system consists of fuzzy

variable membership functions, a rule base, fuzzy

reasoning and defuzzification. Cong demonstrated the

advantages of this approach by applying it to the

wheels of a robot. Their demonstration successfully

navigated an area although the map was incomplete

and barely recognizable.

Luo et al. in [4] applies sensor-based navigation with

grid map representation for their robots to navigate

unknown environments. They demonstrated a

biologically inspired neural network model algorithms

and real-time map building. Although their method is

very successful, they equipped their robot with

expensive equipment including laser radar or LIDAR.

Zhou et al. in [6] applies an RSSI-based localization of

robots. RSSI is an indication of the power level being

received by the antenna which is related to distance

between sender and receiver. They use RSSI in their

paper to determine the distance between sender and

receiver and use that as a beacon or landmark for

navigation. Although their work was successful RSSI is a

wireless technology that would greatly be affected by

interference.

Mariappan et al. in [5] uses optical tracking devices in

their robot to navigate. This is very useful for certain

tasks, but it requires a lot of processing power and very

expensive. Their robot uses an omni-wheel system

whereby the robot is able to move in all direction. They

demonstrated its navigation capabilities and it was very

successfully.

3.0 METHODOLOGY

3.1 Experimental Setup

3.1.1 Stage

Stage is a robot simulator [12]. It provides a virtual world

populated by mobile robots and sensors, along with

various objects for the robots to sense and manipulate.

In this paper, the virtual world is populated by a single

robot with 2 zones, one zone represents the nest and

the other represents a resource. The world is within a

small and simple 2-dimensional maze. Controller for the

robot is implemented in C++.

Figure 1 Simulated robot sensor placement

There are 12 simulated infrared sensors that surround

the robot at 30 degree intervals as in Figure 1. The

infrared sensor is used as a proximity bumper while the

sonar sensor is used as a distance measurement tool.

The infrared sensor works by turning on an infrared LED,

the light beam then bounces of an object then return

back to a photo-resistor. The amount of resistance that

is detected by the photo-resistor determines the

distance from the robot to any obstacle. Values from

the photo-resistor will change the voltage going

through it. This will allow a value to be read. A Sonar

sensor is placed at the front of the robot to measure

distances between itself and any obstacles in-front of it,

the sonar sensor works by sending out an ultrasonic

wave, this wave will bounce of an obstacle then is

received by an ultrasonic microphone. The time it takes

for the wave to come back will be measured, with the

known value of the speed of sound; the distance can

easily be measured.

3.1.2 Data Acquisition

The nest zone has a controller which is also

implemented in C++. When the nest receives a

resource item, it will calculate the time it takes for each

resource item it takes. This value will then be used to

calculate the efficiency of the robot by calculating its

resources per minute value.

𝑅 =
60

𝑇2 − 𝑇1

Equation 1 Resources per minute

Where, R is resources per minute, T1 is the time-stamp of

when the previous resource item was received and T2 is

the current resource item. The value R will then be sent

to a graphing software to provide visual information.

For every movement made by the robot, its bearing,

speed and the obstacle distance in-front of it is sent to

35 Ammar Zahari et al. / Jurnal Teknologi (Sciences & Engineering) 77:20 (2015) 33–38

the mapping system to be drawn as a map. If there are

no obstacles, only the bearing and speed data is sent.

3.1.3 Data Processing and Visualization

SocketGrapher is an application that is developed in

Java using the JavaFX library. It reads datagrams from

UDP sockets and displays them in a line graph.

SocketGrapher accepts 2 numbered data separated

by a comma for its, X-Axis and Y-Axis. SocketGrapher is

capable of exporting its data to a CSV (Comma

Separated Values) file.

AbizMapper is an application that is used to provide

mapping visualization. It is developed in Java using

LibGDX library. It reads datagrams from UDP sockets

and processes the data to draw a map on the screen.

AbizMapper accepts data such as bearings and

ranging data that corresponds to obstacles that need

to be drawn on screen.

3.2 Algorithm Design

3.2.1 Navigation

The movement of the simulated robot is random. Initially

the robot will move forward until it encounters an

obstacle, then it will change its direction until there are

no obstacles in-front of it. This will continue until the

robot locates either the nest zone or the resource zone.

