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Abstract 
 

Automated inspection has proven to be of great importance in increasing the quality of timber products, optimising raw 

material resources, increasing productivity as well as reducing error related to human labour. This paper reviews automated 

inspection of timber surface defects with a special focus on vision inspection. Previous works on sensors utilised are presented 

and can be used as a reference for future researchers. General approaches to solving the problem of wood surface defect 

detection can be categorised into segmentation and non-segmenting approaches. The weaknesses and strengths of each 

approach are discussed along with feature extraction techniques and classifiers implemented in timber surface defect 

detection. Furthermore, insights into the practicality of implementing automated vision inspection of timber defects were 

also discussed. This paper shall benefit researchers and practitioners in understanding different approaches, sensors, feature 

extraction techniques as well as classifiers that have been implemented in automated inspection of timber surface defects, 

thus providing some direction for future research. 
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1.0  BACKGROUND 
 

Automated inspection of wood defects has proven to 

be of great importance in the wood industry. Due to 

decreasing forest resources and the increasing cost of 

wood, the application of automated inspection is 

seen as a solution to optimise resources and save 

production costs while maintaining a reliable quality 

of product output. In secondary wood industries such 

as furniture manufacturing, the cost of timber 

accounts for about 30% to 70% of the total production 

cost, depending on the type of products 

manufactured. Thus, it is essential for such a 

production line to improve their timber processing 

from the earliest stage of rough milling in order to 

increase timber yield. 

A study has shown that human error in timber 

inspection resulted in 22% rejected timber which 

reduced the overall yield from 63.5% to 47.4% [1]. 

Similarly, Huber [2] claimed that the performance of 

human operators in locating and identifying surface 

defects is only about 68%. They highlighted that by 

applying automated inspection processes, an 

improved yield could be obtained because machines 

are not affected by human weaknesses such as 

tiredness, boredom and other inconsistencies [2]. 

Buehlmann [1] suggested that automated vision 

inspection may be able to solve this kind of error if the 

detection ability is 50% better than the human 

detection ability observed in his study. He also pointed 

out that the payback for such investment could take 

at least one year. Buehlmann and Thomas [3] further 

concluded that a 25% improvement in detection 

accuracy could increase yield by 5.3%, which could in 

turn contribute to significant cost savings for an 

average sized rough mill. Kim and Koivo [4] also 

agreed that automated inspection could overcome 

the problem of suboptimal performance and 

inconsistencies of human operator judgement due to 

the variability of defect characteristics themselves. 

Furthermore, according to Kline, Surak and Araman 

[5], automated timber grading was found to be more 
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accurate and consistent than human graders. They 

further concluded that conventional inspection 

processes are not efficient enough in optimising 

timber resources, thus, the secondary wood industries 

must innovate to survive in the current competitive 

market [5]. 

Meanwhile, substantial research effort has been 

spent to automate the inspection process in wood 

industries ranging from research on detection of 

defects, defect characterisation, identification of 

defects, wood grading, and cutting optimisation to 

hardware related development such as applying 

sensor fusion. Various wood products have been 

tested including wood veneer/plywood [6–16], logs 

[17–31], bamboo strips[32], parquet [33–36], particle 

boards [37–39], wood chips [40], wooden poles [41, 

42], slabs [43–46] and pallets [47]. Compared to other 

wood products, research on timber was seen to be 

quite extensive and ongoing until recent years. Table 

1 lists related works on the inspection of timber. 
 

Table 1 Related works on automated inspection of timber 

 

Years References Sensor  

Prior to 

the 

year 

2000 

[48],[49],[50],[51],[52],[53],[4],[

54],[55] 

Vision sensor 

After 

the 

year 

2000 

[56],[57],[58],[59],[60],[61],[5],[

62],[18],[63],[64],[65],[66],[67] 

Vision sensor 

[68] Ultrasound 

[69] Vibration 

sensor 

[70],[71] Infrared 

thermograph

y 

 

 

