

77:20 (2015) 91–97 | www.jurnalteknologi.utm.my | eISSN 2180–3722 |

Jurnal

Teknologi

Full Paper

PARTICLE FILTER IN SIMULTANEOUS LOCALIZATION AND

MAPPING (SLAM) USING DIFFERENTIAL DRIVE MOBILE

ROBOT

Norhidayah Mohamad Yatima,b, Norlida Buniyamina

aFaculty of Engineering, Universiti Teknologi MARA (UiTM), Shah

Alam, Selangor, Malaysia
bFaculty Electronics and Computer Engineering, Universiti Teknikal

Malaysia Melaka (UTeM), Melaka, Malaysia

Article history

Received

15 May 2015

Received in revised form

1 July 2015

Accepted

11 August 2015

*Corresponding author

norhidayahm@

utem.edu.my

Graphical abstract

Abstract

Simultaneous Localization and Mapping (SLAM) problem is a well-known problem in

robotics, where a robot has to localize itself and map its environment simultaneously.

Particle filter (PF) is one of the most adapted estimation algorithms for SLAM apart from

Kalman filter (KF) and Extended Kalman Filter (EKF). In this work, particle filter algorithm has

been successfully implemented using a simple differential drive mobile robot called e-

puck. The performance of the algorithm implemented is analyzed via varied number of

particles. From simulation, accuracy of the resulting maps differed according to the

number of particles used. The Root Mean Squared Error (RMSE) of a larger number of

particles is smaller compared to a lower number of particles after a period of time.

Keywords: SLAM, mapping; particle filter, e-puck

© 2015 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

Many notable researches have been carried out in

attempts to solve both localization and mapping

problem in unknown environment of robotic system. This

problem is famously known as the Simultaneous

Localization and Mapping (SLAM) problem. A SLAM

algorithm is about exploring the environment to build its

map and determining the location of the robot in the

map. There are many application of SLAM solution, such

as in forest harvesting, minimal invasive surgery and

autonomous vehicles.

Two obvious fundamental tasks consist in SLAM are

localization and mapping. Localization means to

determine robot's position and orientation while

mapping is to map the environment.

The essential objective of solving SLAM is for a robot

to map an unknown environment while exploring the

environment. The map obtained can be used for

countless possibilities.

In an outdoor environment a robot could obtain its

current position using Global Positioning System (GPS)

signal. However, GPS has its own limitation where signals

can be shadowed by buildings, terrains or even when it

is raining. This condition is called GPS blind area. Thus,

there are circumstances where GPS signal might not

allow the robot to locate itself in the environment.

92 Norhidayah Mohamad Yatim & Norlida Buniyamin / Jurnal Teknologi (Sciences & Engineering) 77:20 (2015) 91–97

Solving the SLAM problem might not be necessary if

either one of the two information (i.e. map of the

environment or robot's location) is available to the

robot. SLAM topic has been extensively studied in the

literature. The implementation of SLAM solution in real

life situation as well has begun to show successes in

applications.

This paper aims to provide an overview of researches

that has been carried out in implementation of particle

filter in SLAM problem. Section 2 covers the previous

works in particle filter SLAM. Section 3 and 4 describe

the estimation theory of Bayes filter and its

implementation in this work. Section 5 shows the result

and analysis that has been obtained using particle filter

SLAM. The last section concludes the simulation result,

challenges and future works.

2.0 PREVIOUS WORK

There has been significant progress in SLAM algorithm

applied in indoor [1]–[5] or outdoor environment

because the topic has gained much attention by

researchers. However, there are still challenges that

need to be encountered [6]. The most popular

estimation approaches in SLAM algorithm in the

literature are Extended Kalman Filter (EKF) and Particle

Filter. In EKF SLAM algorithm two main assumptions were

made; 1) Features or object in the environment could

be uniquely associated with the sensor measurements

also known as data association problem and 2) Noise in

sensor's measurements and robot's trajectory follow

Gaussian distribution.

