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SECO N DARY FLOW DEVELOPMENT IN A
CASCADE LIKE PASSAGE OF

A T U RBO MACH IN E.

This article presents the analytica l formulation and numerical solution of the
three - dimensional rotational flow in curved duct. The formulat ion is based on
calculating the flow - wise velocity and vorticity. components from the
momentum equat ion. The secondary velocities are determined from the
simultaneous solution of the continuity and vorticity equations through the use
of a streamlike function . The results presented arc compared with the existing
experimental data.

Secondary flow is a principle phenomena associated with the three
dimensional flow in turbomachinc compressors and turbines. It is defined here as
the difference between the actua l flow, and the flow which would occur on a
twc -dhnensional axisymmetric and mcriodional stream surfaces. Of the many
factors that contribute to the development of secondary flow, end wall
boundary layer is the most important. The interaction of the hub and casing
Slow moving boundary layer flow with the main flow, which is turning through
the blades, results in the secondary flow. This interaction is caused by the blade
to blade pressure gradient , the radial pressure gradient and the relat ive motion
between the blade end . The annulus walls arc additional factors that contribute
to the establishment of the secondary flow.

Makalah ini memaparkan formulasi analitik dan penyelesaian numerik aliran
dimensi tiga y ang rotasional di dalam sebuah saluran y ang m elengkung.
Formulasi ini berdasarkan perhi tungan halaju aliran dan komponen vortisiti
sclari ax is saluran tersebut . Halaju sekunder diten tukan melalui penyelesaian
serentak persamaan-persamaan ke terusan dan vortisiti melalui penggunaan fungsi
seperti fungsi arus. Hasil-hasil numerik diberikan dan dibandingkan dengan data­
data eksperimen y ang ada.



MATHEMATICAL FORMULATION

The inviscid secondary flow theory was first devised by Squire and Winters
(10), who demonstrated that if rcctiliner shear flow with nonuniform velocity
distribution enters a bend then secondary flow results. Their analysis is only
valid for small turning angle. Hawthorne (1 1) using more complex vector mani­
pulations generalised this result for larger turning angles. Marris (12). Laksh­
minarayana and Horlock (13) extended Hawthorne's analysis, giving a general
vorticity equation valid for compressible. stratified and viscous flow.

In light of the previous work in this area, the governing equations are derived
from the basic equations of conservation of mass and momentum for steady.
inviscid and incompressible flow. The equat ions are written in cyc1indrical polar
co-ordinates to match the passage geometry, see figure (2), used in this study.
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Full derivation of the above equations is straight forward but is very lengthy .
Initial and boundary conditions.
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P is the total pressure divided by the densit y. Th~ total ~re~sure is elimina~ed
from equations (l) , (2) and (3) using crossed differentiation. The resultmg
equations which are solved for E: and v are :
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The momentum equations :

av v au
vIE, =

ap (l
( + - arv ar r ao

1 aw el v :v ~+
1 3u )=

1 _:~ (2
w ( ) - u - + r ;)0 r ( 0r ao az r r

(1 aw av ~ ( 3
u E, v = azr ae az

The Continuity equation:
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where (u, v, w) are the velocity components in the (r, 0 z) and the E: com-
ponent of the vorticity, respectively , defmed as,
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It is well known in turbomachinery (3) that secondary flow has an adverse
effect on performance. A detailed review on this subject is given by Horlock and
Lakshminarayana (4). A thorough understanding of this flow problem is there­
fore necessary to improve the performance of such turbomachines . Since a
complete analysis of the problem in an actual machine is extremely difficult ,
see figure 1, various simpler models have been used. The flow in a curved
rectangular chan nel has been frequently used for studying the secondary flow
due to the st reamline curvature. A comparison of the flow fields in bent passages
and cascades is given in (5). It was observed that the streamlines are similar in a
60 degrees bend and a 60 degrees turning angle cascade , but the boundary layer
flows are noticeably different in the two cases. This model has been successfully
used by Fagan (6), Stuart and ' Hetherington (7), Hosney (8) and Abdallah (9).
Rushmore (2) in his work) discussed in great details all the fluid models that he
used in his study of curved 'duct flows'. The pertinence, applicability and short­
comings of these models were also pointed out.

In order to understand the physical nature of this secondary flow, let Us
consider what would happen to a flow with collateral boundary layer, or more
generally a flow with a distorted velocity profile that enter a cascade. It is
observed that secondary flow occurs in planes perpendicular to the curved
passage's axis . The re must be pressure gradient across the passage to balance the
centrifugal force on the fluid due to its curved trajectory, the pressure being
greater at the outer wall and smaller at the inner wall of the passage. The fluid
near the top and bottom of the passage is moving more slowly than that near the
'central plane due to viscosity and therefore requires a smaller pressure gradient
to balance its reduced cent rifugal force. Consequent ly a secondary flow OCCUrs
in which the fluid near the to p and bottom walls of the passage moves inwards
towards the centre of the curvature of the central axis and the fluid near the
central plane moves out wards. This in tu rn modifies the axial velocity. This
phenomena was proved numerically by Austin (I ) and Rushmore (2).



Refering to figure (2) , the following initial and boundary conditions are used:

Equations (1) to (7) with the bound ary condition s (8) to (11) form a closed
system which is solved for the variables ulE,;Lv, wand

Computational Method of Solutions.