Timber is one of the major raw materials used by 

secondary wood product industries producing wood 

products such as furniture, doors, decorative items, 

construction structures, components and stationery. In 

relation to inspection of timber boards, a review on 

past literature indicated that surface defects are 

commonly researched with the application of vision 

sensors, which shows the relevancy and worthiness of 

further research. All the listed references in Table 1 

utilised various types of vision sensors except for the 

last four references. While L. Wang et al. [68] used an 

ultrasound sensor, Ni Song et al. [69] implemented 

modal analysis (vibration test), and Pervan et al. [70] 

and Lopez et al. [71] utilised infrared thermography 

sensors in their studies. The following discussion will 

work towards a review of automated inspection of 

timber boards focusing on vision sensors and how 

these sensors are being used to detect and identify 

timber surface defects. 

 

 

2.0  SENSOR 
 

Research on inspection of internal timber defects in 

secondary wood industries is uncommon due to the 

fact that most internal defects are eliminated through 

earlier processing of logs in the primary wood industry. 

Timbers sent to the rough mills of secondary wood 

industries are usually checked for surface defects prior 

to cutting the timber to the desired size. Table 2 

presents related studies on sensors used for inspection 

of external timber defects. It is apparent that optical 

cameras are commonly used in the research into 

inspection of timber surface defects. 

Laser based sensors are applied mostly in 

conjunction with other sensors to characterise 

geometry related defects on timber boards. Previous 

studies have also demonstrated the application of 

laser based sensors for log surface scanning in 

detecting loose bark from logs [20, 72, 73] . On the 

other hand, optical distance sensors work by 

measuring the distance between the sensor and 

timber samples and use the information to reconstruct 

the timber profile [57]. The commonly used optical 

camera, scanner and video camera provide the 

output of black and white or colour imaging resulting 

in the ability to comprehensively characterise and 

analyse surface defects. 

 
Table 2 Related studies on vision sensors for inspection of 

external timber defect 

 

Vision Sensors References 

Laser scanner [58] 

Optical 

scanner  

[48], [49], [4], [54] 

Optical 

camera 

[74], [51], [55], [75], [61], [62], 

[65], [66], [76], [77] 

Video camera [60], [63], [64] 

Optical 

distance sensor 

[57] 

 

 

As shown in Table 3, a considerable number of 

studies have been conducted using a multi-sensor 

approach to timber defect detection. Due to the 

ability of this approach to detect both internal and 

external defects, the outcomes of defect detection 

seem to be more promising than those that use single 

sensor applications. Despite better defect detection 

performance through a multi-sensor approach, the 

high cost incurred in implementing such sensors has 

hindered the practical use of it in industrial 

environments.  

 
Table 3 Related studies on multi sensor approach to timber 

defect detection 

 

Sensor Fusion Reference 

Colour line scan camera 

Laser based camera 

X-ray scanner 

[52] 

Optical camera 

Line laser 

[53] 

Laser scanner 

Video Camera 

[59] 

Laser profile detector 

Colour camera 

X-ray scanner 

[5] 
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Sensor Fusion Reference 

Colour line-scan camera 

IVP CMOS camera 

Infrared laser 

[18] 

Video camera 

Laser scanner 

[67] 

 

 

Among the various sensors widely used to detect 

timber defects, the optical sensor has proven to be a 

promising sensor in automated vision inspection (AVI) 

of timber surfaces due to its practicality, fast 

implementation and fast inspection capabilities. 

Moreover, it may help to introduce low-cost 

inspection setups with reliable computational 

capability either in the research lab or in industry. 

Estevez et al. [60] agreed that visual inspection can be 

made possible at a lower cost with the fast 

technological advancement in computer and optical 

sensors, despite the better performance offered by 

inspection via multiple sensors.  

Most wood industries are small or medium sized and 

therefore often do not have sufficient funds to invest 

in expensive multi-sensor equipment. Since optical 

sensors are relatively inexpensive, the development of 

timber defect inspection processes based on surface 

images is worth further investigation. Although it 

cannot completely detect internal defects, having 

such a system in place would at least help to increase 

productivity in the inspection process. Hopefully, other 

internal sensors such as X-ray scanners will also 

become increasingly common in the future with the 

advent of cheaper sensor technology.  