 The advantage of particle filter over EKF is instead of

model linearization, it uses some samples to get the

state estimation. Unlike EKF, particle filter can process

raw data from sensor without the need of landmark or

feature detection. Particle filter was first applied in SLAM

problem by Murphy, Doucet, and colleagues [7], [8].

Using the particle filter, each particle in the sample

represents the robot trajectory and a map. This however

increases memory usage and computation cost.

Rao-Blackwellized particle filter (RBPF), derived from

particle filter, was then applied in an algorithm

proposed by Montemerlo named FastSLAM [9].

FastSLAM compensate the amount of memory usage

by sharing map between particles, but requires

predetermined landmark in the environment. FastSLAM

adopted landmark-based map and uses laser range

scan as robot sensor. The first version of the algorithm;

FastSLAM 1.0 utilizes EKF to keep landmark based map

of each particle. The second version; FastSLAM 2.0 uses

EKF to generate a better proposal distribution of the

particle filter [10].

FastSLAM algorithm using occupancy grid map

representation instead of feature-based map was

implemented in [11]. It improves the motion model

adopted and reduced the number of particle for state

estimation.

A compact and efficient map representation called

Distributed Particle (DP) map was developed without

the need of predetermined landmark in [12]. But the

drawback was the use of complex tree data structure

that increased the computation complexity. DP-SLAM

used laser range scan as well and build an occupancy

grid map, however it is inaccurate for very small objects.

This approach was then improved by using adaptive

proposal distribution instead of fixed proposal

distribution in particle resampling [13]. Instead of

resampling at a fix time duration, the resampling is

determined adaptively. This could prevent particles

from the degradation or what is called the particle

depletion problem. The method was validated in large

scaled indoor and outdoor environment without

predetermined landmark. Another method in [14] as

well managed to build an accurate grid map without

predetermined landmark. However, the focus was on

closing the loop in the environment especially in nested

loops. A fast computation speed RBPF based algorithm

was then developed in [15] by utilizing previously

computed distribution proposal and a compact form of

map.

3.0 ESTIMATION THEORY: BAYES FILTER IN SLAM

In SLAM problem, as explained previously, map of

robot's environment needs to be developed based on

robot's control input and sensors readings. Since both

data contains uncertainties from noises, it is necessary

to apply an estimation theory to develop a map from

this noisy information.

In robotics, Bayes rule is a powerful tool to perform

estimation. Bayes rule states that a posterior probability

of an event 𝐴 given an event 𝐵 is equal to the likelihood

of 𝐵 given 𝐴, multiplied with α, a normalization factor as

shown in equation 1.

 𝑃(𝐴|𝐵) = 𝛼𝑃(𝐵|𝐴)𝑃(𝐴) (1)

Bayes rule is applied to SLAM problem where a robot

will estimate its position in order to obtain a map of its

environment over time. Thus, to improve the accuracy

of its map, the robot needs to have a good estimate of

its position also known as state of the robot pose. This is

denoted using 𝑥𝑘, which is the state of robot pose at

time k. To model the uncertainties, the state estimate,

𝑥𝑘 is maintained in a probability distribution function

(pdf) instead of a single value. The pdf of state estimate

can be obtained conditioned on robot's observation,

𝑧𝑘. A general Bayes rule for this probability is stated in

equation 2. This term is called a posterior.

 𝑝(𝑥𝑘|𝑧𝑘) = 𝛼𝑝(𝑧𝑘|𝑥𝑘) × 𝑝𝑟𝑖𝑜𝑟 (2)

 𝑝𝑟𝑖𝑜𝑟 = 𝑝𝑥𝑘|𝑥1:𝑘−1, 𝑧1:𝑘−1, 𝑎1:𝑘 (3)

Here, 𝑝𝑟𝑖𝑜𝑟 denotes our best guess or prediction's

distribution of the state before we integrate robot's

observation. Initially we include all previous states,

observations and previous control inputs to obtain the

93 Norhidayah Mohamad Yatim & Norlida Buniyamin / Jurnal Teknologi (Sciences & Engineering) 77:20 (2015) 91–97

distribution of prior. Equation 3 is a general Bayes rule for

prior where 𝑎1:𝑘 is control inputs up to time 𝑘.

