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Abstract 
 

Klein-Gordon field is often used to study the dynamics of elementary particles. The Klein–

Gordon equation was first considered as a quantum wave equation by Schrödinger in his 

search for an equation describing de Broglie waves. The equation was found in his 

notebooks from late 1925, and he appears to have prepared a manuscript applying it to 

the hydrogen atom. Yet, because it fails to take into account the electron's spin, the 

equation failed to predict the fine structure of the hydrogen atom, and overestimated the 

overall magnitude of the splitting pattern energy. This paper will describe in detail using the 

Direct Method of Calculus Variation as an alternative to solve the Klien-Gordon field 

equations. The Direct Method simplified the calculation because the variables are 

calculated and expressed in functional form of energy. The result of the calculation of 

Klien-Gordon Feld provided the existence of the minimizer, i.e. 𝜙̅ = 𝜙0 + 𝑢 with 𝑢 ∈ 𝑊0
1,𝑝

 and 

𝜙0 ∈ 𝑊1,𝑝. Explicit form of the minimizer was calculated by the Ritz method through rows of 

convergent density.   
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1.0  INTRODUCTION 
 

The Klein–Gordon equation was first considered as a 

quantum wave equation by Schrödinger in his search 

for an equation describing de Broglie waves as evident 

from his notebooks from the late 1925, and he appears 

to have prepared a manuscript applying it to the 

hydrogen atom. Yet, because it fails to take into 

account the electron's spin, the equation incorrectly 

predicted the fine structure of the hydrogen atom, 

including overestimating the overall magnitude of the 

splitting pattern energy level. Since the sine-Gordon 

equation is not integrable when the singular potential 

term is present, no exact solution is available and no 

exact value of the critical parameter is available as 

well. There are many unknown properties of the solution 

behaviors in this case [1–5]. A similar phenomenon has 

been also found with the non-linear Schrodinger 

equations [6, 7]. For example, in [6, 8] the singular 

potential term perturbs the soliton propagation and 

similar phenomena of particle pass, particle capture 

and particle-reflection were observed for some critical 

parameters. 

The Density Functional Theory (DFT) for quantum 

systems is an inexact theory or idea about the problem 

of many particles, to study the behaviors of the ground 

state electron systems via the variation principle. 

Although formally exact, the general functional is 

unknown. Nevertheless, there are various approaches 

that work well for a variety of electronic systems [9, 10]. 

In practical terms, this theory is very reliable to use in 

studying the structural stability of the system, elasticity, 

vibration behavior and determine the equilibrium state. 

Thus, DFT also has drawbacks, among which include 

uncontrolled approximation. 
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However, with DFT, it is possible to study the behavior of 

the system through the massive range of density that 

depends only on four variables x, y, z, and t. It is 

certainly easier for researchers than having to seek 

answers to the Schrödinger equation that depends on 

the variables of each particle making up the system, as 

in the Hartee-Fock method. Thus, DFT offers a fairly 

simple method for calculation. 

 

 

2.0  DIRECT METHOD CALCULUS VARIATION 
 

The typical problem of the calculus of variations is to 

minimize an integral of the form  

𝐹(𝑢) ≔ ∫ 𝑓(𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥))𝑑𝑥
Ω

    (1) 

where Ω is some open subset in ℝ𝑑 (in most case, Ω is 

bounded), among function 

𝑢: Ω → ℝ, 
which belongs to some suitable class of functions and 

satisfying a boundary condition. For example, a 

Dirichlet boundary condition is as follows: 

𝑢(𝑦) = 𝑔(𝑦) for 𝑦 ∈ 𝜕Ω 

for 𝑔: 𝜕Ω → ℝ given.  

Thus, the problem is 

𝐹(𝑢) → min,        for 𝑢 ∈ 𝒞, 

where 𝒞 is some space of functions. The strategy of the 

direct method is very simple, i.e. to take a minimizing 

sequence where 
(𝑢𝑛)𝑛∈ℕ ⊂ 𝒞 minimization, 

lim
𝑛→∞

𝐹(𝑢𝑛) = inf
𝑢∈𝒞

𝐹(𝑢),           (2) 

and show that a subsequence of (𝑢𝑛) convergence to 

a minimizer 𝑢 ∈ 𝒞. To solve several problem about 

minimization, several conditions must be fulfilled: 

1. Some compactness condition has to hold so that a 

minimizing sequence contains a convergent 

subsequence. This requires the careful selection of 

a suitable topology on 𝒞. 

2. The limit u of such a subsequence should be 

contained in 𝒞. This is a closedness condition on 𝒞. 

3. Some lower semi-continuity condition of the form  

𝐹(𝜌) ≤ lim inf
𝑛→∞

𝐹(𝑢𝑛) if 𝑢𝑛 converges to u. 