There are many types of sensors that can be applied 

to wood inspection problems depending on the 

specific requirement. However, most of these sensors 

remain experimental [60]. Although some of the 

sensors have demonstrated good performance in lab 

studies, it seems difficult to achieve improved cost 

efficiency if introduced to small industries [78]. Despite 

recent developments in multi-sensor approaches, 

optical sensors seem to be the most favourable 

especially in detection of wood surface defects [35]. 

Optical sensors are seen to be sufficient to assist in the 

inspection task on wood surfaces similar to visual 

inspection by humans [79]. Moreover, the output 

image from optical sensors contains a large amount 

of information which may contribute to the 

characterisation of surface defects. The following 

discussion will further analyse studies related to the 

application of optical sensors as a single sensor or as 

part of sensor fusion, for the inspection of timber 

surface defects. 

 

 

3.0  GENERAL DEFECT DETECTION APPROACH 
 

The approach taken by previous researchers on wood 

defect detection can be divided into two categories: 

a segmentation approach and a non-segmenting 

approach. In a segmentation approach (also known 

as a global approach), segmentation is done using 

various combinations of image processing techniques 

to identify regions containing timber defect objects, 

for example, thresholding, connected component 

labelling and region merging. Previous researchers 

have demonstrated the implementation of this 

approach to detect timber surface defects [4, 5, 18, 

51, 58, 62, 63, 74, 80]. Once the objects have been 

segmented, features are extracted from the objects 

to construct feature vectors. The features are then 

trained with chosen algorithm and tested to classify 

them into defect classes.  

In a non-segmenting approach (also known as a 

local approach), the original image is divided into 

non-overlapping rectangular regions regardless of the 

contents of the image. Features from the local regions 

or sub-images are extracted, trained and tested to 

classify the local regions into defect types. This 

approach has been implemented by many 

researchers in wood surface defect inspection 

ranging from timber to wood panel, logs and wood 

chips [31, 32, 40, 48, 49, 56, 61, 65, 81, 82]. Contrary to 

the segmentation approach where an object will be 

segmented exactly to its shape, for a non-segmenting 

approach, each defect will be bounded by a 

rectangular shape boundary. Some previous studies 

use a hierarchical or multilevel approach where a 

combination of segmentation and a non-segmenting 

approach is applied [4, 18, 34, 47, 83]. 

For certain applications that require only rough 

segmentation, for example, timber cutting, bounded 

rectangles covering the defect area as in the non-

segmenting approach are considered sufficient to 

guide the cutting process which is done vertically. It 

was proven that rough segmentation was found to be 

fast enough in providing accurate cutting boundaries 

since it does not need detailed segmentation [84]. On 

the other hand, with the segmentation approach, the 

segmented object will be useful for grading purposes 

because some grading rules require information on 

shape, size and quantity of defects present, thus, 

would require the object to be segmented exactly to 

its size and shape. Normally, a grading application is 

needed more in primary wood industries where logs 

are being cut to timber boards and graded before 

being sent to secondary wood industries according to 

the grades required by the customers. Whereas for 

secondary wood industries, defect inspection is 

required at the rough mill before the timber is cut to 

the required size for producing components. 

Therefore, it can be concluded that, the choice of 

defect detection approach is highly dependent on 

the type of application and the manufacturing stage 

targeted.  

In terms of processing the images, the segmentation 

approach requires that the whole sample be digitised 

before allowing the segmentation process to 

continue. For a timber inspection process in a rough 

mill, board lengths range from 2 to 5 feet for short 

lengths and 6 to 20 feet for long lengths. Therefore, a 

sufficient amount of storage is needed to store the 

image data for the samples currently being inspected. 

In contrast, for the non-segmenting approach, the 
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image is divided into sub images and can be 

processed in sections locally as the timber is being 

scanned continuously. Although the computational 

load to calculate the features for each local region 

seems high, this approach has the advantage of 

allowing an implementation of parallel processing. 