A common notation for posterior distribution in

equation 2 is 𝑏𝑒𝑙(𝑥𝑘), which implies the robot's belief of

current state's estimate. While 𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑘) is a notation for

𝑝𝑟𝑖𝑜𝑟 distribution, where the bar indicates that robot's

belief is still a prediction of the state. Notice that in

equation 4 the latest observation, 𝑧𝑘 is not yet

incorporated.

 𝑏𝑒𝑙(𝑥𝑘) = α𝑝(𝑧𝑘|𝑥𝑘) × 𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑘)
𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑘) = 𝑝(𝑥𝑘|𝑥𝑘−1, 𝑧1:𝑘−1, 𝑎1:𝑘)

(4)

The Bayesian network diagram in Figure 1 illustrates

robot's movement from time 𝑘 − 1 to 𝑘 + 1. Each move

is caused by action control 𝑎 and resulting an

observation 𝑧. It is shown that the prior, 𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑘) is

obtained before incorporating current observation, 𝑧𝑘.

While the posterior, 𝑏𝑒𝑙(𝑥𝑘), is obtained after that. It is

also noted that current state 𝑥𝑘 only depends on

previous state, 𝑥𝑘−1, rather than all previous state, 𝑥1:𝑘−1.

This simplifies the 𝑝𝑟𝑖𝑜𝑟 in 3.

Figure 1 Bayesian Network describes robot movement at time
𝑘 − 1 to 𝑘 + 1. Here, robot's pose denotes by 𝑥 is applied with a

control, 𝑎 to make the next movement. At each time step, it

makes an observation, 𝑧 and these observations form a map

of the environment, 𝑚

From the general Bayes rule in equations 2 and 3, we

want to write 𝑏𝑒𝑙(𝑥𝑘) as a function of previous state

distribution, 𝑥𝑘−1.

Referring back to Bayes rule in equation 1, we can

obtain the distribution of 𝑃(𝐵) by using the Law of Total

Probability in equation 5. Here, we calculate the

convolution of pdfs, which sums up all the possibilities of

𝐴 instances.

𝑃(𝐵) = ∑𝑃(𝐵|𝐴𝑖) ×

𝑖=1

𝑃(𝐴𝑖) (5)

By applying equation 5 to the 𝑝𝑟𝑖𝑜𝑟, 𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑘), a discrete

probability distribution for 𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑘) can be obtained as

equation 6.

 𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑘) = ∑ 𝑝(𝑥𝑘|𝑥𝑘−1, 𝑧1:𝑘−1, 𝑎1:𝑘)

𝑥𝑘−1

×𝑝(𝑥𝑘−1|𝑧1:𝑘−1, 𝑎1:𝑘)

(6)

However, since our pdf is a continuous distribution,

the sum is changed into integral as in equation 7.

 𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑘) = ∫𝑝(𝑥𝑘|𝑥𝑘−1, 𝑧1:𝑘−1, 𝑎1:𝑘)

× 𝑝(𝑥𝑘−1|𝑧1:𝑘−1, 𝑎1:𝑘)𝑑𝑥𝑘−1
(7)

To simplify equation 7, again refer to the Bayesian

network in Figure 1. This diagram illustrates that if we

know the previous state of robot pose, 𝑥𝑘−1 and current

control 𝑎𝑘, we do not need all previous observation,

𝑧1:𝑘−1 and all previous control, 𝑎1:𝑘−1, to determine the

distribution of current state 𝑥𝑘. Thus, the term can be

simplified as equation 8.

