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Muakalah ini memaparkan formulasi analitik dan penyelesaian numerik aliran
i tiga yang rotasional di dalam sebuah saluran yang melengkung.
mulasi ini berdasarkan perhitungan halaju aliran dan komponen vortisiti

axis saluran tersebut. Halaju sekunder ditentukan melalui penyelesaian
gk persamaan-persamaan keterusan dan vortisiti melalui penggunaan fungsi
i fungsi arus. Hasil-hasil numerik diberikan dan dibandingkan dengan data-

ita eksperimen yang ada.

ABSTRACT

" This article presents the analytical formulation and numerical solution of the
three -~ dimensional rotational flow in curved duct. The formulation is based on
ulating the flow — wise velocity and vorticity components from the
nomentum equation. The secondary velocities are determined from the
altaneous solution of the continuity and vorticity cquations through the use
a streamlike function. The results presented are corapared with the existing

imental data.

econdary flow is a principle phenomena associated with the three
sional flow in turbomachine compressors and turbines. It is defined here as
difference between the actual flow, and the flow which would occur on a
-dimensional axisymmetric and meriodional stream surfaces. Of the many
tors that contribute to the development of secondary flow, end wall
ndary layer is the most important. The interaction of the hub and casing
moving boundary layer flow with the main flow, which is turning through
blades, results in the secondary flow. This interaction is caused by the blade
blade pressure gradient, the radial pressure gradient and the relative motion
en the blade end. The annulus walls are additional factors that contribute

0 the establishment of the secondary flow.
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In order to understand the physical nature of this secondary flow, let ys
consider what would happen to a flow with collateral boundary layer, or more
generally a flow with a distorted velocity profile that enter a cascade. It js
observed that secondary flow occurs in planes perpendicular to the curved
passage’s axis. There must be pressure gradient across the passage to balance the
centrifugal force on the fluid due to its curved trajectory, the pressure being
greater at the outer wall and smaller at the inner wall of the passage. The fluid
near the top and bottom of the passage is moving more slowly than that near the
‘central plane due to viscosity and therefore requires a smaller pressure gradient
to balance its reduced centrifugal force. Consequently a secondary flow occurs
in which the fluid near the top and bottom walls of the passage moves inwards
towards the centre of the curvature of the central axis and the fluid near the
central plane moves outwards. This in turn modifies the axial velocity. This
phenomena was proved numerically by Austin (1) and Rushmore (2).
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here (u, v, w) are the velocity components in the (r, 0 z) and the £ com-
pnent of the vorticity, respectively, defined as,

It is well known in turbomachinery (3) thai secondary flow has an adverse
effect on performance. A detailed review on this subject is given by Horlock and
Lakshminarayana (4). A thorough understanding of this flow problem is there-
fore necessary to improve the performance of such turbomachines. Since a - 3
complete analysis of the problem in an actual machine is extremely difficult, o e i o
see figure 1, various simpler models have been used. The flow in a curved (= 3z ar

rectangular channel has been frequently used for studying the secondary flow is the total pressure divided by the density. The total pressure is eliminated

due to the streamline curvature. A comparison of the flow fields in bent passages Y - and (3) using crossed differentiation. The resulting
and cascades is given in (5). It was observed that the streamlines are similar in a ;;:;2; a(:e) ;o(l%lld Boe (E) and vgare:

60 degrees bend and a 60 degrees turning angle cascade, but the boundary layer
flows are noticeably different in the two cases. This model has been successfully

. - v € 38 £y ss o 0981 Enicy B8
used by Fagan (6), Stuart and Hetherington (7), Hosney (8) and Abdallah (9). “l‘cz N BN RN SN o - . 28, 3z ar
Rushmore (2) in his work, discussed in great details all the fluid models that he or r o9
used in his study of curved ‘duct flows’. The pertinence, applicability and short-
comings of these models were also pointed out. £ v v v Idu, 3v (6
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MATHEMATICAL FORMULATION
et ) ; " I 3w v
The inviscid secondary flow theory was first devised by Squire and Winters + uwg - v ( & o ™ :

