
THEORY

Figure 1 shows a strut which has been buckled into an arch and then attached to
its supports (dashed line). Subsequent loads applied to the arch cause it to deform
further to its final position (solid line).

The different ial equations describing the final position are taken from [2J and
are the following:

INTRODUCTION

In a previous paper [1 J I , the author investigated the buckli.ng and snap.t.hrou~h

b h vior of a prestressed arch made by first buckling a horizontal strut Into Its
ea . d
rural curved shape and then attaching it to its supports. Symmetric an un-

~;mmetr i c modes of buckli ng under two types of vertical load were discerned, ~nd
bifurcat ion points located. The theory used, however, contained the assumption
that the arch was axially incompressible.

In a later paper [2), the aut hor generalized the theory in two ways. First, :he
effect of center line compressibility was introduced. Th is modif ied the governing
nonlinear first-order differential equations and increased their number from four to
five. Second, three nonl inear different ial equatio ns of equilibrium were adde.d to
the bound ary-value proble m to give a total system of eight differential equations .
This opened the way for analyzing a prestressed arch under any type ~f load,
including th e weight of the arch itself. Altho ugh the theory was generallze~ to
include axial compressibility in that paper, the problem that was solved contained
the assumpt ion that the compressibility was zero. The work is continued in the
present paper by using the generalized theory to study the effect of axial com­
pressibility on the snap-through buckling of prestressed arches.
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ABSTRACT

A generalized theor y is used to investigate the effect of axial compressibility
on the stability of a prestressed arch obtained by buckling a strut into a
deformed shape and then attaching it to its supports. For various amounts of
compressibility, geometric and mechanical quantities caused by a uniform
load that produces large displacement are computed. Symmetric and , in some
cases, unsymmetric modes of buckling are found .

LIST OF PRINCIPAL SYMBOLS

A Area of cross section
C Axial compressibi lity
E Young's modulus
H Thrust
h Height of prestressed arch
I Moment of inert ia of cross section
10 Reference moment of inert ia
L Original length of strut
I span of arch
M Bending couple
N Normal force
qx Intensity of distributed force in x-direct ion
qy Intens ity of distributed force in y-direct ion
qo Reference intens ity of distributed force
RA Reaction at A
RB Reaction at B
S Shear force
s Distance along deformed centerline
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Net displacement in y-direction
Coordinate of cross section in unstressed state
Coordinate of final cross section
Inclination of final centerline

dB =~ (1 )
dx EI

dUy = (1 +~) sin 8 (2)
dx EA

d~ N
(3)= (1 +-) cos8

dx EA

ds N
(4)=1+ -

dx EA



duy dUy
dx =~ for initial configuration (8a)

(qx=qy=O)

dux' d~
-- = - - 1 for load acting, symmetric or unsymmetric mode (8b)

dx dx

(9)

(12)

(11 )

(10)

(Be)

(8a)

(8b)

ux8 0 =2uxCo

(L original length of strut), and

ux'(O) = - uxCo for load acting, symmetric mode

ux'(O) = - ux8 0 for load acting, unsymmetric mode

uy'(O) = - h for initial cofiguration
(qx = qy = 0)

qx = 0, qy = - Q<x - xQ>_1

(IV) Uniform load ql per length of vertical projection:

(J(~ = (JC = 0 for initial configuration or for symmetric mode (1)

uy(L) = 6 8 V = 0 for unsymmetric mode (2)

uy' (t) = e = 0 for initial configuration (8a)

ux'$ = f = 0 for symmetric mode (8b)

ux'(L) = 6 8 H = 0 for unsymmetric mode (8c)

qx = q I sin (J, qy = 0

Equations for qx and qy for various types of load are as follows:

qx = 0, qy = - qo cos (J

(III) Concentrated vertical load Q at x = xQ:

Aw
qx = 0, qy = - 1+ N

EA

(II) Uniform load qo per length of horizontal projection

(I) Dead load (w is specific weight of material):

Since the quantities (J A and H are not known a priori, the set of initial conditions is
not complete, and some terminal conditions must be adopted to create a two-point
boundary-value problem that admits of solution. Such terminal conditions are the

following:

where

(6)

(5)

(J(O) = (J A (l)

uy(O)=O (2)

~(O) = 0 (3)

s(O) = 0 (4)

