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Abstract 
 

Simultaneous Localization and Mapping (SLAM) problem is a well-known problem in 

robotics, where a robot has to localize itself and map its environment simultaneously. 

Particle filter (PF) is one of the most adapted estimation algorithms for SLAM apart from 

Kalman filter (KF) and Extended Kalman Filter (EKF). In this work, particle filter algorithm has 

been successfully implemented using a simple differential drive mobile robot called e-

puck. The performance of the algorithm implemented is analyzed via varied number of 

particles. From simulation, accuracy of the resulting maps differed according to the 

number of particles used. The Root Mean Squared Error (RMSE) of a larger number of 

particles is smaller compared to a lower number of particles after a period of time.   
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1.0  INTRODUCTION 
 

Many notable researches have been carried out in 

attempts to solve both localization and mapping 

problem in unknown environment of robotic system. This 

problem is famously known as the Simultaneous 

Localization and Mapping (SLAM) problem. A SLAM 

algorithm is about exploring the environment to build its 

map and determining the location of the robot in the 

map. There are many application of SLAM solution, such 

as in forest harvesting, minimal invasive surgery and 

autonomous vehicles.  

Two obvious fundamental tasks consist in SLAM are 

localization and mapping. Localization means to 

determine robot's position and orientation while 

mapping is to map the environment. 

The essential objective of solving SLAM is for a robot 

to map an unknown environment while exploring the 

environment. The map obtained can be used for 

countless possibilities.  

In an outdoor environment a robot could obtain its 

current position using Global Positioning System (GPS) 

signal. However, GPS has its own limitation where signals 

can be shadowed by buildings, terrains or even when it 

is raining. This condition is called GPS blind area. Thus, 

there are circumstances where GPS signal might not 

allow the robot to locate itself in the environment. 
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Solving the SLAM problem might not be necessary if 

either one of the two information (i.e. map of the 

environment or robot's location) is available to the 

robot. SLAM topic has been extensively studied in the 

literature. The implementation of SLAM solution in real 

life situation as well has begun to show successes in 

applications. 

This paper aims to provide an overview of researches 

that has been carried out in implementation of particle 

filter in SLAM problem. Section 2 covers the previous 

works in particle filter SLAM. Section 3 and 4 describe 

the estimation theory of Bayes filter and its 

implementation in this work. Section 5 shows the result 

and analysis that has been obtained using particle filter 

SLAM. The last section concludes the simulation result, 

challenges and future works. 

 

 

2.0  PREVIOUS WORK 
 

There has been significant progress in SLAM algorithm 

applied in indoor [1]–[5] or outdoor environment 

because the topic has gained much attention by 

researchers. However, there are still challenges that 

need to be encountered [6]. The most popular 

estimation approaches in SLAM algorithm in the 

literature are Extended Kalman Filter (EKF) and Particle 

Filter. In EKF SLAM algorithm two main assumptions were 

made; 1) Features or object in the environment could 

be uniquely associated with the sensor measurements 

also known as data association problem and 2) Noise in 

sensor's measurements and robot's trajectory follow 

Gaussian distribution.   

 The advantage of particle filter over EKF is instead of 

model linearization, it uses some samples to get the 

state estimation. Unlike EKF, particle filter can process 

raw data from sensor without the need of landmark or 

feature detection. Particle filter was first applied in SLAM 

problem by Murphy, Doucet, and colleagues [7], [8]. 

Using the particle filter, each particle in the sample 

represents the robot trajectory and a map. This however 

increases memory usage and computation cost.   

Rao-Blackwellized particle filter (RBPF), derived from 

particle filter, was then applied in an algorithm 

proposed by Montemerlo named FastSLAM [9]. 

FastSLAM compensate the amount of memory usage 

by sharing map between particles, but requires 

predetermined landmark in the environment. FastSLAM 

adopted landmark-based map and uses laser range 

scan as robot sensor. The first version of the algorithm; 

FastSLAM 1.0 utilizes EKF to keep landmark based map 

of each particle. The second version; FastSLAM 2.0 uses 

EKF to generate a better proposal distribution of the 

particle filter [10].  

FastSLAM algorithm using occupancy grid map 

representation instead of feature-based map was 

implemented in [11]. It improves the motion model 

adopted and reduced the number of particle for state 

estimation.  