(10), who demonstrated that if rectiliner shear flow with nonuniform velocity
distribution enters a bend then secondary flow results. Their analysis is only
valid for small turning angle. Hawthorne (11) using more complex vector mani-

pulations generalised this result for larger turning angles. Marris (12), Laksh- oV + v v +w L' =w(u 38 + 236 +w = )+‘u("sﬂ * ;)
minarayana and Horlock (13) extended Hawthorne’s analysis, giving a general . xr 00 0z ar ¥ 36 L -9k
vorticity equation valid for compressible, stratified and viscous flow. 3u Bw) ( dv_ v _Idu ) u d )
In light of the previous work in this area, the governing equations are derived 3 ( or 9z r r rad or 9z
frox'n 'the basic equations of conservation qf mass anq momentum fo_r steady, Iaw oV v v . v v _Idu (7
inviscid and incompressible flow. The equations are written in cyclindrical polar = EE 5.z_) (? St 3 § 3% 1S o

co-ordinates to match the passage geometry, see figure (2), used in this study. -
ull derivation of the above equations is straight forward but is very lengthy.
itial and boundary conditions.
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Refering to figure (2), the following initial and boundary conditions are use: he condition of stability was found to be,

a8 1wy
Ar s, 33
is simple expression was based on the assumption, u ~ w. Essentially, the

v(r,0,2)= v, (z) (8

€ (r,0,2)=0 9 yperbolic equations (6) and (7) are solved using a marching technique.
u(Ri,0,z)=0 (10a - The method of solving euqations (4) and (5) for the cross flow velocity
ymponents u and w will be briefly outlined here. More details about this
u(Ro,0,2z)=0 (10b que can be found in (15). Equations (4) and (5) are first rewritten in the
g forms:
w(r,0,0)= (11a ‘
=) + = w = - X (s
w(r,0,H)=0 (11 g % i
Equations (1) to (7) with the boundary conditions (8) to (11) form a closed
system which is solved for the variables ut |v, w and few Y e gl (w = ¢
3z or (16

Computational Method of Solutions.

Equations (6) and (7), which represent a first order hyperbolic differential | new dependent variable, X , is defined to satisfy the continuity equation (4)

equation, can be written in the following general form: (12 ntically. The function X is similar to the stream function, sy , in satisfying
of v B S f continuity equation identically, and is therefors called the streamlike
- N, & 4. s S ction. The velocity Tomponents u and w are related to X, through the fol-

ing relations:
where f canbe vor  and S are the corresponding source term of equations (6)

, g
and (7). respectively. Referring to figure (3), letijk refer to the indices of the u = L v 3 ik = %‘gl ) dr (17
grid point in the 0, r and z directions. Expressing the derivative with respect to 0 sl P E ‘
by first order accurate forward difference scheme, and the derivatives with .
respect to r and z by a second order accurate central differences scheme,
equation (12) reduces to,
g 1 0x (18
- AB P 1 =R T r ar
fiv1,9,0 = Tigk+ (2 (55 Cidnk ™ T, 3-1k) ‘

of e stream function, VY, , appears in the velocity component u, given by
equation (17).

r rw AB £, wEy W
= ] +( — =— i,d,k+1 i,j,k-1)
. (\))Sll]lk ( V ) ( 20z ) ( rJe rJe (13) eq h & (16) -

ti 17) and (18) are substituted into equation , one obtains:
Using Von Neumann method (14), this explicit finite difference expression for Jitiens equations (17) and (18)ar 4

the values of the variables vand |, at the grid point of (i + 1) plane, is uncon-

ditionally unstable. Thus to avoid this numerical unstability, a modification was 4 8. i O A~ 9 0w 19
made. It can be written as, 4 s dal @ SJXT. 4 # - - 9z él o8 &
 STINEE—ER Rl S AU | T + £
i+l,3,k 4 i,7H,k i,J-1,k 7i,3,k+l 1,9 k=1 ‘The boundary conditions, equations (10) and (11), are written in terms of the
A8 reamlike function y as follows,
+

- =~E
(5 g ) (1,35, 340,k + Bs

1,3/ r av ,
P S g £ = -1 (-3g)datr = Riandr = R, (20
v 2R ) ("i,3,kH174,5,k-1 ) (14) x|
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and,

_az. = 0

ar aterigrass O

(21

Integrating equations (20) and (21) alon i i
: g the boundaries, iri
boundary conditions in terms of the streamlike function X o:n P et

)
W Of = 24 T atr =

Ri

friz 4 C, andr =

v
28

ot

and

where C, and C1 are constants to be evaluated from the continuity of (13
( ( uity of t
streamlike function at the corners of the rectangular cross section. Ref)elrring t;

figure 3, the finite differe i i
R nce representation for equation (20) using successive

Xy s = Lomlw) oy s o
i,j,k Xl’.]’k w{al Xi:j+13k

+ o oy +
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where w is the over-relaxation factor, and
o - = 1 _ A (25a
( 5 ) B
o, = Ar 25b
2 e B =) oull (
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Results and Discussion.

