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Abstract 
 

In this article, we examined the impact of heat transfer on the magnetohydrodynamic 

(MHD) stagnation point flow of a non-Newtonian power- law fluid with convective 

boundary condition. By using suitable similarity transformations, coupled nonlinear partial 

differential equations are transformed to ordinary differential equations. Then solved the 

resulting equations with Homotopy analysis method.  Interesting flow parameters such as 

MHD M , stagnation parameter ,  convective parameter   are discussed graphically. 

Convergence is checked at 20th order of approximation. Numerical values of physical 

interested parameter such as local Nusselt number are also tabulated. 
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1.0  INTRODUCTION 
 

A stagnation point flow in terms of fluid mechanics is a 

point in a flow field where the local velocity of fluid is 

zero. Effects of volumetric heat generation/absorption 

on mixed convection stagnation point flow on an 

isothermal vertical plate in a porous medium was 

investigated by Singh et al. [1]. Hiemenz [2] and 

Homann [3] studied the two dimensional and axi-

symmetric three dimensional stagnation point flows 

respectively. Different studies on stagnation point flows 

can be found in the works [4-6]. The problems of 

stagnation point flows can be studied in Newtonian as 

well as non-Newtonian fluids. Many researchers 

focused to the study of non-Newtonian fluids such as 

power-law fluid because its equation of motion have 

special relevance in industries such as molten plastic, 

polymer melts, extrusion process and many others. 

Andersson and Dandapat [7] first discussed the flow of 

a non-Newtonian fluid obeying power law model by 

extending the Newtonian model as considered by 

Crane [8]. Again Anderson et al. [9] presented the MHD 

flow of a power law fluid over a stretching sheet. 

Numerical and series solution of 

magnetohydrodynamics stagnation point flow of a 

power law fluid towards a stretching surface are 

obtained by Mahapatra et al. [10, 11]. They compared 

both the results and found to be in good agreements. 

Again Mahapatra et al. [12] studied the above 

mentioned problems over a porous plate for suction or 

blowing case. They plotted the streamlines and 

observed that the velocity at a point increases with an 

increase in the magnetic parameter M. The convective 

boundary condition has been used by many 

researchers to revisit the problems studied with 

isothermal/isoflux boundary condition such as R. C. 

Bataller [13] discussed the Similarity solutions for flow 

and heat transfer of a quiescent fluid over a nonlinearly 

stretching surface. Then A. Ishak [14] explored the 

similarity solutions for flow and heat transfer over a 

permeable surface with convective boundary 

conditions. A convective boundary condition for MHD 
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mixed convection from a vertical plate embedded in a 

porous medium examined by O. D. Makinde and A. Aziz 

[15]. S. Yao, T. Fang and Y. Zhong [16] studied the heat 

transfer of a generalized stretching/shrinking wall 

problem with convective boundary condition. The aim 

of this paper is the study of heat transfer on stagnation-

point flow of MHD power-law fluid with convective 

boundary condition. The steady two dimensional 

stagnation point flow of an ambient fluid which is 

subjected under the constant magnetic field is 

considered here: By taking the applied magnetic field 

uniform, the convergent series solutions are obtained by 

the HAM. Interesting flow parameters are discussed 

graphically Numerical values of local Nusselt number is 

also calculated in tabulated form. HAM is an efficient 

method proposed by Liao [18] This method has been 

successfully applied to obtained solution of non-linear 

problems [19 - 20]. As shown in Figure 8, this paper 

highlighted the problem in this field, formulate the 

problem, proposed the solution, analysis and discussing 

the result. 