Foundational to this is the basic goal of any image 

analysis problem which is to not just design an 

approach to achieve accurate classification but also 

to ensure that the process is computationally efficient 

with regards to processing time [48]. Kauppinen [81] 

concluded that the segmentation approach may fail 

to detect defects with similar colours as the clear 

wood and having unclear boundaries, thus, making 

the non-segmenting approach more suitable for 

defect detection. However, the non-segmenting 

approach is not suitable for applications requiring 

measurement of defect size [85]. Pham and Alcock 

[86] were also concerned that small defects may not 

be characterised well in a large region. Therefore, one 

must also be careful to choose the right region size as 

smaller regions mean higher computation 

requirements and larger regions could lead to 

reduced detection accuracy [56, 61]. Patricio and 

Maravall [47] further agreed that selection of local 

region size is important to guarantee that enough 

information is captured in that local region to enable 

accurate classification.  

 

 

4.0 FEATURE EXTRACTION FOR DEFECT 

CHARACTERISATION 
 

Feature extraction is a process to characterise the 

samples being studied and the results are used as an 

input into the classification process. Features used by 

previous researchers in the automated inspection of 

wood can be categorised according to the detection 

approach; features of the local region in the non-

segmenting approach and features of the object 

segmented in the segmentation approach. 

For the non-segmenting approach, tonal and 

textural features were commonly used. Conners et al. 

[48] used mean variance, skewness and kurtosis as 

tonal measures and a gray level co-occurrence matrix 

(GLCM) for textural features. The statistical features 

from the GLCM used are inertia, cluster shade, cluster 

prominence, homogeneity, energy and entropy. 

Similarly, Niskanen et al. [56] and Silven et al. [61] 

employed tonal measures using RGB histogram 

centiles, while for textural features, local binary 

pattern (LBP) and GLCM were used. Another related 

study utilising GLCM used mean, variance, contrast, 

cluster shade, cluster prominence, local 

homogeneity, angular second moment, entropy and 

correlation to sort wooden tile accordingly to its 

quality class [34]. However, the GLCM parameters 

such as equal probability quantisation (EPQ), 

displacement and orientation that had been used 

were not clarified in all the above studies. A recent 

study by Athilakshmi [87] implemented simple 

descriptive features such as mean, median, mode, 

min, max, variance, covariance and standard 

features, combined with common GLCM features 

which are energy, entropy, homogeneity, inverse 

different moment and angular second moment. Each 

GLCM feature was calculated using four different 

orientations (0⁰, 90⁰, 45⁰ and 135⁰), though 

displacement and the EPQ parameter were not 

stated. Rinnhofer et al. [18] also implemented tonal 

and textural features, but did not mention the details 

of the features.  

Kim and Koivo [4, 49] derived textural features from 

the parameters of the Causal Auto Regressive Model 

(CAR) and concluded that by combining with another 

feature which is the mean of the grey level, the 

classification performance was better than using 

texture alone. Weidenhiller and Denzler [31] tried 

colour co-occurrence matrices by calculating 22 

textural features from the matrices of six channel 

combinations of the RGB colour space. Weidenhiller 

and Denzler [31] reported that the features from 

colour co-occurrence matrices yield promising results 

in the problem of bark detection on logs compared to 

using tonal features alone. It was further suggested 

that if texture features were to be used alone, a 

potential improvement might be based on grey level 

co-occurrence matrices to optimally utilise texture 

information [31]. Cavalin et al. [88] demonstrated that 

features from a grey level co-occurrence matrix 

achieved similar performance when compared with 

colour tonal features. It was further concluded that 

choosing grayscale over colour features would 

reduce overall cost of implementation without having 

to compromise on the inspection accuracy [88].  

It was also noted that for most studies which 

attempted to classify many types of defect, both 

tonal and textural measures were applied. On the 

other hand, for simpler problems which involved one 

type of defect as in Ziadi et al. [65], tonal measures 

were found to be sufficient to contribute to good 

detection performance [88].  

For the segmentation approach, features were 

extracted from the segmented object to be classified 

into different types of defect. Previous studies have 

shown that common features used for the segmented 

object are tonal, textural and geometrical features. 