A compact and efficient map representation called 

Distributed Particle (DP) map was developed without 

the need of predetermined landmark in [12]. But the 

drawback was the use of complex tree data structure 

that increased the computation complexity. DP-SLAM 

used laser range scan as well and build an occupancy 

grid map, however it is inaccurate for very small objects. 

This approach was then improved by using adaptive 

proposal distribution instead of fixed proposal 

distribution in particle resampling [13]. Instead of 

resampling at a fix time duration, the resampling is 

determined adaptively. This could prevent particles 

from the degradation or what is called the particle 

depletion problem. The method was validated in large 

scaled indoor and outdoor environment without 

predetermined landmark. Another method in [14] as 

well managed to build an accurate grid map without 

predetermined landmark. However, the focus was on 

closing the loop in the environment especially in nested 

loops. A fast computation speed RBPF based algorithm 

was then developed in [15] by utilizing previously 

computed distribution proposal and a compact form of 

map. 

 

 

3.0  ESTIMATION THEORY: BAYES FILTER IN SLAM 
 

In SLAM problem, as explained previously, map of 

robot's environment needs to be developed based on 

robot's control input and sensors readings. Since both 

data contains uncertainties from noises, it is necessary 

to apply an estimation theory to develop a map from 

this noisy information.  

In robotics, Bayes rule is a powerful tool to perform 

estimation. Bayes rule states that a posterior probability 

of an event 𝐴 given an event 𝐵 is equal to the likelihood 

of 𝐵 given 𝐴, multiplied with α, a normalization factor as 

shown in equation 1.  

 

 𝑃(𝐴|𝐵) = 𝛼𝑃(𝐵|𝐴)𝑃(𝐴) (1) 
 

Bayes rule is applied to SLAM problem where a robot 

will estimate its position in order to obtain a map of its 

environment over time. Thus, to improve the accuracy 

of its map, the robot needs to have a good estimate of 

its position also known as state of the robot pose. This is 

denoted using 𝑥𝑘, which is the state of robot pose at 

time k. To model the uncertainties, the state estimate, 

𝑥𝑘 is maintained in a probability distribution function 

(pdf) instead of a single value. The pdf of state estimate 

can be obtained conditioned on robot's observation, 

𝑧𝑘. A general Bayes rule for this probability is stated in 

equation 2. This term is called a posterior. 

 

 𝑝(𝑥𝑘|𝑧𝑘) = 𝛼𝑝(𝑧𝑘|𝑥𝑘) × 𝑝𝑟𝑖𝑜𝑟 (2) 

 

 𝑝𝑟𝑖𝑜𝑟 = 𝑝𝑥𝑘|𝑥1:𝑘−1, 𝑧1:𝑘−1, 𝑎1:𝑘 (3) 

 

Here, 𝑝𝑟𝑖𝑜𝑟 denotes our best guess or prediction's 

distribution of the state before we integrate robot's 

observation. Initially we include all previous states, 

observations and previous control inputs to obtain the 
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distribution of prior. Equation 3 is a general Bayes rule for 

prior where 𝑎1:𝑘 is control inputs up to time 𝑘. 

A common notation for posterior distribution in 

equation 2 is 𝑏𝑒𝑙(𝑥𝑘), which implies the robot's belief of 

current state's estimate. While 𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑘) is a notation for 

𝑝𝑟𝑖𝑜𝑟 distribution, where the bar indicates that robot's 

belief is still a prediction of the state. Notice that in 

equation 4 the latest observation, 𝑧𝑘 is not yet 

incorporated. 

 

 𝑏𝑒𝑙(𝑥𝑘) = α𝑝(𝑧𝑘|𝑥𝑘) × 𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑘) 
𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑘) = 𝑝(𝑥𝑘|𝑥𝑘−1, 𝑧1:𝑘−1, 𝑎1:𝑘) 

(4) 

 

The Bayesian network diagram in Figure 1 illustrates 

robot's movement from time 𝑘 − 1 to 𝑘 + 1. Each move 

is caused by action control 𝑎 and resulting an 

observation 𝑧. It is shown that the prior, 𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑘) is 

obtained before incorporating current observation, 𝑧𝑘. 

While the posterior, 𝑏𝑒𝑙(𝑥𝑘), is obtained after that. It is 

also noted that current state 𝑥𝑘 only depends on 

previous state, 𝑥𝑘−1, rather than all previous state, 𝑥1:𝑘−1. 

This simplifies the 𝑝𝑟𝑖𝑜𝑟 in 3.  