The lower semicontinuity condition becomes easier if 

the topology of 𝒞 is more restrictive, because the 

stronger the convergence of 𝑢𝑛 to 𝑢 , is, the easier that 

condition is satisfied, That is at variance, however, with 

the requirement of (1) since for too strong a topology, 

sequences do not always contain convergent 

subsequences. Therefore, the researchers expect that 

the topology for 𝒞 to be carefully chosen so as to 

balance the various requirements. 

 

 

3.0  LOWER SEMI-CONTINUITY 
 
The researchers believe that a topological space X 

satisfies the first axiom of countability if the 

neighbourhood system of each point 𝑥 ∈ 𝑋 has a 

countable base, i.e. there exists a sequence (𝑈𝜈)𝜈∈ℕ of 

open subsets of X and 𝑥 ∈ 𝑈𝜈, with the property that for 

every open set 𝑈 ⊂ 𝑋 with 𝑥 ∈ 𝑈 there exists 𝑛 ∈ ℕ with  

𝑈𝑛 ⊂ 𝑈 

X satisfies the second axiom of countability if its 

topology has a countable base, i.e. there exists a a 

family (𝑈𝜈)𝜈∈ℕ of open subsets of X with the property 

that for every open subset V of X, there exists 𝑛 ∈ ℕ with 

𝑈𝑛 ⊂ 𝑉. 
The researchers note that separable metric spaces X 

satisfy the second axiom of countability. If (𝑥𝜈)𝑛∈ℕ can 

be a dense subset of X, and (𝑟𝜇)
𝜇∈ℕ

 be dense in ℝ+, 

then, 

𝑈(𝑥𝜐, 𝑥𝜇) ≔ {𝑥 ∈ 𝑋: 𝑑(𝑥, 𝑥𝜐) < 𝑟𝜇}    (3) 

where (𝑑(. , . ) is the distance function of X that forms a 

countable base for the topology. 

If the first countability axiom is satisfied, topological 

notions usually admit sequential characterizations. For 

example, if (𝑥𝑛)𝑛∈ℕ ⊂ 𝑋 is a sequence in a topological 

space X satisfying the first axiom of countability, then 

any accumulation point of (𝑥𝑛) (i.e. any ∈ 𝑋 with the 

property that for every neighbourhood U of x and any 

𝑚 ∈ ℕ, there exists 𝑛 ≥ 𝑚 with 𝑥𝑛 ∈ 𝑈) can be obtained 

as the limit of some subsequence of (𝑥𝑛).  

Definition 1: Let X be a topological space. A function  

𝐹: 𝑋 → ℝ̅ ≔ ℝ ∪ {±∞} is called lower semi-continuous 

(Isc) at x if 

𝐹(𝑥) ≤ lim
𝑛→∞

inf 𝐹(𝑥𝑛) 

for any sequence (𝑥𝑛)𝑛∈ℕ ⊂ 𝑋 converging to x. F is 

called lower semi-continuous if it is Isc at every 𝑥 ∈ 𝑋.  

Lemma 2:  

(i). If 𝐹: 𝑋 → ℝ̅ is lsc 𝜆 ≥ 0, then 𝜆𝐹 is lsc. 

(ii).  If 𝐹, 𝐺: 𝑋 → ℝ̅ is lsc, and if their sum 𝐹 + 𝐺 is well 

defined (i.e. there is no 𝑥 ∈ 𝑋 for which one of 

the values F(x), G(x) is +∞ and the other one is 

-∞), then 𝐹 + 𝐺 is also Isc. 

(iii). For 𝐹, 𝐺: 𝑋 → ℝ̅ lsc, inf (F,G) is also Isc. 

(iv). If (𝐹𝑖)𝑖∈𝐼 is a family of Isc functions, then 𝑠𝑢𝑝
𝑖∈𝐼

𝐹𝑖 is 

also Isc. 

Definition 3:  

(i). Let X be a normed space, with norm ‖. ‖.  𝐹: 𝑋 →
ℝ is weakly proper, if for every sequence 
(𝑥𝑛)𝑛∈ℕ ⊂ 𝑋 with ‖𝑥𝑛‖ → ∞, we have 𝐹(𝑥𝑛) → ∞ 

for 𝑛 → ∞ 

(ii).  Let X be a topological space. 𝐹: 𝑋 → ℝ is 

coercive if every sequence (𝑥𝑛)𝑛∈ℕ ⊂ 𝑋 with 

𝐹(𝑥𝑛) ≤ constant (independent of n) has an 

accumulation point. 

The researchers can now formulate the following 

general existence theorem for minirnizers 

Theorem 4: Let X be a separable reflexive Banach 

space, 𝐹: 𝑋 → ℝ weakly proper and lower 

semicontinuous with respect to weak convergence. 