A computer program was develo i i
s ; ped to solve the equations governing the flow
m<1)t1<_)n using the Qrocedure outlined in the formulatior% and ngethod of
solution. The analysis was applied to the flow in the simple duct geometry of
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e (2), whose cross section isa 5 x 5 inch square and whose mean radius is 15
s. The flow resulting from a simple inlet velocity profile with linear
jon in the 7 direction was investigated. The results are presented in a non-
mensional form, except the velocity contours. The duct inner radius R, and
he maximum flow velocity at inlet Vim“ , were used in the normalisatior{. The .
umerical computations were carried out in double precision on an AMDAHL

D computer. The results presented herc were generated using a (11 x 11 x 45)

"The results are presented in the form of velocity and secondary vorticity
ontours, and the vectors showing the magnitude and direction of the secondary
ities. The velocity contours at the 30°, 60° and 90° turning angles are
n in figures 5, 6 and 7. It can be seen from these figures that the rotation
the velocity, contours, which were parallel and horizontal at the inlet, is very
jgnificant in the first 60° of the duct. The contours become almost vertical
efore their rotation rate starts to decrease for turning angles greater than 60°

" The secondary vorticity and the corresponding secondary velocities are shown
n figures 8, 9 and 10 at 30°, 60° and 90° turning angles. A comparison of
figures 8a, 9a and 10a reveals that the generated secondary vorticity reaches a
imum at the 30° cross section. It is interesting to recognise that with
etric inlet velocity profile, the secondary vorticity is asymmetric and there-
vanishes at the plane of symmetry. It is also apparent from these figures
the vortex centre has moved towards the outer radius between the 30° and
90° turning angles. The corresponding variations in secondary velocities can
seen in figures 8b, 9b and 10b. It is observed that, while the secondary
ocitics are comparable in magnitude at the 30° and 60° duct cross section
are significantly smaller at the 90 cross section. This is the region of very
secondary vorticity of figure 10a. In this region, all the velocity contours of
re 7, remain practically vertical with no appreciable rotation. It is interesting
to see that the centre of rotation is different from the vortex centre in figures 8,
9 and 10. This difference can be attributed to the source term in the continuity
equation which is caused by the variation in the through flow velocity
component in the 0 — direction.

W

The available experimental results (16) in the lower half of Joy’s duct are also
presented for the purpose of qualitative comparison since the inlet profiles were
t exactly the same as can be seen in figure (4). In spite of the differences
tween the inlet velocity profiles, it can be seen from figures (11) through (13)
that the present analysis predicts not only the general trends reported in the
experimental results, but also the magnitude of rotation of the constant velocity

Acknowledgement

~ This research is supported by United States Air Force Office of: Scifmtiﬁc
Rescarch Grant No. F 49620-78C-0041. Thisworkis under the direction of
Professor Awatef A. Hamed and supervised by Dr. Shaaban Abdallah, Depart-
ment of Acrospace Engineering, University of Cincinnati, Ohio.

JEL TEKNOLOGI BIL. 3 JUN 83 17




CONSTANT e
PLANE

U (i,).k+

A AT k)
P(i -/L<)J4r
/

- Q(i+1,], k)

\ S( i,j—T, k) C(

. Passage Vortex
Horseshoe Vortex
Separation Line of Passage Vortex

Inlet Boundary Layer Separates
Saddle Point

Streamlines

mMmooOw>

Figure .1. Real Flow Phenomena in Cascade

Figure, 3, Finite Difference Grid

T
80 280

60 %
\f\/\

50 55
__/"—SN_\—'./_-
40 IS —
a Theontical b. Experimental ,ref (16 )

Figure 2 Curved Duct Configuration Figure 4 Inlet Velocity Profile

5 JERNEL TEKNOLOGI BIL. 3 JUN 83 RNEL TEKNOLOGI BIL. 3 JUN 83 19




r 70 AEE = = e S EOR
Go : e e T T b 1
=7 Y R, N
= 75 i e ts o g
= v LS R
LICJ 50 t i ‘ o y ‘
< Vauiter T e
E B A an! B ¢y / .
45 R e o S Y
(a) secondry vorticity (b) secondary velocities
. o Figure B secondary vorticity and velocities at 6 = 30°
F'gure .54 V@‘Ocity Contours at g = 30 . lmux
e
0.2 R R B Y P
L \ 0 5 A S e T g ™)
’ 90 ’ #| e e ey b
= 09 Lo ol Qe N e il
= o b
<< PO ik 1= S Sy
= &g 4 4
 ed N N P
%‘ 145 £ %l s 3 o
Z L} . Sl = 4 3
50 |60 70 80 \ \_"--":
(a) sccondary vorticity (b) secondary velocities
and velocities at & = 60°