Whichever zone the robot locates first, it will start

recording its movement while finding the other zone.

The simulated GPS coordinates of the robot along with

its bearing will be recorded and inserted into a vector

of values as in Algorithm 1.

Algorithm 1 Navigation Algorithm

1: procedure LocateZone (Z, R) > Z, Zone to be

located and R, Recording flag

2: currZone = GetCurrentZone ()

3: while currZone ≠ Z do

4: if ObstacleFront() = false then

5: MoveForward()

6: if R = true then

7: RecordPosition()

8: end if

9: else

10: direction ← Random()

11: Turn(direction)

12: end if

13: end while

14: return CurrentPosition() > Zone found at

position

15: end procedure

3.2.2 First Stage Optimization

The first stage of optimization removes redundant

positions from the recorded positions. When the robot

moves, it will detect obstacles that are somewhat near

to each other then it will keep turning to find its way out.

These turns will flood the position vector with garbage

data. Thus the first stage of optimization will remove

them. These garbage data will be found by calculating

the distance between one position and the next.

𝐷 = √(𝑋2 − 𝑋1)2 + (𝑌2 − 𝑌1)2
Equation 2 Distance equation

Where D is the distance, X1 and Y1 is the first point and

X2 and Y2 is the second. The distance equation is

applied to each pair of position and whichever

distance is less than that of the minimum allowed

distance will be removed from the vector of positions as

in Algorithm 2.

Algorithm 2 Stage 1 Optimization Algorithm

1: Procedure OptimizeStage1(P) > Vector of

positions

2: size ← NumElements(P)

3: loop from i ← 0 to size

4: curr ← P[i] > Current point

5: next ← P[i + 1] > Next point

6: min ← GetMinimumDistance()

7: If Distance(curr, next) less then min then

8: remove next from P

9: end if

10: end loop

11: return P

12: end procedure

3.2.3 Second Stage Optimization

The second stage of optimization is done every time the

robot reaches its destination. The path to its next

destination is recalculated and an attempt for

optimization is made. Each iteration of the algorithm, a

point in the path is marked for optimization. When the

robot reaches this point, it will skip the marked point in

an attempt to go straight to the next point in the path.

If the robot succeeds the point will be marked as skip

able and will be skipped for all subsequent iterations.

Figure 2 shows the skipped path (Original Path) while

the resultant path is the path that is made by using

simple vector calculus.

Figure 2 Vector integration

36 Ammar Zahari et al. / Jurnal Teknologi (Sciences & Engineering) 77:20 (2015) 33–38

Algorithm 3 Stage 2 Optimization Algorithm

1: procedure OptimizeStage2(S) > Vector of point

status

2: size ← NumElements(S)

3: loop from i ← 0 to size

4: if S[i] = skip then

5: S[i] ← skippable

6: end if

7: if S[i] = untested then

8: S[i] ← skip

9: end if

10: end loop

11: return S

12: end procedure

4.0 ANALYSIS OF RESULTS

From the data that is sent by the simulated robot,

SocketGrapher software will plot its data.

SocketGrapher plots its resources collected per minute

versus time. Figure 3 at the 7th minute mark the speed

at which the robot collects resources shows 0.25

resources per minute. At the 15th minute mark the robot

begins to run its second stage of optimization algorithm.

The optimization algorithm improves the robot’s

resource collection rate to 0.55 resources per minute at

the 47th minute mark. This is approximately 120%

improvement before any optimization is made.

Figure 3 Graph for resources per minute versus time

Figure 4 is the Stage simulator where it consists of a

world with a small 14m x 12m cave and populated by a

single 80cm diameter robot. Figure 5 shows the SIRD

Control Center mapping system where it receives

ranging data from the simulator and draws the resulting

map. The map that is drawn has some visible “holes” in

the walls at multiple locations at certain areas. The walls

that are drawn appear to have multiple layers to them

where the same wall is drawn multiple times.