Then there exists a minimize x0 for 𝐹, i.e 

𝐹(𝑥0) = inf
𝑥∈𝑋

𝐹(𝑥)    (> −∞) 

Proof : Let (𝑥𝑛)𝑛∈ℕ ⊂ 𝑋 be a minimizing sequence for F, 

i.e. 

lim
𝑛→∞

𝐹(𝑥𝑛) = inf
𝑥∈𝑋

𝐹(𝑥). 
Since F is weakly proper, ‖𝑥𝑛‖ is bounded. Since X is 

reflexive, after selection of a subsequence, xn 

converges weakly to some 𝑥0 ∈ 𝑋. Since there is lower 

semi-continuity of F,  

𝐹(𝑥0) ≤ lim
𝑛→∞

𝐹(𝑥𝑛) = inf
𝑥∈𝑋

𝐹(𝑥), 
and since 𝑥0 ∈ 𝑋, equality must be achieved. Also, 

since F assumes only finite values by assumption, this 

implies that 
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inf
𝑥∈𝑋

𝐹(𝑥) > −∞ 

Remark. The argument of the preceding proof also 

shows that in a separable reflexive Banach space, a 

weakly proper functional is coercive with respect to the 

weak topology. 

Definition 5: Let V be a convex subset of a vector space 

𝐹: → ℝ̅  is called convex if for any 𝑥, 𝑦 ∈ 𝑉, 0 ≤ 𝑡 ≤ 1, 
𝐹(𝑡𝑥 + (1 − 𝑡)𝑦) ≤ 𝑡𝐹(𝑥) + (1 − 𝑡)𝐹(𝑦) 

(convexity of V means that 𝑡𝑥 + (1 − 𝑡)𝑦 ∈ 𝑉 whenever 

𝑥, 𝑦 ∈ 𝑉, 0 ≤ 𝑡 ≤ 1). 

Lemma 6: Let V be a convex subset of a separable 

reflexive Banach space 𝐹: 𝑉 → ℝ̅ convex and lower 

semi-continuous, then 𝐹 is also lower semi-continuous 

with respect to weak convergence. 

Proof: Let (𝑥𝑛)𝑛∈ℕ ⊂ 𝑋 converge weakly to 𝑥 ∈ 𝑉. 

Assume that 𝐹(𝑥𝑛) converges to some 𝜅 → ℝ̅. For every 

𝑚 ∈ ℕ and every 𝜀 > 0, a convex combination may be 

found, 

𝑦𝑚 ≔ ∑ 𝜆𝑛𝑥𝑛

𝑁

𝑛=𝑚

     (𝜆𝑛 > 0, ∑ 𝜆𝑛

𝑁

𝑛=𝑚

= 1) 
with 

‖𝑦𝑚 − 𝑥‖ ≤ 𝜀. 
Since F is convex, 

𝐹(𝑦𝑚) ≤ ∑ 𝜆𝑛𝐹(𝑥𝑛)𝑁
𝑛=𝑚 .      (4)

                  

Given 𝜀 > 0, we choose 𝑚 = 𝑚(𝜀) ∈ ℕ so large that for 

all 𝑛 ≥ 𝑚,   

𝐹(𝑥𝑛) < 𝜅 + 𝜀. 
Letting  𝜀 approaches to 0, and from (4)the following is 

obtained 

lim sup
𝑚→∞

𝐹(𝑦𝑚) ≤ 𝜅. 
Since F is lsc 

𝐹(𝑥) ≤ lim inf
𝑚→∞

𝐹(𝑦𝑚) ≤ lim sup
𝑚→∞

𝐹(𝑦𝑚) ≤ 𝜅 = lim 𝐹(𝑥𝑛). 
This shows weak lower semi-continuity of F. 

 

 

4.0  THE EXISTENCE OF MINIMIZERS FOR 
CONVEX VARIATIONAL PROBLEMS 
 
Lemma 7: Let 𝛺 ⊂ ℝ𝑑 be open, 𝑓: 𝛺 × ℝ𝑑 → ℝ, with 𝑓(. , 𝑣) 
measurable for all 𝑣 ∈ ℝ𝑑, 𝑓(𝑥, . ) continuous for all 𝑥 ∈ 𝛺, 

and 

𝑓(𝑥, 𝑣) ≥ −𝑎(𝑥) + 𝑏|𝑣|𝑝 

for all 𝑥 ∈ 𝛺, and all 𝑣 ∈ ℝ𝑑, with 𝑎 ∈ 𝐿1(𝛺), 𝑏 ∈ ℝ, 𝑝 ≥ 1. 

Then,  

𝛷(𝑣) ≔ ∫ 𝑓(𝑥, 𝑣(𝑥))𝑑𝑥
𝛺

 

is a lower semi-continuous functional on 𝐿𝑝(𝛺), 

𝛷: 𝐿𝑝(𝛺) → ℝ ∪ {∞}.    
Proof: Since f is continuous in v, 𝑓(𝑥, 𝑣(𝑥)) is a 

measurable function, and also Φ is well-defined on 

𝐿𝑝(Ω). Let (𝑣𝑛)𝑛∈ℕ converges to v in 𝐿𝑝(Ω), Then a 

subsequence converges pointwise almost everywhere 

to v. Since f is continuous in v (actually, it would suffice 

to have f lower semi-continuous in v), i.e. 