 

 
Figure 1 Bayesian Network describes robot movement at time 
𝑘 − 1 to 𝑘 + 1. Here, robot's pose denotes by 𝑥 is applied with a 

control, 𝑎 to make the next movement. At each time step, it 

makes an observation, 𝑧 and these observations form a map 

of the environment, 𝑚 

 

 

From the general Bayes rule in equations 2 and 3, we 

want to write 𝑏𝑒𝑙(𝑥𝑘) as a function of previous state 

distribution, 𝑥𝑘−1.   

Referring back to Bayes rule in equation 1, we can 

obtain the distribution of 𝑃(𝐵) by using the Law of Total 

Probability in equation 5. Here, we calculate the 

convolution of pdfs, which sums up all the possibilities of 

𝐴 instances.  

 

 
𝑃(𝐵) = ∑𝑃(𝐵|𝐴𝑖) ×

𝑖=1

𝑃(𝐴𝑖) (5) 

 

By applying equation 5 to the 𝑝𝑟𝑖𝑜𝑟, 𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑘), a discrete 

probability distribution for 𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑘) can be obtained as 

equation 6.  

 

 𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑘) = ∑ 𝑝(𝑥𝑘|𝑥𝑘−1, 𝑧1:𝑘−1, 𝑎1:𝑘)

𝑥𝑘−1

×𝑝(𝑥𝑘−1|𝑧1:𝑘−1, 𝑎1:𝑘) 

(6) 

 

However, since our pdf is a continuous distribution, 

the sum is changed into integral as in equation 7. 

 

 𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑘) = ∫𝑝(𝑥𝑘|𝑥𝑘−1, 𝑧1:𝑘−1, 𝑎1:𝑘)  

× 𝑝(𝑥𝑘−1|𝑧1:𝑘−1, 𝑎1:𝑘)𝑑𝑥𝑘−1 
(7) 

 

To simplify equation 7, again refer to the Bayesian 

network in Figure 1. This diagram illustrates that if we 

know the previous state of robot pose, 𝑥𝑘−1 and current 

control 𝑎𝑘, we do not need all previous observation, 

𝑧1:𝑘−1 and all previous control, 𝑎1:𝑘−1, to determine the 

distribution of current state 𝑥𝑘. Thus, the term can be 

simplified as equation 8. 

 

 𝑝(𝑥𝑘|𝑥𝑘−1, 𝑧1:𝑘−1, 𝑎1:𝑘) = 𝑝(𝑥𝑘|𝑥𝑘−1,𝑎𝑘) (8) 

 

For the second term in 7, using the same diagram, it is 

observed that previous state, 𝑥𝑘−1 does not depend on 

current control 𝑎𝑘. So this term can be taken out which 

leave the second term as follows: 

 

 𝑝(𝑥𝑘−1|𝑧1:𝑘−1, 𝑎1:𝑘)

= 𝑝(𝑥𝑘−1|𝑧1:𝑘−1,𝑎1:𝑘−1) 
(9) 

 

Now, equation 9 can be rewritten as the belief of 

state estimate at time 𝑘 − 1, 𝑏𝑒𝑙(𝑥𝑘−1) 
 

 𝑝(𝑥𝑘−1|𝑧1:𝑘−1,𝑎1:𝑘−1) = 𝑏𝑒𝑙(𝑥𝑘−1) (10) 

 

If we rewrite term 8 and 10 into the general Bayes rule 

in 2 and 3, we obtain the algorithm of Bayes filter in 

recursive manner as written in Algorithm 1. 

 

Algorithm 1 Bayes Filter Algorithm 

Require: 𝑏𝑒𝑙(𝑥𝑡−1), 𝑧𝑡 , 𝑎𝑡 

𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑡) = ∫ 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑎𝑡) × 𝑏𝑒𝑙(𝑥𝑡−1)𝑑𝑥𝑡−1   

{Prediction Step} 

𝑏𝑒𝑙(𝑥𝑡) = 𝛼𝑝(𝑧𝑡|𝑥𝑡) × 𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑡){Correction Step} 

return 𝑏𝑒𝑙(𝑥𝑡) 

 

 

Bayes filter is a powerful tool in robot estimation where 

a robot's state is estimated over time using previous 

state. As stated in Algorithm 1, bel̅̅ ̅̅ (xk) is the prediction 

step, where we predict what is the current state base 

on previous state estimate and current control input. 