 𝑝(𝑥𝑘|𝑥𝑘−1, 𝑧1:𝑘−1, 𝑎1:𝑘) = 𝑝(𝑥𝑘|𝑥𝑘−1,𝑎𝑘) (8)

For the second term in 7, using the same diagram, it is

observed that previous state, 𝑥𝑘−1 does not depend on

current control 𝑎𝑘. So this term can be taken out which

leave the second term as follows:

 𝑝(𝑥𝑘−1|𝑧1:𝑘−1, 𝑎1:𝑘)

= 𝑝(𝑥𝑘−1|𝑧1:𝑘−1,𝑎1:𝑘−1)
(9)

Now, equation 9 can be rewritten as the belief of

state estimate at time 𝑘 − 1, 𝑏𝑒𝑙(𝑥𝑘−1)

 𝑝(𝑥𝑘−1|𝑧1:𝑘−1,𝑎1:𝑘−1) = 𝑏𝑒𝑙(𝑥𝑘−1) (10)

If we rewrite term 8 and 10 into the general Bayes rule

in 2 and 3, we obtain the algorithm of Bayes filter in

recursive manner as written in Algorithm 1.

Algorithm 1 Bayes Filter Algorithm

Require: 𝑏𝑒𝑙(𝑥𝑡−1), 𝑧𝑡 , 𝑎𝑡

𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑡) = ∫ 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑎𝑡) × 𝑏𝑒𝑙(𝑥𝑡−1)𝑑𝑥𝑡−1

{Prediction Step}

𝑏𝑒𝑙(𝑥𝑡) = 𝛼𝑝(𝑧𝑡|𝑥𝑡) × 𝑏𝑒𝑙̅̅ ̅̅ (𝑥𝑡){Correction Step}

return 𝑏𝑒𝑙(𝑥𝑡)

Bayes filter is a powerful tool in robot estimation where

a robot's state is estimated over time using previous

state. As stated in Algorithm 1, bel̅̅ ̅̅ (xk) is the prediction

step, where we predict what is the current state base

on previous state estimate and current control input.

While bel(xk) is the correction step, where we

incorporate the latest observation into the estimate of

current state.

In SLAM problem, Bayes filter requires a motion model

to obtain the distribution 𝑝(𝑥𝑘|𝑥𝑘−1,𝑎𝑘) and an

observation model that describes the robot's

94 Norhidayah Mohamad Yatim & Norlida Buniyamin / Jurnal Teknologi (Sciences & Engineering) 77:20 (2015) 91–97

observation and obtain the distribution 𝑝(𝑧𝑘|𝑥𝑘).
However, it is known that to solve Bayes filter in closed

form, the motion model and observation model has to

be a linear system and noise in the system should follow

Gaussian distribution. But if the motion model and

observation model are non-linear systems, and the

noise is not Gaussian, it will be harder to solve the Bayes

filter.

In particle filter, instead of using probability

distribution, we use approximation method to describe

a distribution. Section 4 will introduce particle filter

algorithm in SLAM problem.

4.0 PARTICLE FILTER

Particle filter is a method where a set of particles is used

to represent robot's belief, 𝑏𝑒𝑙(𝑥𝑘) instead of using

parametric values (i.e. mean, μ and variance, 𝜎2) to

describe 𝑏𝑒𝑙(𝑥𝑘) distribution such as in Kalman Filter and

Extended Kalman Filter. Figure 2 shows a set of particles

in circles represent the belief of a robot pose, 𝑥𝑘.

In particle filter, each particle contains a hypothesis

of robot pose that assume its position is correct. Then,

by using this assumption, every particle will maintain its

own map. Figure 2 illustrates that a map plotted by the

particles will be different. Some particles will have better

accuracy than the others.

Figure 2 A set of particles represent a belief of robot pose

marked by the circle. Each particle has its own map whereas

some will be more accurate than others

There are several steps to implement particle filter

algorithm. Below are the steps describing the algorithm:

 Draw a distribution of even weighted particles.

 Update robot's state in each particle with control

command.

 Get observation data.

 Update the robot's state estimate by incorporating

robot's observation.

 Calculate the importance weight of each particle

using the difference between actual observation

and predicted observation.

 Resample particles proportional to their weights.