Earlier studies on classification of defects on timber 

boards utilised area, average gray level, centre of 

mass, minimum bounded rectangle, elongatedness, 

perimeter, compactness and a flag indicating 

whether the object is touching the boundary of the 

board [51, 74]. Later, Estevez and Fernandez [55] 

implemented 24 geometrical features with 48 tonal 

measures from four colour channels. Estevez [60] 

furthered their work by using 182 features comprising 

of geometrical and tonal features from the 

segmented objects as well as from the 64 by 64 pixel 

windows geometrically centred in the object. Kline et 

al. [5] similarly applied tonal and geometrical features 

to the segmented defect object including intensity, 

height, width, perimeter, area, edge, centre of mass, 

compactness and elongatedness, measured from six 
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channels of x-ray, laser and colour images. Further 

work classifying splits and holes only utilised four 

geometrical features: width, length, compactness 

and roundness [58]. Research by Hu et al. [62] found 

that tonal and geometrical features were useful in 

identifying sound knots and dead knots. In recent 

studies for classifying four types of wood knot, pseudo 

colour features were used, where each pseudo colour 

is the average normalised pseudo colour on the 

interior, exterior and boundary area of the segmented 

knot [89]. Using a similar feature approach to the 

similar knot identification problem, Zhang [90] 

selected four colour features of the red channel from 

the interior, exterior and boundary areas of knots 

segmented, together with the knot size for the 

classification of four types of knots: sound, dead, 

rotten and pin knot. Using textural features alone in 

some applications was proven to produce good 

accuracy as well. Wooten et al. [40] tried textural 

features such as intensity variance, intensity mean 

square error (MSE), angular variance, angular MSE 

and variation of intensity gradient to classify bark from 

wood chips, demonstrating more than 90% accuracy. 

In previous studies a variety of features have been 

tested for defect characterisation. In conclusion, there 

is no one solution to uniquely represent defect 

features because choice of features is obviously 

dependent on the problem itself. However, it is worth 

to note that textural features are regularly applied, 

with co-occurrence matrix being a common 

approach due to its good performance in 

discriminating textures. Conners et al. [48] stated that  

co-occurrence matrix has been proven to show a 

good performance on a variety of texture related 

problems due to its capability in matching human 

perceptual performance. It is agreed by Weidenhiller 

and Denzler [31] that features based on co-

occurrence matrix could help to improve the optimal 

utilisation of textural information. de Andrade and 

Gonzaga [76] strongly suggested that textural 

measures are useful in analysing the variability of 

wood defect patterns and they employed co-

occurrence matrix in their study. The capability of  co-

occurrence matrix was further proven with 

classification accuracy showing substantial 

improvement when co-occurrence features were 

added to supplement tonal and geometrical features 

[84]. Likewise, Kauppinen [85] clearly stated that the 

limitation of tonal measures in wood defect detection 

should be supplemented by textural features and 

again pointed out that utilising texture to recognise 

wood defect properties is natural to human 

perception. Kyllonen and Pietikainen [33] further 

agreed that the challenging classification of wood 

surfaces due to the variability in wood appearance 

could be improved by combining colour and textural 

information. Additionally, hardwood properties were 

found to be best represented by textural features [18]. 

This is proven by the ability of textural features, 

specifically from grey level co-occurrence matrix to 

achieve high accuracy in solving the wood texture 

recognition problem [91]. There are many variations to 

the implementation of co-occurrence matrix on the 

choice of grey level over colour as well as varying 

parameters of EPQ, displacement and orientation. This 

all leads the authors to believe that co-occurrence 

matrix is a prospective solution to most kinds of wood 

defect detection problems provided that proper 

parameter analysis is done to ensure appropriate 

choice of parameters that match the problem being 

addressed. 