While bel(xk) is the correction step, where we 

incorporate the latest observation into the estimate of 

current state.  

In SLAM problem, Bayes filter requires a motion model 

to obtain the distribution 𝑝(𝑥𝑘|𝑥𝑘−1,𝑎𝑘) and an 

observation model that describes the robot's 
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observation and obtain the distribution 𝑝(𝑧𝑘|𝑥𝑘). 
However, it is known that to solve Bayes filter in closed 

form, the motion model and observation model has to 

be a linear system and noise in the system should follow 

Gaussian distribution. But if the motion model and 

observation model are non-linear systems, and the 

noise is not Gaussian, it will be harder to solve the Bayes 

filter. 

In particle filter, instead of using probability 

distribution, we use approximation method to describe 

a distribution. Section 4 will introduce particle filter 

algorithm in SLAM problem.  

 

 

4.0  PARTICLE FILTER 
 

Particle filter is a method where a set of particles is used 

to represent robot's belief, 𝑏𝑒𝑙(𝑥𝑘) instead of using 

parametric values (i.e. mean, μ and variance, 𝜎2) to 

describe 𝑏𝑒𝑙(𝑥𝑘) distribution such as in Kalman Filter and 

Extended Kalman Filter. Figure 2 shows a set of particles 

in circles represent the belief of a robot pose, 𝑥𝑘.  

In particle filter, each particle contains a hypothesis 

of robot pose that assume its position is correct. Then, 

by using this assumption, every particle will maintain its 

own map. Figure 2 illustrates that a map plotted by the 

particles will be different. Some particles will have better 

accuracy than the others.  

 

 
Figure 2 A set of particles represent a belief of robot pose 

marked by the circle. Each particle has its own map whereas 

some will be more accurate than others 

 

 

There are several steps to implement particle filter 

algorithm. Below are the steps describing the algorithm: 

 Draw a distribution of even weighted particles. 

 Update robot's state in each particle with control 

command.   

 Get observation data.  

 Update the robot's state estimate by incorporating 

robot's observation. 

 Calculate the importance weight of each particle 

using the difference between actual observation 

and predicted observation. 

 Resample particles proportional to their weights. 

These steps are put into the prediction step and 

correction step of the Bayes filter in order to implement 

the particle filter. 

 

4.1  Prediction Step 

 

The goal is to solve Bayesian filter using particle filter 

algorithm. In the prediction step, a set of particles is 

drawn from a distribution describing the robot pose, 

𝑥𝑘  ~ 𝑝(𝑥𝑘|𝑥𝑘−1,𝑎𝑘). To do this, we need a motion model 

to describe robot movement at every time step.  

A motion model is a probabilistic way to estimate the 

robots state by using previous state and integrating the 

control and error a it is noted that to have a perfect 

reading over the robot motion and sensors 

measurements is naive and inadequate approach 

[16].  

There are two types of motion model that can be 

adopted; Odometry-based model and velocity-based 

model. For this research, odometry-based model is used 

by utilizing the wheel encoders in the robot system. A 

motion model from section 5.2.4 of [17] is adapted.  

Equation 11 describes the transition from previous 

state, 𝑥, 𝑦, 𝜃 to current state, 𝑥′, 𝑦′, 𝜃′ as a function of 

𝑔(𝑥, 𝑦, 𝜃, 𝑙, 𝑟). Here, 𝑙 and 𝑟 are the traveled distance by 

left wheel and second wheel respectively, while 𝑏 is the 

distance between two wheels (see Figure 3). 
 

 
Figure 3 Robot moves from position [𝑥, 𝑦, 𝜃] to [𝑥′, 𝑦′, 𝜃′]. ∆𝜃 is the 

change of robot orientation where the calculation is ∆𝜃 =
𝑟−1

𝑏
 

 

 

[
𝑥′
𝑦′

𝜃′

] = [
𝑥
𝑦
𝜃
] +

[
 
 
 
 
 
𝑟 + 𝑙

2
cos (𝜃 +

𝑟 − 𝑙

2𝑏
)

𝑟 + 𝑙

2
sin (𝜃 +

𝑟 − 𝑙

2𝑏
)

𝑟 − 𝑙

𝑏 ]
 
 
 
 
 

 (11) 

 

Due to the noise from the wheel encoders, we need 

to model the resulting uncertainty. Thus, to estimate the 

robot state for every robot transition 𝑙 and 𝑟 are 

sampled from normal distribution 𝒩(𝑙𝑡, 𝜎𝑙𝑡
2) and 

𝒩(𝑟𝑡, 𝜎𝑟𝑡

2). 𝜎𝑙𝑡
2 and 𝜎𝑟𝑡

2  are the variances from noise of the 

wheel encoder. These values can be obtain from 

equation 12 where 𝛼1 and 𝛼2 are translation error and 
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rotation error from the wheel encoder respectively. The 

overall sampling step is described in algorithm 2. 