𝑓(𝑥, 𝑣(𝑥)) − 𝑏|𝑣𝑛(𝑥)|𝑝 ≥ −𝑎(𝑥) 

with 𝑎 ∈ 𝐿1(Ω). Based on Fatou theorem, the following 

can be concluded 

∫ (𝑓(𝑥, 𝑣(𝑥)) − 𝑏|𝑣𝑛(𝑥)|𝑝)𝑑𝑥

Ω

≤ lim inf
𝑛→∞

∫ (𝑓(𝑥, 𝑣(𝑥)) − 𝑏|𝑣𝑛(𝑥)|𝑝)𝑑𝑥

Ω

 

since vn convergence to v in  𝐿𝑝(Ω), 

∫ 𝑏|𝑣𝑛(𝑥)|𝑝𝑑𝑥

Ω

= lim
𝑛→∞

∫ 𝑏|𝑣𝑛(𝑥)|𝑝𝑑𝑥

Ω

 

and the researchers conclude lower semi-continuity, 

namely,  

∫ 𝑓(𝑥, 𝑣(𝑥))𝑑𝑥

Ω

≤ lim inf
𝑛→∞

∫ 𝑓(𝑥, 𝑣𝑛(𝑥))𝑑𝑥

Ω

 

Lemma 8: Under the assumptions of Lemma 3.7, 

assume that 𝑓(𝑥, . ) is a convex function on ℝ𝑑 for every 

𝑥 ∈ 𝛺. Then 𝛷(𝑣) ≔ ∫ 𝑓(𝑥, 𝑣(𝑥))𝑑𝑥
𝛺

 defines a convex 

functional on 𝐿𝑝(𝛺). 

Proof : 𝑣, 𝑤 ∈ 𝐿𝑝(Ω), 0 ≤ 𝑡 ≤ 1 

Φ(𝑡𝑣 + (1 − 𝑡)𝑤) = ∫ 𝑓(𝑥, 𝑡𝑣(𝑥) + (1 − 𝑡)𝑤(𝑥))𝑑𝑥

Ω

 

≤ ∫ {𝑡𝑓(𝑥, 𝑣(𝑥) + (1 − 𝑡)𝑓(𝑥, 𝑤(𝑥))}𝑑𝑥

Ω

 

by the convexity of f 

= 𝑡Φ(𝑣) + (1 − 𝑡)Φ(𝑤). 
The researchers may now obtain a general existence 

result for the minimizer of a convex variational problem. 

Theorem 9: Let Ω ⊂ ℝ𝑑 be open, and suppose : Ω ×
ℝ𝑑 → ℝ , satisfies 

(i). 𝑓(. , 𝑣) w measurable for all𝑣 ∈ ℝ𝑑  

(ii). 𝑓(𝑥, . ) is convex for all 𝑥 ∈ Ω 

(iii). 𝑓(𝑥, 𝑣) ≥ −𝑎(𝑥) + 𝑏|𝑣|𝑝 for almost all 𝑥 ∈ Ω, all 

𝑣 ∈ ℝ𝑑, with 𝑎 ∈ 𝐿1(Ω), 𝑏 > 0, 𝑝 > 1. 

Let 𝑔 ∈ 𝐻1,𝑝(Ω), and let 𝐴 ≔ 𝑔 + 𝐻0
1,𝑝

(Ω). Then  

𝐹(𝑢) ≔ ∫ 𝑓(𝑥, 𝐷𝑢(𝑥))𝑑𝑥

Ω

 

assuming its infimum on A, i.e. there exists 𝑢0 ∈ 𝐴 with 

𝐹(𝑢0) ≔ inf
𝜌∈𝐴

𝐹(𝑢). 
Proof: by Lemma 7, 𝐹 is lower semi-continuous with 

respect to di 𝐻1,𝑝(Ω) convergence. By Lemma 3 𝐹 then 

is also lower semi-continuous with respect to weak 

𝐻1,𝑝(Ω), convergence, since 𝐻1,𝑝(Ω) is separable and 

reflexive for 𝑝 > 1, then minimization from sequence 
(𝑢𝑛)𝑛∈ℕ in A, i.e. 

lim
𝑛→∞

𝐹(𝑢𝑛) = inf
𝑢∈𝐴

𝐹(𝑢) 

Since  

∫ |𝐷𝑢𝑛|𝑝

Ω

≤
1

𝑏
𝐹(𝑢𝑛) +

1

𝑏
∫ 𝑎(𝑥)𝑑𝑥

Ω

 

𝐷𝑢𝑛 is bounded in 𝐿𝑝(Ω), hence (𝑢𝑛)𝑛∈ℕ ⊂ 𝑔 + 𝐻0
1,𝑝

(Ω) is 
bounded in 𝑔 + 𝐻0

1,𝑝
(Ω) by the Poincare inequality.  