These steps are put into the prediction step and

correction step of the Bayes filter in order to implement

the particle filter.

4.1 Prediction Step

The goal is to solve Bayesian filter using particle filter

algorithm. In the prediction step, a set of particles is

drawn from a distribution describing the robot pose,

𝑥𝑘 ~ 𝑝(𝑥𝑘|𝑥𝑘−1,𝑎𝑘). To do this, we need a motion model

to describe robot movement at every time step.

A motion model is a probabilistic way to estimate the

robots state by using previous state and integrating the

control and error a it is noted that to have a perfect

reading over the robot motion and sensors

measurements is naive and inadequate approach

[16].

There are two types of motion model that can be

adopted; Odometry-based model and velocity-based

model. For this research, odometry-based model is used

by utilizing the wheel encoders in the robot system. A

motion model from section 5.2.4 of [17] is adapted.

Equation 11 describes the transition from previous

state, 𝑥, 𝑦, 𝜃 to current state, 𝑥′, 𝑦′, 𝜃′ as a function of

𝑔(𝑥, 𝑦, 𝜃, 𝑙, 𝑟). Here, 𝑙 and 𝑟 are the traveled distance by

left wheel and second wheel respectively, while 𝑏 is the

distance between two wheels (see Figure 3).

Figure 3 Robot moves from position [𝑥, 𝑦, 𝜃] to [𝑥′, 𝑦′, 𝜃′]. ∆𝜃 is the

change of robot orientation where the calculation is ∆𝜃 =
𝑟−1

𝑏

[
𝑥′
𝑦′

𝜃′

] = [
𝑥
𝑦
𝜃
] +

[

𝑟 + 𝑙

2
cos (𝜃 +

𝑟 − 𝑙

2𝑏
)

𝑟 + 𝑙

2
sin (𝜃 +

𝑟 − 𝑙

2𝑏
)

𝑟 − 𝑙

𝑏]

 (11)

Due to the noise from the wheel encoders, we need

to model the resulting uncertainty. Thus, to estimate the

robot state for every robot transition 𝑙 and 𝑟 are

sampled from normal distribution 𝒩(𝑙𝑡, 𝜎𝑙𝑡
2) and

𝒩(𝑟𝑡, 𝜎𝑟𝑡

2). 𝜎𝑙𝑡
2 and 𝜎𝑟𝑡

2 are the variances from noise of the

wheel encoder. These values can be obtain from

equation 12 where 𝛼1 and 𝛼2 are translation error and

95 Norhidayah Mohamad Yatim & Norlida Buniyamin / Jurnal Teknologi (Sciences & Engineering) 77:20 (2015) 91–97

rotation error from the wheel encoder respectively. The

overall sampling step is described in algorithm 2.

 𝜎𝑙𝑡
2 = (𝛼1 ∙ 𝑙)2 + (𝛼2 ∙ (𝑙 − 𝑟))

2

𝜎𝑟𝑡

2 = (𝛼1 ∙ 𝑟)2 + (𝛼2 ∙ (𝑙 − 𝑟))
2

(12)

Algorithm 2 Sampling in Particle Filter Algorithm

For all 𝑖 = 1 𝑡𝑜 𝑀 do

𝑠𝑎𝑚𝑝𝑙𝑒 𝑙𝑡
′~𝒩(𝑙𝑡, 𝜎𝑙𝑡

2)

𝑠𝑎𝑚𝑝𝑙𝑒 𝑟𝑡
′~𝒩(𝑟𝑡, 𝜎𝑟𝑡

2)

𝑥𝑡
𝑖 = 𝑔 (𝑥𝑡−1

𝑖 , [
𝑙𝑡
′

𝑟𝑡
′])

end for

return {𝑥𝑡
1, 𝑥𝑡

2, … . . , 𝑥𝑡
𝑀}

4.2 Correction Step

In the correction step, we incorporated robot's

observation. In this work, occupancy grid map

algorithm and map matching method are

implemented. In occupancy grid map, the

environment is made of number of grids with equal size.