Figure 9 secondary vorticity
v
I

| ma x |

Figure.6. Velocity Contours at © = 60°

4
ol
§0 70 80\ 90

Figure. 7. Velocity Contours at © = 90°
20 JERNEL TEKNOLOGI BIL. 3 JUN 83

0-2

0.6 ' T S el BETTL B SR et

& & B A o leld @
feodl Bt $AEGartn bos 5
S kSN e S
00 It (e, T s
& & s % e w8

(b) secondary velocities

o
velocity at © = 90

A e e

INNER WALL

(@) secondary vorticity
Figure 10- Secondary vorticity and

TEKNOLOGI BIL. 3 JUN 83




RET O R AN

UNIVERSITI TEKNOLOGI MALAYSLA

References

Austin, L.R., “The Development of Viscous Flow within Helical Coils, “‘Ph.D Thesis,
- State University of Utah, 1971.

GO
75 70 ~ Rushmore, W.L., “Theoritical Investigation of Curved Pipe Flows,” Ph.D Thesis,
60 State University of New York at Buffalo, 1975.
50 ]
g NASA Staff, “Aerodynamic Design of Axial Flow Compressors,” NASA SP-26, 1965.
0

4 A Horlock, J.H. and Lakshminarayana, B., “Secondary Flows: Theory, Experiment and
i Apphcatlon in Turbomachinery Aerodynamlcs Annual Review of Fluid Mechanics,

Vol. 5, 1975.

/
S
(34}

Herzig, H.Z. Hansen, A.G., and Costello, G.R., ““A Visualisation Study of Secondary

(@) present Result (L) Experimental Data :
Ref 15 ~ Flow in Cascades,” NACA Rept 1163, 1954.

Figure 11 Velocity contours at 6 = 30 Lower half

i

@) present Result (b) Exp%rég\e?écl Data

Fagan, J.R., “Three-Dimensional, Subsonic, Duct flow Analysis,” Final Tech. Report,
The Naval Anr System Command, AIR-310, Contract No. N00019-71-6-0416, 1973.

‘Stuart, A.R. and Hetherington, R., “The Solution of the Three Variables Duct Flow
Analysis,” Int. Symposium on the Fluid Mechanics and Design of Turbomachinery,
~ Penn. State University, 1973.

. Hosney, W., ‘“Numerical Solution for Three-Dimensional Rotational Flow in
~ Cascade,” Ph D Thesis, The University of Cincinnati, 1975.

\—1

Abdallah S. and Hamed, A., “Three-Dimensional Rotational Flow in Highly Curved
‘Ducts due to Inlet Velocity,” AIAA Paper -78-146, 1978.

1
Squire, H.B., and Winters, K.G., “The Secondary Flow in a Cascade of Airfoils in a
nonuniform Stream,"J of Aeronauncal Sciences, Vol. 18, 1951.

Hawthorne, W.R., “Secondary Circulation in Fluid Flow,” Proceedings of the Royal

Figure 12. Velocity contours at 8 = 60 Lower half Ry Yol 206, 1351,

" Marris, A.W., “The Generation of Secondary Vorticity in an Incompressible Fluid,”
Trans. ASMI; Series E., J. of Applied Mechanics, Vol. 30, 1963.

40/ 45 Lakshminarayana, B., and Horlock, J.H., “Generalised Expression for Secondary

" Vorticity using Intrinsic Co-ordinates,” J. of Fluid Mechanics, Vol. §9, 1973.

i Richtmyer, R.D., and Morton, K.W., “Difference Methods for Initial-Value
~ Problems”’, Interscience Publishers, 2nd. ed., 1967.

Hamed, A., and Abdallah, S., “A New Approach for Solving the Vorlicity and
50/60/70 |80 Continuity Equations in Turbomachmery Ducts,” AIAA Paper-79-0046, 1979.

Joy, W., “Experimental Envestigation of Shear I'low in a Rectangular Bends,” M.Sc
Thesis, Mass. Institute of Technology, 1950.

(@) present results (b) Experimental Data
Ref 1(15)

Figure 13 Velocity contours at 0O = 90° Lower half

22 JERNEL TEKNOLOGI B 83
. 3 7 INEL TEKNOLOGI BIL. 3 JUN 83