 
 
2.0  PROBLEM FORMULATION 
 
We analyze the effects of heat transfer with a 

convective boundary condition instead of commonly 

used conditions of constant surface temperature or 

constant heat flux. Here, we consider the steady, two 

dimensional stagnation-point flow and heat transfer of 

an electrically conducting power-law fluid (cold fluid at 

temperature )( T  towards a flat stretching sheet 

coinciding with the plane ,0y  the flow being 

confined to the region  0y  . A uniform magnetic field 

of strength 0B   is imposed normal to the sheet (along 

the y-axis) when induced magnetic field is neglected 

under small magnetic Reynolds number assumption. It 

is assumed that the velocity of the external flow is 

axxU e )(  and the velocity of the stretched sheet is  

,)( cxxU    where ca,  are positive constants and x  is 

the coordinate measured along the stretching sheet. It 

is also assumed that the bottom surface of the sheet is 

heated by convection from a hot fluid at temperature 

fT  which provides a heat transfer coefficient fh  . In the 

present problem we have 0


y
u  when 1

c
a  and 0



y
u  

when .1
c
a  Under these assumptions, the momentum 

and energy equations for the boundary layer flow of 

power-law fluid are 
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where )0(K  and n  denote the consistency 

coefficient and flow behavior indices, respectively and  

 , k  and pc  are the electrical conductivity, the 

thermal conductivity and the specific heat, 

respectively. 

 

The corresponding boundary conditions are  
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Introducing the following similarity transformations 
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In the above equations,   denotes the similarity 

variables, ),( yx  the stream function, f  and   the 

dimensionless similarity functions related to the velocity 

and temperature respectively. In view of above 

transformations, we have 
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Here the other parameters are defined as follows 
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In the above equation, M  is the magnetic field 

parameter, Pr  is the Prandtl number,  is the stagnation 

parameter and   is the convective heat transfer. The 

physical quantity of interest is the local Nusselt number  

Nu   is defined by 
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w kq  denoting the surface heat flux. 

Using variables  ),7(   we get 
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  is the local Reynolds number. 

 

 

3.0  THE HAM SOLUTIONS FOR INTEGER POWER-
LAW INDEX  1  

 

We apply the Homotopy Analysis Method to solve the 

coupled system of equations (7) to (9). From the 

governing equations, we choose 
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as auxiliary linear operators with the following properties 
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where  iC   ( )51i   are arbitrary constants. 

 

3.1  The zeroth-order Deformation Problems 

 
We construct the zeroth order deformation problem as 
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as our initial approximation of f  and   . Here p    ]1,0[  

is an embedding parameter, f  and   are the 

auxiliary nonzero parameters for f  and .  For ,1n   the 

nonlinear operators are 
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When  0p   and 1p   then it is easy to check that 
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So, as an embedding parameter p   increases from 0 to 

1, );(ˆ pf   and );(ˆ p  vary from initial approximations 

)(0 f   and )(0    to the solution )(f  and )(   of the 

original equations (7) to (8). Using Taylor's theorem and 

Eqs. (24) and (25), we expand );(ˆ pf   and );(ˆ p  in the 

power series of an embedding parameter p  as follows. 
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Observe that the zeroth-order deformation Eqs. (17) 

and (18) contain non-zero auxiliary parameters f  and 

 . Assume that these parameters are chosen so that 

the series (26) and (27) are convergent at 1p . Hence, 

we have due to (28) that 
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3.2  The mth-order Deformation Problem 

 

Differentiating the zeroth-order deformation problems 

in eqs. (17) and (18) m -times with respect to p  and 

then dividing by .m . Finally letting 0p , we obtain the 

following mth-order deformation problems for 1m  the 

following problem 
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and m  is defined by Eq. (35) 
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The general solutions of Eqs.  (31)- (32) are  
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),exp()exp()()( 54    CCmm                (39) 

in which )(
mf  and )( m  are the particular solutions of 

Eqs. (31)- (32). Note that Eqs. (31)- (32) can be solved by 

means of any symbolic computational software like 

Maple, Mathematica etc. one after the other in the 

order  ,...3,2,1m   

 

 

4.0  CONVERGENCE OF THE SERIES SOLUTIONS 
 

While using Homotopy Analysis method, the 

convergence depends upon the auxiliary parameter   

as it helps in adjusting and controlling the radius of 

convergence of the series solutions. Combine  curves 

of )0(f   and )0(    versus f  and   are sketched in 

Figure 1 . Where f  is auxiliary parameter for )0(f   and 

   is the auxiliary parameter for  ).0(   By keeping the 

values of other parameters fixed, we can obtain the 

convergence region of f  and . The reasonable 

values are  .26.0ħ26.1,25.0ħ25.1  f  Table. 1 

represents the convergent values of series solution. This 

shows the validity of our series solution. 