 

 𝜎𝑙𝑡
2 = (𝛼1 ∙ 𝑙)2 + (𝛼2 ∙ (𝑙 − 𝑟))

2
 

𝜎𝑟𝑡

2 = (𝛼1 ∙ 𝑟)2 + (𝛼2 ∙ (𝑙 − 𝑟))
2
 

(12) 

 

Algorithm 2 Sampling in Particle Filter Algorithm 

For all 𝑖 = 1 𝑡𝑜 𝑀 do 

𝑠𝑎𝑚𝑝𝑙𝑒 𝑙𝑡
′~𝒩(𝑙𝑡, 𝜎𝑙𝑡

2)  

𝑠𝑎𝑚𝑝𝑙𝑒 𝑟𝑡
′~𝒩(𝑟𝑡, 𝜎𝑟𝑡

2) 

𝑥𝑡
𝑖 = 𝑔 (𝑥𝑡−1

𝑖 , [
𝑙𝑡
′

𝑟𝑡
′]) 

end for 

return {𝑥𝑡
1, 𝑥𝑡

2, … . . , 𝑥𝑡
𝑀} 

 

 

4.2  Correction Step 

 

In the correction step, we incorporated robot's 

observation. In this work, occupancy grid map 

algorithm and map matching method are 

implemented. In occupancy grid map, the 

environment is made of number of grids with equal size. 

Each grid is called a cell. The probability of each cell is 

occupied is computed and represented using gray 

value. For this reason, it is also named as occupancy 

grid map in the literature.  The grid-based map 

algorithm was first developed by Moravec and Elfes in 

the 80's [18]. The algorithm uses inverse sensor model, 

which is initially developed for noisy sonar sensor. The 

occupancy value of each cell depends on the 

measured distance, where the coincident cells are 

considered occupied (i.e. black cells) and the cells in 

between are considered free (i.e. white cells) as 

illustrated in Figure 4. 

 

 
Figure 4 Cells that reside in the range of sensor measurements 

are marked as occupied (i.e. black cells) and the cells in 

between are marked as free (i.e. white cells) [19] 

 

 

Equation 13 calculates the occupancy of each cell, 

𝑚𝑖, as a sum of the log odd value of the cell given 

current observation, 𝑧𝑘, and current robot pose, 𝑥𝑘, and 

its recursive term. The last term is the initial value of the 

cell. The computation is efficient because the equation 

is a summation. 

 

 𝑙(𝑚𝑖|𝑧1:𝑘 , 𝑥1:𝑘) = 
𝑙(𝑚𝑖|𝑧𝑘 , 𝑥𝑘) + 𝑙(𝑚𝑖|𝑧1:𝑘−1, 𝑥1:𝑘−1)

− 𝑙(𝑚𝑖) 
(13) 

 

In map matching method, there is no need for 

probability distribution. However a local map that 

contains current measurement is compared with a 

global map that has past measurements. This requires 

each particle maintains a local map and a global map.  

The weight of particle 𝑖 at time 𝑘 for each particle is 

calculated using a matching function in equation 14 

adapted from [20]. Where 𝑚𝑎𝑡𝑐ℎ is a number obtain 

from comparing local map and global map of a 

particle 𝑖. A larger match value indicates that the 

particular particle carries a more accurate map. 𝑓 is a 

parameter that reflect the distribution of the particles' 

weight. In this experiment we set 𝑓 = 100. 

 

 
𝑤𝑘

𝑖 = 𝑤𝑘−1
𝑖 ∙ 𝑒

𝑚𝑎𝑡𝑐ℎ𝑖

𝑓  (14) 

 

After the particles are assigned with weights, the 

particles will be resampled proportionally to their 

weights. In this work, a resampling method named low-

variance resampling is implemented. This method is 

adapted from Probabilistic Robotics by S. Thrun [21]. The 

next section presents the results that were obtained by 

implementing the particle filter algorithm described in 

this section. 