 

 

5.0  CLASSIFICATION OF DEFECTS 
 

There are two general approaches in timber surface 

defect detection, which are the segmentation 

method and the non-segmenting method. For the 

segmentation method, features extracted from the 

object segmented will be fed to a classifier for training 

purposes and to generate a classifier model to be 

used in testing stage. Earlier studies on timber surface 

defect detection using the segmentation approach 

mostly applied either fuzzy logic, several variations of 

artificial neural networks, and rule-based classifiers to 

the segmented object. Cho et al. [74] applied fuzzy 

logic to the segmented defect object and discovered 

that small knots and large knots containing checks 

(cracks or flaws in timber) were correctly identified on 

a sample of oak board, while wane and holes were 

identified correctly on a sample of cherry board. Cho 

and Conners [51] further compared an artificial neural 

network (ANN) and a k-nearest neighbour (KNN) 

classifier and concluded that in differentiating 

between clear wood and defects, the performance 

of ANN and KNN were comparable, which was 

around 80% accuracy but ANN seemed to work better 

in classifying different types of defect classes with an 

accuracy of 75% compared to 72% for KNN. In this 

study, defects considered were splits/checks, holes, 

wane and knots [51]. Similarly, Estevez et al. [60] 

implemented an ANN classifier and achieved up to 

80% classification accuracy in classifying 10 types of 

defect with the feature vector reduced by a genetic 

algorithm (GA).  

Another study showed that a timber grading system 

applying fuzzy logic was 31% more accurate than a 

human grader. Hu et al. [58] used eight recognition 

rules to identify splits and holes and achieved 94.5% 

accuracy. In another work to distinguish between 

sound knots and dead knots, the classification 

accuracy also exceeded 90% [62]. Pham et al. and 

Ruz et al. [63, 64] tried a unique approach in solving 

the defect segmentation problem by using a Fuzzy 

Min-Max neural network (FMMIS), constructing a hyper 

box enclosing the defect by using an initial seed as 

input into the network. The seeds were selected by 

applying an adaptive thresholding method. Another 

recent work by Lee and Araman [67] employed 

several variations of an ANN modularly to identify 

several types of defect. In their study, a multi-layer 

perceptron (MLP) was used to identify clear wood, a 

radial basis function network (RBFN) was used to 
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identify knots and decay and a final competitive 

network further made final classification on a pixel-by-

pixel basis. The combination of these networks was 

reported to achieve 96.7% classification accuracy. 

For the non-segmenting approach, local regions 

divided from the original image were classified directly 

into defect types. In earlier studies, many classification 

solutions have been suggested such as distance 

based on chi-square classifier, pairwise classification, 

decision tree and Bayesian classifier, among others. 

Conners et al. [48] managed to achieve 88.3% correct 

classification of 10 types of defect using two 

sequential classifiers: distance based on chi-square to 

separate defect and clear wood, as well as pairwise 

classification for identifying other types of defect. 

Koivo and Kim [49] implemented a decision tree to 

classify eight types of defect and obtained 96.6% 

classification accuracy. However, the sub-images 

used for training and testing were limited to only 20 

samples per class. Kim and Koivo [4] furthered their 

work by applying hierarchical recognition combining 

thresholding, freeman chain code for identifying 

shape and a Bayesian classifier for classifying texture 

features. They created three sets of data to simulate 

samples in a dusty environment. As a result, a cleaned 

surface achieved 92.2% correct classification, while 

the classification result decreased on dusty surface to 

81.2%. However, on a dusty fan-cleaned surface, the 

classification accuracy was up to 89.6% [4].  

Niskanen [56], Niskanen et al. [61], Silven et al. [75] 

tried a different approach using non-supervised 

clustering based on a self-organising map (SOM) for 

wood defect detection. It was reported to perform 

well with approximately 31% false alarms, 5% error 

escape and 72% defect detection accuracy. 

Although it was claimed that human involvement in 

training is minimal in unsupervised clustering, selecting 

appropriate features for classification is still practically 

supervised [56]. In a recent study, Rinnhofer et al. [18] 

employed a maximum likelihood classifier for 

classification of 12 defect classes based on textural 

features and claimed to have classification accuracy 

greater than 97%. Another recent study reported over 

73% detection accuracy using an ANN to classify 

between sapwood and heartwood [65]. 