Since 𝐻0
1,𝑝

(Ω) is a separable reflexive Banach space, 

after selection of a sequence, (𝑢𝑛)𝑛∈ℕ converges 

weakly to some 𝑢0 ∈ 𝐴 (A is closed under weak 

convergence).  Since 𝐹 is convex by Lemma 3.8 and 

lower semicontinuous by Lemma 7, E it is also lower 

semicontinuous w.r.t. weak 𝐻1,𝑝(Ω) convergence, so 
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𝐹(𝑢0) ≤ lim
𝑛→∞

𝐹(𝑢𝑛) = inf
𝑢∈𝐴

𝐹(𝑢), 
and since  𝑢0 ∈ 𝐴, we must have equality. 

Remark . The condition 𝑢 ∈ 𝑔 + 𝐻0
1,𝑝

(Ω) with 𝑢 − 𝑔 ∈

𝐻0
1,𝑝

(Ω) is a (generalized) Dirichlet boundary condition. 

It means that 𝑢 = 𝑔 on 𝜕Ω in the sense of Sobolev 

spaces [11]. 
 

 

5.0  KLEIN-GORDON FIELD 
 
Klien-Gordon equations for real scalar field (position on 

the space) 

(𝜕𝜇𝜕𝜇 + 𝑚2)𝜙(𝑥) = 0 

To get Lagrangian density, we can calculate 

0 = ∫ 𝑑𝑡

𝑡2

𝑡1

∫ 𝑑3𝑥 (
𝜕2𝜙

𝜕𝑡2 − ∆𝜙 + 𝑚2𝜙) 𝛿𝜙(𝑥) 

0 = −𝛿 ∫ 𝑑𝑡

𝑡2

𝑡1

∫ 𝑑3𝑥 (
1

2
(

𝜕𝜙

𝜕𝑡
)

2

−
1

2
(∇𝜙)2 −

1

2
𝑚2𝜙2) 

with operation integral partial, boundary condition 

𝛿𝜙(𝑡1) = 𝛿𝜙(𝑡2) = 0 and 𝜙 convergence to infinite, then 

Lagrangian density Klien-Gordon Field is obtained [12] 

ℒ(𝜙, 𝜕𝜇𝜙) =
1

2
𝜕𝜇𝜙𝜕𝜇𝜙 −

1

2
𝑚2𝜙2 

=
1

2
(𝜕𝜇𝜙)

2
−

1

2
𝑚2𝜙2. 

 

 

6.0  APPLICATION DIRECT METHOD OF 
CALCULUS VARIATION FOR EXISTENCE 
MINIMIZER 
 
The Lagrangian density functional form to Klien-Gordon 

Field is 

𝐸(𝜙) = ∫ ℒ(𝜙, 𝜕𝜇𝜙)𝑑𝑟                                     (5) 

𝐸(𝜙) = ∫ (
1

2
(𝜕𝜇𝜙)

2
−

1

2
𝑚2𝜙2) 𝑑𝑟

Ω

 

 

Where dr is Lesbegue measurement on R3, for 𝜌𝜖𝑊, with  

                               𝑊 =
{𝜙|𝜙 ≥ 0, 𝜙 ∈ 𝐿1}.                                         

  

If 𝑓 ∈ 𝐿𝑝 and 𝑓 ∈ 𝐿𝑞with 𝑝 < 𝑞, then 𝑓 ∈ 𝐿𝑡 for all 

𝑝 ≤ 𝑡 ≤ 𝑞. If 𝑓 ∈ 𝐿𝑝 and 𝑔 ∈ 𝐿𝑝′ with 
1

𝑝
+

1

𝑝′
= 1, then 𝑓𝑔 ∈

𝐿1 so ∫ 𝑑𝑥|𝑓𝑔| < ∞ and |∫ 𝑑𝑥𝑓𝑔| < ∞. Generally, if 𝑓 ∈

𝐿𝑝 ∩ 𝐿𝑞and 𝑔 = 𝑔1 + 𝑔2, 𝑔1 ∈ 𝐿𝑝′, 𝑔2 ∈ 𝐵𝑞′, with 
1

𝑝
+

1

𝑝′
=

1 =
1

𝑞
+

1

𝑞′
 , then obey 𝑓𝑔 ∈ 𝐿1. 