Equations (6) and (7), which represent a first order hyperbolic differential
equation, can be writt en in the following general form: (12

af v af af
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where f can be v or and S are the correspondi ng source term of equations (6)
and (7) respectively . Referring to figure (3), let ij,Ie refer to the indices of the
grid point in the a , rand Z directions. Expressing the derivative with respect to 0
by first order accurate forward difference scheme, and the derivatives with
respect to rand z by a second. order accurate central differences scheme,
equation (12) reduces to ,
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where r is a chosen reference value. The deviation from the standard definition
of the stream function, 1jJ I , appears in the velocity component u, given by
equation (17). .

Then equations (17) and (18) are substituted into equation (16) , one obtains :
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The boundary conditions, equations (LO) and (11) , are written in terms of the
streamlike function X as follows,

A new dependent variable. X , is defined to satisfy the continuity equation (4)
identically . The function x: is similar to the stream function, '1/1 ,in satisfying
the continuity equation identically, and is therefore called the streamlike
function . The velocity components u and ware related to X, through the fol­
lowing relations :
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The condition of stabilit y was found to be,

~ < 1:: ::tJ. r - r u
This simple expression was based on the assumption , u 0< ·w. Essentially, the
hyperbolic equations (6) and (7) are solved using a marching technique.

The method of solving euqations (4) and (5) for the cross flow velocity
components u and w will be briefly outlined here. More details about this
technique can be found in (15) . Equations (4) and (5) are first rewritten in the
following forms:

(14)
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u (Ri , a , z) = 0 (l Oa
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Using Von Neuman~ method (14), this explicit fmite difference expression for
t~e. values of the vanables v and , at the grid point of (i + 1) plane, is uncon­
ditionally unstable. Thus to avoid this numerical unstability, a modification was
made. It can be written as,
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Integrating equations (20) and (21) along the boundaries. one obtains Dirichl
boundary conditions in terms of the streamlike function X : er

Results and Discussion.

~ computer program was developed to solve the equations governing the flow
motl?n using the procedure outlined in the formulation and method of
solution. The analysis was applied to the flow in the simple duct geometry of
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The available experimental results (16) in the lower half of Joy 's duct are also
presented for the purpose of qualitative comparison since the inlet profiles were
not exactl y the same as can be seen in figure (4) . In spite of the differences
between the inlet velocity profiles, it can be seen from figures (II) through (13)
that the present analysis predicts not only the general trends reported in the
experimental results, but also the magnitude of rotation of the constant velocity
contours.
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figure (2), whose cross section is a 5 x 5 inch square and whose mean radius is )5
inches. The flow resulting from a simple inlet velocity profile with linear
variation in the z direction was investigated. The results are presented in a non­
dimensional form, except the velocity contours. The duct inner radius R., and

the maximum flow velocity at inlet V. , were used in the normalisation The,ma x .
numerical computations were carried out in double precision on an AMDAHL
470 computer. The results presented here were generated using a (11 x II x 45)
grid.

The results are presented in the form of velocity and secondary vorticity
contours, and the vectors showing the magnitude and direction of the secondary
velocities. The velocity contours at the 30°, 60° and 90° turning angles are
shown in figures 5 , 6 and 7. It can be seen from these figures that the rotation
of the velocity , contours, which were parallel and horizontal at the inlet , is very
significant in the first 60° of the duct. The contours become almost vertical
before their rotation rate starts to decrease for turning angles greater than 60°

The secondary vorticity and the corresponding secondary velocities are shown
in figures 8 , 9 and 10 at 30° , 60° and 90° turning angles. A comparison of
figures 8a, 9a and lOa reveals that the generated secondary vorticity reaches a
maximum at the 30° cross section'. It is interesting to recognise that with
symmetric inlet velocity profile, the secondary vorticity is asymmetric and there­
fore vanishes at the plane of symmetry . It is also apparent from these figures
that the vortex centre has moved towards the outer radius between the 30° and
the 90° turning angles. The corresponding variations in secondary velocities can
be seen in figures 8b , 9b and lOb. It is observed that, while the secondary
vel ocities arc comparable in magnitude at the 300 and 600 duct cross section
they are significantly smaller at the 900 cross section. This is the region of very
low secondary vorticity of figure lOa. In this region, all the velocity contours of
figure 7 , remain practically vertical with no appreciable rotation. It is interesting
to see that the centre of rotation is different from the vortex centre in figures 8,
9 and 10. This difference can be attributed to the source term in the cont inuity
equation which is caused by the variation in the through flow velocity
component in the 0 - direction.
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w a3
ther~i' ;nd C, are constants to be evaluated from the continuity of the

s rea e uncti.on a~ the corners of the rectangular cross section. Referrin to
figure 3, the firute difference representation for equation (20) ' g.
over relaxation is, using successive
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where w is the over-relaxation factor, and
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A

A Passage Vor te x
B Horseshoe Vo rt e x
C Separation Lin e o f Passage Vortex
D Inlet Boundary Layer Separates
E Saddle Point
F Streamlines

Figure .1. Real Flo w Phenomen a in Cas cade

Figure . 2. Curve d Duc t Con f i gura t ion
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