 

 

5.0  RESULTS AND ANALYSIS 
 

We implemented particle filter algorithm described in 

Section 4 in a simulation environment as shown in Figure 

5, which consists of four objects. The mobile robot used, 

named, e-puck is a differential drive mobile robot with 

two motors. The e-puck robot is equipped with eight 

infrared proximity sensors surrounding the robot's edge.  

Three set of particles were implemented; 100 

particles, 300 particles and 500 particles. The effect of 

number of particles to the resulting map is later 

compared. The Root Mean Squared Error (RMSE) of 

each set of particles is calculated using equation 15. 

Here, 𝑁 is the number of particles used. Since we are 

using robot simulator, the ground truth of robot's state 

can be obtain from the robot simulator, which is 

denoted by 𝑥𝑘. The estimated robot's state (i.e. from the 

particle filter algorithm) is denoted by �̂�𝑘
𝑖  where 𝑖 

represents the 𝑖th particle. 

 

 

 
Figure 5 A rectangular environment with four objects is used for 

this research. The mobile robot at the center is e-puck robot 

with 8 proximity sensors for robot's observation. The particle 

filter SLAM algorithm is implemented as the robot's controller 
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Figure 6 shows the result of the maps obtained from 

the best particle, which is particle with the highest 

weight. The leftmost column is map obtained using 

perfect localization (i.e. the ground truth data from the 

robot simulator), and the subsequent columns are map 

obtained from the best particle of the 100 particles, 300 

particles and 500 particles respectively. The green dots 

represent the particles' distribution. We can observed 

that the map obtained by using 500 particles are better 

than the map obtained by using 100 particles and 300 

particles.  

To reflect the performance of each set of particles, 

the RMSE values at each time step is observed and 

plotted in RMSE graph shown in Figure 7. The RMSE of 

100, 300 and 500 particles are plotted in red, green and 

blue line respectively. It can be seen that the RMSE 

keep on increasing due to accumulated error from 

robot’s odometry. However, at 𝑥 state (i.e. top row) the 

set of 500 particles manage to maintain the RMSE at 0.3 

compared to the set of 100 particles. Although the 

RMSE graph indicates a small difference, it shows that 

the set of 500 particles can approximate state 

distribution better compared to the set of 100 particles. 

The 𝑦 state however shows an opposite result. This might 

be due to translation error, 𝛼1, and rotation error, 𝛼2, 

need to be adjusted accordingly.  

Although by using 500 particles, we can approximate 

state distribution better, the drawback is the 

computation taken was much longer since we have to 

compute the prediction and correction step for each 

particle.  

 

 

6.0  CONCLUSION AND FUTURE WORKS 
 

From the results shown in Section 4, the number of 

particles does affect the resulting map overtime. In this 

work, the increasing uncertainty caused by 

accumulation error from noise in wheel encoder and 

sensor measurements in the robotic system is modeled 

using set of particles. The drawback of particle filter 

algorithm is computation cost of the algorithm 

increases with the number of particles used.  

 

 

 

 

 
Figure 6 The maps of the rectangular environment obtained at time step 400 (top row) and time step 600 (bottom row). The leftmost 

is the ground truth data from the robot simulator, and the subsequent columns are map obtained from the best particle of the 100 

particles, 300 particles and 500 particles respectively. The green dots represent the particles' distribution 
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Figure 7 The RMSE graph obtained, zooming in at time step, 𝑡 <
800. The red, green and blue lines represent the RMSE of 100 

particles, 300 particles and 500 particles respectively. The top 

graph is for robot state, 𝑥 position and the bottom graph for 𝑦 

position 

 

 

To learn a new map efficiently, the major challenge 

is to reduce the number of particle used. Another issue 

is particle depletion problem where the number of 

unique particles reduces overtime. Thus, the diversity of 

particles decreases. In this work, the effect of correction 

step is not clearly visible yet. However, the 

implementation of particle filter SLAM using a simple 

differential drive mobile robot, e-puck is accomplished, 

despite of the difficult SLAM problem dealt with. 

Improvement will be done to the particle filter SLAM 

algorithm in order to obtain a more accurate 

occupancy grid map by utilizing a simple differential 

drive mobile robot with low-resolution sensor such as the 

e-puck mobile robot. 
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