Each grid is called a cell. The probability of each cell is

occupied is computed and represented using gray

value. For this reason, it is also named as occupancy

grid map in the literature. The grid-based map

algorithm was first developed by Moravec and Elfes in

the 80's [18]. The algorithm uses inverse sensor model,

which is initially developed for noisy sonar sensor. The

occupancy value of each cell depends on the

measured distance, where the coincident cells are

considered occupied (i.e. black cells) and the cells in

between are considered free (i.e. white cells) as

illustrated in Figure 4.

Figure 4 Cells that reside in the range of sensor measurements

are marked as occupied (i.e. black cells) and the cells in

between are marked as free (i.e. white cells) [19]

Equation 13 calculates the occupancy of each cell,

𝑚𝑖, as a sum of the log odd value of the cell given

current observation, 𝑧𝑘, and current robot pose, 𝑥𝑘, and

its recursive term. The last term is the initial value of the

cell. The computation is efficient because the equation

is a summation.

 𝑙(𝑚𝑖|𝑧1:𝑘 , 𝑥1:𝑘) =
𝑙(𝑚𝑖|𝑧𝑘 , 𝑥𝑘) + 𝑙(𝑚𝑖|𝑧1:𝑘−1, 𝑥1:𝑘−1)

− 𝑙(𝑚𝑖)
(13)

In map matching method, there is no need for

probability distribution. However a local map that

contains current measurement is compared with a

global map that has past measurements. This requires

each particle maintains a local map and a global map.

The weight of particle 𝑖 at time 𝑘 for each particle is

calculated using a matching function in equation 14

adapted from [20]. Where 𝑚𝑎𝑡𝑐ℎ is a number obtain

from comparing local map and global map of a

particle 𝑖. A larger match value indicates that the

particular particle carries a more accurate map. 𝑓 is a

parameter that reflect the distribution of the particles'

weight. In this experiment we set 𝑓 = 100.

𝑤𝑘

𝑖 = 𝑤𝑘−1
𝑖 ∙ 𝑒

𝑚𝑎𝑡𝑐ℎ𝑖

𝑓 (14)

After the particles are assigned with weights, the

particles will be resampled proportionally to their

weights. In this work, a resampling method named low-

variance resampling is implemented. This method is

adapted from Probabilistic Robotics by S. Thrun [21]. The

next section presents the results that were obtained by

implementing the particle filter algorithm described in

this section.

5.0 RESULTS AND ANALYSIS

We implemented particle filter algorithm described in

Section 4 in a simulation environment as shown in Figure

5, which consists of four objects. The mobile robot used,

named, e-puck is a differential drive mobile robot with

two motors. The e-puck robot is equipped with eight

infrared proximity sensors surrounding the robot's edge.

Three set of particles were implemented; 100

particles, 300 particles and 500 particles. The effect of

number of particles to the resulting map is later

compared. The Root Mean Squared Error (RMSE) of

each set of particles is calculated using equation 15.

Here, 𝑁 is the number of particles used. Since we are

using robot simulator, the ground truth of robot's state

can be obtain from the robot simulator, which is

denoted by 𝑥𝑘. The estimated robot's state (i.e. from the

particle filter algorithm) is denoted by �̂�𝑘
𝑖 where 𝑖

represents the 𝑖th particle.

Figure 5 A rectangular environment with four objects is used for

this research. The mobile robot at the center is e-puck robot

with 8 proximity sensors for robot's observation. The particle

filter SLAM algorithm is implemented as the robot's controller

96 Norhidayah Mohamad Yatim & Norlida Buniyamin / Jurnal Teknologi (Sciences & Engineering) 77:20 (2015) 91–97

𝑅𝑀𝑆𝐸(𝑥𝑘) = [
1

𝑁
∑(𝑥𝑘 − �̂�𝑘

𝑖)
2

𝑁

𝑖=1

]

1
2

 (15)

Figure 6 shows the result of the maps obtained from

the best particle, which is particle with the highest

weight. The leftmost column is map obtained using

perfect localization (i.e. the ground truth data from the

robot simulator), and the subsequent columns are map

obtained from the best particle of the 100 particles, 300

particles and 500 particles respectively. The green dots

represent the particles' distribution. We can observed

that the map obtained by using 500 particles are better

than the map obtained by using 100 particles and 300

particles.