N(O) =- H cos(JA - RA sin (JA (5)

5(0) = - H sin (J A + RA cos (J A (6)

M(O) = 0 (7)

d N SM N N .-=--- qx (1 +-) cos f - qy (1 +-) Sin (J
dx EI EA EA

dS NM N. N
- =-- qx (1 + -) Sin (J + qy (1 + -) cos (J
dx EI EA EA

In these equations, the independent variable x is the distance from the origin to the
generic cross section as measured when the strut is unstressed, (J is the inclination of
the centerline in the final position, uy is the net displacement in the y-direction, ~ is
the x-coordinate of the final position of the cross section, s is final centerline
distance, N is normal force (positive if tensile), 5 is shear force (positive if toward
the "outside" of the arch on a negative face), and M is the bending couple (positive
if producing compression on the "outside" of the arch). The primed variables are
introduced for use as control variables during the integration of the differential
equations. On the right side of the equations, E is Young's modulus, I is moment of
inertia of cross section (allowed to vary with x but assumed to remain constant
during all deformations), A is area of cross section (same assumptions as for I), and
qx and qy are intensities of distributed forces per unit length of deformed center­
line.

The initial conditions corresponding to differential equations (1 )-(8) are as
follows:



METHOD OF SOLUTION

For combinations of load, one obtains the total qx or qy by adding the con­
tributions of the various loads acting.

(V) External pressure p:

qx = p sin e, qy = - p cos e (13)

the load decreases and the arch deforms in an unsymmetric mode. As yet, no
unsymmetric modes have been found for the cases C = 0.0050 and 0.0100.

The three arches for which C = 0.0025, 0.0050, and 0.0100 return to a straight
configuration at the point where the symmetric curves cross the horizontal axis (as
manifested by the value eA = 0 in Figure 3).

The computations have shown in a general way that for C<O.OOOl, the effect of
axial compressibility is minor, and the approximation C = 0 is normally permissible.

The nonlinear two-point boundary-value problem formulated in the previous
section can be solved by the shooting method used previously by the author. To
that end, consider a numerical example in which I and A are assumed to be con­
stant with x and to have values 10 and Ao' respectively. In the process of non­
dimensionalizing the boundary-value problem, the measure of axial compressibility
of the strut that emerges in a natu ral way is the parameter C = 10/AoL

2
. In the

previous paper [21, an arch with C = 0 under load type (I) was analyzed. In the
present paper, a set of arches with h/Q= 0.25 under load type (II) with varying
amounts of axial compressibility (from 0 to 0.0100) is considered.

The shooting method used necessitates assuming values for two input quantities
in order to create a complete set of initial conditions. The quantities required here
are eA and H, since RA can be computed in every case from the equation
RA = qoQ/2. Once values are assigned, the differential equations can be integrated
over half or all of the arch (for symmetric and unsymmetric modes, respectively) by
a standard technique such as the Runge-Kutta method. Values for two output
quantities corresponding to eA and H, respectively, are then computed. Those used
in this work were, for the initial configuration, eC and e; for a symmetric mode eC
and f; and, for an unsymmetric mode, toBV and toBH. After a search is conducted
to a find two values of an input quantity that produce opposite signs in the
corresponding output quantity, regula falsi is used to systematically adjust the in­
put until the output is zero. This operation is carried out at two levels to determine
the two inputs that make both outputs zero simultaneously.

RESULTS AND CONCLUSIONS

Figures 2, 3, and 4 show graphs of dimensionless load vs. vertical position of
midpoint, angle of inclination at support, and horizontal thrust, respectively, for
various values of C. The curves for C = 0 are those obtained in [11 and are repeated
here for comparison . By shifting the origin in Figure 2 to the point at the left where
each curve crosses the horizontal axis, these curves become load-deflection curves.

Starting from zero load, all the arches display a symmetric mode of deformation
as the load is increased. These "symmetric" curves eventually reach peak ordinate
(of approximately 117.0, 80.3, 33.6, 15.7, and 6.4 for C = 0, 0.0010, 0.0025 ,
0.0050, and 0.0100, respectively), and then decrease. Before that happens, how'
ever, the arches for which C = 0, 0.001 0, and 0.0025 experience a bifurcation point
(with ordinates of approximately 48.3, 45.4, and 33.6, respectively), after which
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