Figure 4 Simulated map

37 Ammar Zahari et al. / Jurnal Teknologi (Sciences & Engineering) 77:20 (2015) 33–38

Figure 5 Results for the mapping algorithm tests from top left to

bottom right

5.0 DISCUSSION

This research sets out to develop a path navigation and

optimization algorithm as well as a 2 dimensional

mapping system. There were 2 separate simulations that

was done for the optimization and the mapping

respectively.

The first simulation concerns that of the optimization of

the pathway that is taken by the robot to reach its

destination. It is observed that new paths can only be

created from an already known path. New paths could

not be created from unknown data. This may lead to a

local maximum that wouldn't lead to an absolute

optimized pathway.

The second simulation concerns that of the mapping

system. The robot takes a considerable amount of time

to map a relatively small area. Since the robot moves

randomly it maps the same area several times and this

leads to multiple layers of the same wall or obstacle.

6.0 FUTURE WORK

Further work can be done on this research to improve

its methodology, this includes but not limited to:

 Physical robots to observe emergent behaviors that

may not be apparent in simulations.

 Multiple robots (swarm robotics) to improve data

collection time and further optimize pathways.

Acknowledgement

This research is funded by the Ministry of Higher

Education under the Exploratory Research Grant

Scheme (ERGS): ERGS 13- 017-0050.

References

[1] M. A. Hossain and I. Ferdous. 2014. Autonomous Robot Path

Planning in Dynamic Environment Using a New Optimization

Technique Inspired by Bacterial Foraging Technique. In

International Conference on Electrical Information and

Communication Technology (EICT). 1-6.

[2] K. Sugawara, M. Sano, I Yoshihara, K. Abe, and T. Watanabe.

1999. Foraging Behaviour of Multi-Robot System and

Emergence of Swarm Intelligence. In IEEE International

Conference on Systems, Man, and Cybernetics (SMC). 3:

257-262.

[3] Xiaohong Cong, Hui Ning, and Zhibin Miao. 2007. A Fuzzy

Logical Application in a Robot Self Navigation. In Industrial

Electronics and Applications, 2007. ICIEA 2007. 2nd IEEE

Conference on. 2905-2907.

[4] Chaomin Luo, Jiyong Gao, Xinde Li, Hongwei Mo, and Qimi

Jiang. 2014. Sensor-based Autonomous Robot Navigation

Under Unknown Environments with Grid Map Representation.

In Swarm Intelligence (SIS), 2014 IEEE Symposium on. 1-7.

[5] M. Mariappan, Choo Chee Wee, K. Vellian, and Chow Kai

Weng. 2009. A Navigation Methodology of an Holonomic

Mobile Robot Using Optical Tracking Device (OTD). In

TENCON 2009-2009 IEEE Region 10 Conference. 1-6.

[6] Nan Zhou, Xiaoguang Zhao, and Min Tan. 2013. RSSI-based

Mobile Robot Navigation in Grid-Pattern Wireless Sensor

Network. In Chinese Automation Congress (CAC), 2013. 497-

501.

[7] Michael Brady. 1985. Artificial Intelligence and Robotics.

Artificial Intelligence. 26(1): 79-121.

[8] E. S. Brunette, R.C. Flemmer, and C. L. Flemmer. 2009. A

Review of Artificial Intelligence. In Autonomous Robots and

Agents, 2009. ICARA 2009. 4th International Conference on.

385-392.

[9] T. S. Collett. 1996. Insect Navigation En Route to the Goal:

Multiple Strategies for tThe Use of Landmarks. The Journal of

Experimental Biology. 199(1): 227-235.

[10] Matthew Collett, Thomas S. Collett, and RÃ¼diger Wehner.

1999. Calibration of Vector Navigation in Desert Ants. Current

Biology. 9(18): 1031-S1.
[11] L. Delahoche, C. Pe ́gard, E.-M. Mouaddib, and P. Vasseur,

1998. Incremental Map Building For Mobile Robot Navigation

In An Indoor Environment. In Robotics and Automation,

38 Ammar Zahari et al. / Jurnal Teknologi (Sciences & Engineering) 77:20 (2015) 33–38

Proceedings. 1998 IEEE International Conference on. 3: 2560-

2565.

[12] Richard Vaughan. 2008. Massively Multiple Robot Simulations

in Stage. In Swarm Intelligence 2(2-4). Springer. 189-208.