To reflect the performance of each set of particles,

the RMSE values at each time step is observed and

plotted in RMSE graph shown in Figure 7. The RMSE of

100, 300 and 500 particles are plotted in red, green and

blue line respectively. It can be seen that the RMSE

keep on increasing due to accumulated error from

robot’s odometry. However, at 𝑥 state (i.e. top row) the

set of 500 particles manage to maintain the RMSE at 0.3

compared to the set of 100 particles. Although the

RMSE graph indicates a small difference, it shows that

the set of 500 particles can approximate state

distribution better compared to the set of 100 particles.

The 𝑦 state however shows an opposite result. This might

be due to translation error, 𝛼1, and rotation error, 𝛼2,

need to be adjusted accordingly.

Although by using 500 particles, we can approximate

state distribution better, the drawback is the

computation taken was much longer since we have to

compute the prediction and correction step for each

particle.

6.0 CONCLUSION AND FUTURE WORKS

From the results shown in Section 4, the number of

particles does affect the resulting map overtime. In this

work, the increasing uncertainty caused by

accumulation error from noise in wheel encoder and

sensor measurements in the robotic system is modeled

using set of particles. The drawback of particle filter

algorithm is computation cost of the algorithm

increases with the number of particles used.

Figure 6 The maps of the rectangular environment obtained at time step 400 (top row) and time step 600 (bottom row). The leftmost

is the ground truth data from the robot simulator, and the subsequent columns are map obtained from the best particle of the 100

particles, 300 particles and 500 particles respectively. The green dots represent the particles' distribution

97 Norhidayah Mohamad Yatim & Norlida Buniyamin / Jurnal Teknologi (Sciences & Engineering) 77:20 (2015) 91–97

Figure 7 The RMSE graph obtained, zooming in at time step, 𝑡 <
800. The red, green and blue lines represent the RMSE of 100

particles, 300 particles and 500 particles respectively. The top

graph is for robot state, 𝑥 position and the bottom graph for 𝑦

position

To learn a new map efficiently, the major challenge

is to reduce the number of particle used. Another issue

is particle depletion problem where the number of

unique particles reduces overtime. Thus, the diversity of

particles decreases. In this work, the effect of correction

step is not clearly visible yet. However, the

implementation of particle filter SLAM using a simple

differential drive mobile robot, e-puck is accomplished,

despite of the difficult SLAM problem dealt with.

Improvement will be done to the particle filter SLAM

algorithm in order to obtain a more accurate

occupancy grid map by utilizing a simple differential

drive mobile robot with low-resolution sensor such as the

e-puck mobile robot.

Acknowledgement

The authors would like to acknowledge and express

much appreciation to the Universiti Teknologi MARA

(UiTM), Shah Alam, Universiti Teknikal Malaysia Melaka

(UTeM) and Ministry of Education Malaysia (MoE) for the

opportunity, facilities and funds to carry out this

research.

Reference

[1] K. R. Beevers and W. H. Huang. 2006. SLAM with Sparse

Sensing. In Robotics and Automation, ICRA 2006.

Proceedings 2006 IEEE International Conference on, 2006.

2285-2290.

[2] T. N. Yap and C. R. Shelton. 2009. SLAM in Large Indoor

Environments with Low-Cost, Noisy, and Sparse Sonars. In IEEE

International Conference on Robotics and Automation

(ICRA). 1395-1401.

[3] T. Reineking and J. Clemens. 2013. Evidential FastSLAM for

grid mapping. In Information Fusion (FUSION). 2013 16th

International Conference on. 789-796.