Integral energy kinetic term finite if 𝜙(𝑟) ∈ 𝐿
5

3⁄ . Now we 

get 𝜙 ∈ 𝐿
5

3⁄ ∩ 𝐿1, therefore functional energy is required 

to be finite.  
Example m is scalar, then the functional energy is  

𝐹(𝜙) = ∫ [(𝜕𝜇𝜙)
2

− 𝑚2𝜙2] 𝑑𝑟
Ω

.                  (6) 

Based on Lemma 7, functional 

Φ(𝜙) ≔ ∫ ((𝜕𝜇𝜙)
2

− 𝑚2𝜙2) 𝑑𝑟
Ω

,                (7) 

is lower semi-continuous on 𝐿3(Ω), Φ: 𝐿3(Ω) → ℝ ∪ {∞}.    

Theorem 10: Let Ω be open and bounded on ℝ𝑛 with 

Lipschitz boundary, 𝑓: Ω × ℝ𝑁 → ℝ ∪ {+∞} Caratheodory 

function satisfies condition coercivity 

𝑓(𝑥, ∇𝜙) ≥ 𝛼1|𝜙|𝑝 + 𝛼2(𝑥),                             (8) 

for almost every  𝑥 ∈ Ω, ∀𝜙 ∈ ℝ𝑁, and for some 𝛼2 ∈ 𝐿1(Ω) 

and 𝛼1 ∈ ℝ dan 𝑝 ≥ 1. Then, let  

Φ(𝜙) ≔ ∫ ((𝜕𝜇𝜙)
2

− 𝑚2𝜙2) 𝑑𝑟
Ω

.      (9) 

With assuming that  𝜙0 ∈ 𝑊1,𝑝 with  𝐼(𝜙0) < ∞, then 
(𝑃) 𝑖𝑛𝑓{𝐼(𝜙): 𝜙 ∈ 𝜙0 + 𝑊0

1,𝑝
(𝛺; ℝ𝑁},          (10) 

have minimum effect [11]. 

Proof:  

Write inf{𝐼(𝜌): 𝜌 ∈ 𝜌0 + 𝑊0
1,𝑝

(Ω; ℝ𝑁)} = 𝑚  (≤ 𝐼(𝜌0)) 

since 𝐼(𝜌0) < ∞ ⇒ 𝑚 < ∞, f  lower bounded, then 𝑚 >
−∞. 

Let {𝜌𝜈} mimization sequence 𝐼(𝜌𝜈) → 𝑚, 𝜈 → ∞. So 𝜈 

enough large 

𝑚 + 1 ≥ 𝐼(𝜙𝜈) ≥ 𝛼1‖𝜙𝜈‖
𝐿𝑝
𝑝

− ∫ |𝛼2(𝑥)|

Ω

𝑑𝑥 

≥ 𝛼1(‖𝜙𝜈‖
𝑊1,𝑝
𝑝

− ‖∇𝜙𝜈‖
𝐿𝑝
𝑝

) − 𝛾1 

≥ 𝛼1‖𝜙𝜈‖
𝑊1,𝑝
𝑝

− 𝛼1‖∇𝜙𝜈‖
𝐿𝑝
𝑝

− 𝛾1 

≥ 𝛼1‖𝜙𝜈‖
𝑊1,𝑝
𝑝

− 𝛾2 

𝑚 + 1 + 𝛾2

𝛼1
≥ ‖𝜙𝜈‖

𝑊1,𝑝
𝑝

 

𝛾3 ≥ ‖𝜙𝜈‖
𝑊1,𝑝
𝑝

→ bounded 

with ‖𝜙𝜈‖
𝑊1,𝑝
𝑝

= ‖𝜙𝜈‖
𝐿𝑝
𝑝

+ ‖∇𝜙𝜈‖
𝐿𝑝
𝑝

. 

Extracting subset {𝜙𝜈} and find 𝜙̅ ∈ 𝜙0 + 𝑊0
1,𝑝

, so 

𝜙𝜈 ⇀ 𝜙̅  in 𝑊0
1,𝑝(Ω; ℝ𝑁). 

lim
𝜈→∞

inf 𝐼(𝜙𝜈) ≥ 𝐼(𝜙̅ ) 

𝜙̅ is minimizer for (P). 

Based on Theorem 10, functional 7 have minimizer can 

get as 𝜙0 + 𝑢 with 𝑢 ∈ 𝑊0
1,𝑝

 and 𝜙0 ∈ 𝑊1,𝑝. 

 

 

7.0  MINIMIZER CONSTRUCTION 
 
Rayleigh-Ritz method is the direct variational method 

for minimizing a functional which has been given. A 

‘jump’ here means the solution to variations exist 

without involving differential equations derived from 

the Euler-Lagrange. This method was first conveyed by 

Rayleigh in 1877 and expanded by the Ritz in 1909.  

Without prejudice to the generality, suppose that the 

functional form 

𝐼(Φ) = ∫ 𝐹(𝑥, 𝑦, Φ, Φ𝑥 , Φ𝑦)𝑑𝑆
𝑆

                    (11) 

Since the aim is to minimize the integral, Rayleigh-

Ritz method was selected with linearly independent set 

consisting of functions that are called expansion 

functions (basis functions) 𝑢𝑛 n and construct a solution 

approach in equation (11), which satisfy some 

boundary conditions. 