Unfortunately, it is very difficult to compare 

classification performance results between these 

studies because each study has employed different 

image acquisition settings, timber species, types of 

defect, and even if a similar set of features was used, 

the extraction parameters were dissimilar in different 

studies. However, it is worth noting that most classifiers 

used were supervised classifiers and only a few were 

using an unsupervised method. This is due to the 

limitations of unsupervised methods in identifying 

defect type despite having good detection 

performance.  

Although supervised classifiers were commonly used, 

in reality, samples of various defects are not easy to 

collect. Different timber species have different types 

of common defects. While some defects are common 

and more prominent in one species, they might be 

rare in others. That is why, as seen in most previous 

studies, the samples are limited to one type of timber 

species only. However there are some studies that 

have reported using multiple species [50, 51, 67].  

 

 

6.0  DISCUSSION 

 

In this paper, we have reviewed past works on 

automated inspection of timber surface defects. 

Many types of sensor have been used to automate 

the inspection of timber, targeting the detection of 

internal and external defects. While some of the 

sensors demonstrated good performance, most of 

them remain experimental. Difficulty in industrial 

implementation especially within small and medium 

sized industries is mostly related to the large investment 

cost involved. For easier implementation and lower 

costs, optical sensors seem to be the most favoured. 

Although their capability is limited to inspection of 

surface defects, they would at least contribute to 

productivity improvement in the inspection process. 

There are two main approaches to the timber 

surface defect detection problem: the segmentation 

approach and the non-segmenting approach. The 

choice of approach depends on the targeted 

application. The segmentation approach may be 

suitable for applications that require detailed 

information on the defect detected such as timber 

grading. The non-segmenting approach, however, 

provides less detail but faster detection and sufficient 

defect boundary identification for applications such 

as timber cutting. For the non-segmenting approach, 

choosing the appropriate local region size depends 

on the structure of the texture. In that case, we 

recommend that a feature analysis be done before 

the classification stage. This is to ensure that the 

choice of local region size is sufficient to capture 

enough textural information in order to discriminate 

between types of defect. 

Common features extracted from the segmented 

defect object using the segmentation approach were 

tonal, textural and geometrical features. On the other 

hand, tonal and textural features were frequently 

applied in the non-segmenting approach. Textural 

features were seen to be promising as it was claimed 

that they best represent hardwood properties. 

Features from a co-occurrence matrix were seen to 

be prevalent in most studies as co-occurrence 

matrices have proven to demonstrate good 

performance in a wide array of studies. Nonetheless, 

the key aspect of ensuring well characterised timber 

defect textural properties is through a proper 

parameter analysis of the co-occurrence matrix. 

Appropriate choice of co-occurrence matrix 

parameters will support the development of reliable 

features thus contributing to good classification 

performance. 

It is worth noting that in some studies, a combination 

of classifiers were implemented with terms such as 

sequential, hierarchical, multi-level and multi-layer 
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classification being used interchangeably. Despite 

good detection and classification performance 

shown in previous studies on timber surface defect 

detection, it does not seem fair to compare between 

them as each of the studies applied different types of 

sensors, used different timber species and covered 

different types of defect. Additionally, most of the 

studies were seen to limit their samples to only one 

type of timber species. Therefore, it will be difficult to 

bring the outcome of any of these particular studies to 

the industry if the model trained is tuned to fit to only 

one type of species when, as we know, wood 

industries are processing multiple species at a time. 

However, the outcomes of previous studies are 

important to help us understand what are the things 

that are workable especially in defect detection, thus 

avoiding unnecessary efforts which are unrealistic.  

Although certain defects are more prominent in one 

timber species than another, there seems to be more 

similarity than dissimilarity in the defects presented 

across different species. That assumption enables us to 

draw a certain research direction towards 

characterisation of timber defects using common 

features. However, finding the appropriate common 

features to represent many types of defect across 

multiple timber species remains a challenging 

problem in automated inspection of timber defects. 

To conclude, the computational methods for 

analysing the images of timber surfaces for reliable 

and real time defect detection, and exploiting the 

output of surface defect detection to determine 

optimal timber cutting and grading strategies remain 

an open research topic. 
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