 

 

 

 

Figure 1 Combined  curve for )0(f   and ).0( at 20th order of approximation 

 

Table 1 Convergence of the series solution at different order of approximations. 

 

 

 

0.428860                   0.386632          40

0.428860                   0.386632          30

0.428860                   0.386632          25

0.428427                   0.386613          20

0.428388                   0.386490          15

0.428559                   0.385874          10

0.432714                   0.380915          5

0.472500                    0.339000          1

)0( )0(ionsapproximat ofOrder  f
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 Table 2 The numerical values of the local Nusselt number for various values of parameters 

  

[𝑚,𝑚] 𝑛 = 1, 𝛾 = 0.1,𝑀 = 1, 𝜆 = 1 𝑛 = 2, 𝛾 = 1,𝑀 = 2, 𝜆 = 2 

 𝑅−1/2𝑁𝑢 𝑅−1/2𝑁𝑢 
1 0.446167 0.259200 

3 0.380562 0.199372 

5 0.342460 0.737020 

7 0.317596 1.491360 

10 0.309239 1.589980 
 

 

 

5.0  RESULTS AND DISCUSSION 
 

The effects of all other parameters and homotopy-

Pade approximations results have been discussed in 

the paper by Mahapatra et al. ]10[  .Here we  see the 

influence of following flow parameters   convective 

heat transfer, Pr  Prandtl number and   stagnation 

parameter on the temperature distribution. Figures 2  

and 3 are made to see the effect of parameter   for 

Newtonian and non-Nonewtonian fluid. Here for ,0

we recover the case of constant surface temperature 

but for the convective heat transfer 7.0,5.0,3.0  the 

temperature )(  increases as we increase the values 

of .  Also curves for non-Newtonian power-law fluid 

fluctuates rapidly as compared to the Newtonian 

fluid. The influence of Prandtl number Pr  on 

temperature for 2,1n  is shown in Figures 4 and 5. 

From these figures we observe that by increasing the 

values of Pr  the temperature distribution decreases 

for Newtonian fluid and hence the boundary layer 

thickness decreases; however, for non-Newtonian 

fluid it increases. The stagnation parameter    effects 

on   is sketched in Figure 6. It is noted that the 

boundary layer thickness and temperature profiles 

decreases as we increase the values of .  Figure 7 

shows that the velocity reaches to its peak values in 

the case of non-Newtonian fluids. Table 2 is made to 

see the numerical values of physical interested local 

Nusselt number and it is found to be in good 

agreement. 

 

 
Figure 2 Temperature profiles for different values of   by 

keeping the values of other parameters fixed 

 

 
Figure 3 Temperature profiles for different values of   by 

keeping the values of other parameters fixed at n=2 

 

 
Figure 4 Temperature profiles for different values of Pr by 

keeping the values of other parameters fixed 

 

 
Figure 5 Temperature profiles for different values of Pr by 

keeping the values of other parameters fixed at n=2 
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Figure 6 Temperature profiles for different values of   by 

keeping the values of other parameters fixed 

 

 
 

Figure 7 Temperature profiles for different values of   by 

keeping the values of other parameters fixed at n=2 

 

 
 

Figure 8 Block diagram of the processes of the system 

 

 

6.0  CONCLUSION 

 
In this paper we have discussed heat transfer analysis 

on stagnation-point flow of MHD power-law fluid with 

a convective boundary conditions in analytical way 

using Homotopy analysis method. This method is 

efficient to solve the boundary value problem in 

analytical way. From the numerical and graphical 

results, we conclude the following main observations: 

 

 It is noted that the temperature increases for 

increasing values of   for both Newtonian and 

power-law fluids. So it increases boundary layer 

thickness. 

 The effects of Prandtl number Pr on Newtonian 

and power-law fluids is seen to be in opposite 

behavior. 

 From the results, we observed a decrease in the 

temperature as well as the thermal boundary 

layer for increasing values of .   
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