The solution proposed in the form of infinite series 

Φ̅𝑁 ≃ ∑ 𝑎𝑛𝑢𝑛 + 𝑢0𝑛=1 ,                                     (12) 

with 𝑢0 requirement the inhomogeneous boundary 

condition, whereas 𝑢𝑛 satisfy homogeneous boundary. 

Coefficient 𝑎𝑛 is the expansion coefficient to be 

determined and Φ̅𝑁 is the solution approach Φ (exact 

solution). If equation (12) substituted to (11), integral 

𝐼(Φ) viewed as a function consisting of N with 

coefficients 𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑁, 
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𝐼(Φ) = 𝐼(𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑁). 
The minimum value of this function is obtained if the 

function is derived for each coefficient is equal to zero: 
𝜕𝐼

𝜕𝑎1
= 0,

𝜕𝐼

𝜕𝑎2
= 0,

𝜕𝐼

𝜕𝑎𝑁
= 0 ,

𝜕𝐼

𝜕𝑎𝑛
= 0  𝑛 = 1,2,3, … 𝑁 

The set of N simultaneous equations is thus obtained. A 

system of linear algebraic equations are solved to 

obtain 𝑎𝑛, the results are incorporated into the solution 

equation approach (12). Approximation solution 

equation (12), if Φ̅𝑁 → Φ, with 𝑁 → ∞ as the result is said 

to converge to the exact solution to the [13]. 

Now we will calculate approximation for minimizer 

functional (5) with Ritz method. Means, will arrange a 

sequance that has a limit minimizer 𝜙. Members of 

suquence assumed𝜑̅𝑁 (N = 1, 2, 3,...), with  

𝜑̅𝑁 = 𝜑0 + ∑ 𝑎𝑛𝜑𝑛

𝑁

𝑛=1

 

and  𝜑0 = 0 and 𝜑𝑛 = 𝑥𝑛(1 − 𝑥) in order to satisfy the 

boundary condition𝜑(0) = 0 = 𝜑(1). Let 𝑣 in functional 

𝐹(𝜙) constant, then calculation coefficient of 𝑎𝑛 as 

follows: 

For N = 1 

𝜑̅1 = 𝑎1𝑥(1 − 𝑥) 

𝐹(𝜑̅1) = ∫ ((𝑎1𝑥(1 − 𝑥))
5

3⁄ + 𝑎1𝑥(1 − 𝑥)𝑣)

1

0

𝑑𝑥 

= 𝑎1

5
3⁄

∫(𝑥(1 − 𝑥))
5

3⁄

1

0

𝑑𝑥 + 𝑎1 ∫ 𝑥(1 − 𝑥)𝑣

1

0

𝑑𝑥 

𝐹(𝜑̅1) minimum when 
𝐹(𝜑̅1)

𝜕𝑎1
= 0 ⇒ 5

3⁄ 𝑎1

2
3⁄

. 0,056 + 0,167𝑣 = 0 

0,094𝑎1

2
3⁄

= −0,167𝑣 

𝑎1

2
3⁄

= −1,8𝑣 

𝑎1 = (−1,8𝑣)
3

2⁄  

So 𝜑̅1 = (−1,8𝑣)
3

2⁄ 𝑥(1 − 𝑥) 

𝐹(𝜑̅1) = 𝑎1

5
3⁄

. 0,056 + 0,167𝑎1𝑣 = 3,1806 

For N = 2 

𝜑̅2 = 𝑎1𝜑1 + 𝑎2𝜑2 

𝜑̅2 = 𝑎1𝑥(1 − 𝑥) + 𝑎2𝑥2(1 − 𝑥) 

𝐹(𝜑̅2) = ∫ ((𝑎1𝑥(1 − 𝑥) + 𝑎2𝑥2(1 − 𝑥))
5

3⁄

1

0

+ (𝑎1𝑥(1 − 𝑥) + 𝑎2𝑥2(1 − 𝑥))𝑣) 𝑑𝑥 

= 𝑎1

5
3⁄

. 0,033 + 0,033𝑎1𝑎2 + 𝑎2

5
3⁄

. 0,0095 + 0,167𝑎1𝑣

+ 0,083𝑎2𝑣 

𝐹(𝜑̅2) minimum when 
𝜕𝐹(𝜑̅2)

𝜕𝑎1
= 0 ⇒ 5

3⁄ 𝑎1

2
3⁄

. 0,033 + 0,033𝑎2 + 0,167𝑣 = 0 

0,055𝑎1

2
3⁄

+ 0,033𝑎2 = −0,167𝑣 

𝐹(𝜑̅2)