[4] J.-S. Lee, C. Kim, and W. K. Chung. 2010. Robust RBPF-SLAM

Using Sonar Sensors in Non-Static Environments. In IEEE

International Conference on Robotics and Automation

(ICRA), 2010. 250-256.

[5] S. Jo, H. Choi, and E. Kim. 2012. Ceiling Vision Based SLAM

Approach Using Sensor Fusion of Sonar Sensor and

Monocular Camera. In Control, Automation and Systems

(ICCAS), 2012 12th International Conference on. 1461-1464.

[6] G. Dissanayake, S. Huang, Z. Wang, and R. Ranasinghe. 2011.

A Review of Recent Developments in Simultaneous

Localization and Mapping. 2011 6th Int. Conf. Ind. Inf. Syst.

477-482.

[7] A. Doucet, N. De Freitas, K. Murphy, and S. Russell. 2000. Rao-

Blackwellised Particle Filtering for Dynamic Bayesian

networks. In Proceedings of the Sixteenth Conference on

Uncertainty in Artificial Intelligence. 176-183.

[8] K. Murphy. 2000. Bayesian Map Learning in Dynamic

Environments. Adv. Neural Inf. Process. Syst. 12: 1015-1021.

[9] M. Montemerlo. 2003. FastSLAM: A Factored Solution to the

Simultaneous Localization and Mapping Problem With

Unknown Data Association. Carnegie Mellon University,

Pittsburgh.

[10] D. Roller, M. Montemerlo, S. Thrun, and B. Wegbreit. 2003.

Fastslam 2.0: An Improved Particle Filtering Algorithm for

Simultaneous Localization and Mapping That Provably

Converges. In Proceedings of the International Joint

Conference on Artificial Intelligence,

[11] D. Hahnel, W. Burgard, D. Fox, and S. Thrun. 2003. An Efficient

Fastslam Algorithm for Generating Maps of Large-Scale

Cyclic Environments from Raw Laser Range Measurements.

In IEEE/RSJ International Conference on Intelligent Robots

and Systems, 2003. (IROS 2003). 1: 206-211.

[12] A. Eliazar and R. Parr. DP-SLAM: Fast, Robust Simultaneous

Localization and Mapping Without Predetermined

Landmarks. In IJCAI. 3: 1135-1142.

[13] G. Grisetti. 2005. Improving Grid-based Slam with Rao-

Blackwellized Particle Filters by Adaptive Proposals and

Selective Resampling. In International Conference on

Robotics and Automation. April: 32-37.

[14] C. Stachniss, G. Grisetti, and W. Burgard. 2005. Recovering

Particle Diversity in a Rao-Blackwellized Particle Filter for SLAM

After Actively Closing Loops. In International Conference on

Robotics and Automation. April: 55-60.

[15] G. Grisetti, G. D. Tipaldi, C. Stachniss, W. Burgard, and D.

Nardi. 2007. Fast and Accurate SLAM with Rao–Blackwellized

Particle Filters. Rob. Auton. Syst. 55(1): 30-38.

[16] P. S. Maybeck. 1982. Stochastic Models, Estimation, and

Control. 3. Academic Press.

[17] R. Siegwart and I. R. Nourbakhsh. 2004. Introduction to

Autonomous Mobile Robots. 23.

[18] H. P. Moravec. 1988. Sensor Fusion in Certainty Grids for

Mobile Robots. AI Magazine. 9: 61-74.

[19] S. Thrun. 2003. Learning Occupancy Grid Maps with Forward

Sensor Models. Auton. Robots. 15(2): 111-127.

[20] C. Schröter, H.-J. Böhme, and H.-M. Gross. 2007. Memory-

Efficient Gridmaps in Rao-Blackwellized Particle Filters for

SLAM using Sonar Range Sensors. In EMCR.

[21] S. Thrun, W. Burgard, and D. Fox. 2005. Probabilistic Robotics.

MIT Press.

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

x
 s

ta
te

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

y
 s

ta
te

timesteps

Root Mean Squared Error (RMSE) of Particles over Time