𝜕𝑎2
= 0 ⇒ 5

3⁄ 𝑎2

2
3⁄

. 0,0095 + 0,033𝑎1 + 0,083𝑣 = 0 

0,0158𝑎2

2
3⁄

+ 0,033𝑎1 = −0,083𝑣 

𝑎1 = (−3,03𝑣)
3

2⁄      𝑎2 = (−5,25𝑣)
3

2⁄  

So 𝜑̅2 = (−3,03𝑣)
3

2⁄ 𝑥(1 − 𝑥) + (−5,25𝑣)
3

2⁄ 𝑥2(1 − 𝑥) 

𝐹(𝜑̅2) = 𝑎1

5
3⁄

. 0,033 + 0,033𝑎1𝑎2 + 𝑎2

5
3⁄

. 0,0095 + 0,167𝑎1𝑣

+ 0,083𝑎2𝑣 = 3,0128 

For N = 3 

𝜑̅3 = 𝑎1𝑥(1 − 𝑥) + 𝑎2𝑥2(1 − 𝑥) + 𝑎3𝑥3(1 − 𝑥) 

𝐹(𝜑̅3) = ∫ ((𝑎1𝑥(1 − 𝑥) + 𝑎2𝑥2(1 − 𝑥) + 𝑎3𝑥3(1 − 𝑥))
5

3⁄

1

0

+ 𝑎1𝑥(1 − 𝑥) + 𝑎2𝑥2(1 − 𝑥) + 𝑎3𝑥3(1

− 𝑥)𝑣) 𝑑𝑥 

= 𝑎1

5
3⁄

. 0,033 + 𝑎2

5
3⁄

. 0,001 + 𝑎3

5
3⁄

. 0,004 + 0,02𝑎1𝑎3

+ 0,033𝑎1𝑎2 + 0,01𝑎2𝑎3 + 0,167𝑎1𝑣

+ 0,083𝑎2𝑣 + 0,05𝑎3𝑣 

𝐹(𝜑̅3) minimum when 
𝐹(𝜑̅3)

𝜕𝑎1
= 0 ⇒ 5

3⁄ 𝑎1

2
3⁄

. 0,033 + 0,033𝑎2 + 0,02𝑎3 + 0,167𝑣

= 0 

0,055𝑎1

2
3⁄

+ 0,033𝑎2 + 0,02𝑎3 + 0,167𝑣 = 0 

𝐹(𝜑̅3)

𝜕𝑎2
= 0 ⇒ 5

3⁄ 𝑎2

2
3⁄

. 0,001 + 0,033𝑎1 + 0,01𝑎3 + 0,083𝑣

= 0 

0,00167𝑎2

2
3⁄

+ 0,033𝑎1 + 0,01𝑎3 = −0,083𝑣 

𝐹(𝜑̅3)

𝜕𝑎3
= 0 ⇒ 5

3⁄ 𝑎3

2
3⁄

. 0,004 + 0,02𝑎1 + 0,01𝑎2 + 0,05𝑣 = 0 

0,00667𝑎3

2
3⁄

+ 0,02𝑎1 + 0,01𝑎2 = −0,05𝑣 

𝑎1 = (−3,03𝑣)
3

2⁄  ; 𝑎2 = (−5,7𝑣)
3

2⁄  ; 𝑎3 = (−7,5𝑣)
3

2⁄   

So 𝜑̅3 = (−3,03𝑣)
3

2⁄ 𝑥(1 − 𝑥) + (−5,7𝑣)
3

2⁄ 𝑥2(1 − 𝑥) +

(−7,5𝑣)
3

2⁄ 𝑥3(1 − 𝑥) 

𝐹(𝜑̅3) = 𝑎1

5
3⁄

. 0,033 + 𝑎2

5
3⁄

. 0,001 + 𝑎3

5
3⁄

. 0,004 + 0,02𝑎1𝑎3

+ 0,033𝑎1𝑎2 + 0,01𝑎2𝑎3 + 0,167𝑎1𝑣

+ 0,083𝑎2𝑣 + 0,05𝑎3𝑣 = 2,9812 

 

 

 

Figure 1 Graphical relation between position (x) with density 

(𝜑̅) 
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Figure 1 shows the sequence 𝜑̅𝑁 converges to some 

expected function. Figure 2 shows the functional 

value F for each sequence term to be monotonously 

decreasing over N. 

 

 
Figure 2 Graph relation sequence N with functional energy 
F(𝜑̅N) 

 

 

8.0  CONCLUSION 
 

The Direct Method of Calculus Variation is an 

alternative to solve the Klien-Gordon field equations. 

The Direct Method can simplify the calculation 

because the variables calculated are expressed in 

functional form of energy. The existence of minimizer 

have been proven, with minimizer 𝜙̅ = 𝜙0 + 𝑢 with 

𝑢 ∈ 𝑊0
1,𝑝

 and 𝜙0 ∈ 𝑊1,𝑝. Explicit form of the minimizer 

was calculated by the Ritz method through rows of 

convergent density.  
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