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Abstract 
 

An auditory loss is one of the most common disabilities present in newborns and infants in 

India. A conventional hearing screening test’s applicability is limited as it requires a 

feedback response from the subject under test. To overcome such problems, the primary 

focus of this study is to develop an auditory loss assessment system using auditory evoked 

potential signals (AEP). The AEP responses of fourteen normal hearing subjects to auditory 

stimuli (20 dB, 30 dB, 40 dB, 50 dB and 60 dB) were derived from electroencephalogram 

(EEG) recordings. Box counting fractal method is applied to extract the fractal features 

from the recorded AEP signals. Feed forward and feedback neural networks are employed 

to distinguish the different hearing perception levels. The performance of the proposed 

auditory loss assessment system found to exceed 80% accuracy. This study indicates that 

AEP responses to the auditory stimuli to the normal hearing persons can clearly distinguish 

the higher order auditory stimuli followed by the lower order auditory stimuli and it can be 

used to estimate the level of hearing loss in the patient. 
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1.0  INTRODUCTION 
 

Auditory evoked potential (AEP) can be observed as 

an electroencephalogram (EEG) signal elicited from 

the brain while an auditory stimulus is presented in a 

time-locked manner. AEP response reflects the neural 

processing of hearing ability level of an individual. AEP 

signal consist of reproducible positive or negative 

peaks, latency, amplitude and behavioural correlation 

[1]. Depending upon the latencies, AEP can be 

subsequently divided into short (0-12 milliseconds), 

middle (8-50 milliseconds) and long latency evoked 

potentials (50-300 millisecond) [2]. Most of the 

researchers mainly focused on the analysis of auditory 

brainstem response (ABR), the early portion (10-12 

msec) of AEP signal. ABR signal comprised of seven 

peaks (I-VII), of which pre-dominant presence or 

absence of peak V essentially determines the hearing 

ability level [3, 4]. Early researchers have developed 

different techniques to detect the ABR peak V using 

spectral energy [5], matched filter [6], spectral analysis 

[7] and wavelet analysis [8].  

The major difficulties  encountered in identifying the 

ABR peak V are 1) At least 1000 to 2000 trials are 

necessary in order to realize the structure of a 

waveform with defined peaks, hence the task of 

averaging the ABR waveform becomes difficult and 

consumes more time; 2) it is quite complex to 

segregate the associated ABR peak IV and peak V; 3) 

it is also very difficult to search and identify the 

individual peaks of the ABR for abnormal hearing 

subjects, because of pathology of the auditory nerve. 

Further, it has also been reported that is finding the 

ABR peak V is difficult when the stimulation intensity 

level is below 30 dB, the defined five peaks are no 

longer visible [9]. Consequently, the identification of 

peak V appears to be quite difficult, and the level of 
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confidence declines in the objective measure of 

hearing threshold.  

Gao and Murray [10] postulates a new objective 

AEP measurement that measures the EEG signal after 

an onset of the stimulus. The auditory stimuli were 

presented bilaterally with monaural acoustical stimulus 

to the ears. EP signals were recorded from 1.5 ms to 10 

ms, and contain 145 data points. The measured AEP 

signal comprises of different structures or 

characteristics for normal and abnormal hearing 

subjects. The estimated AEP hearing threshold values 

by parametric modeling techniques discriminate the 

normal and abnormal hearing subjects. 

Sudirman and Seow [11] have collected the EEG 

signal from two normal hearing subjects with the mean 

age of 21.5 years. The subjects were exposed to sound 

stimuli with modulated frequency levels 400 Hz, 500 Hz, 

5000 Hz, and 15000 Hz. The gamma rhythm values are 

higher than other rhythms and it shows the relationship 

between the frequency perception and the brain 

response.  AEP data has been recorded using 16 

channels EEG for 10 seconds from eight participants. A 

click stimulus was used to evoke the potential 

response.  

AEP signals were used to differentiate the hearing 

perception based on the target and the non-target 

stimulus.  

In this paper, a simple hearing perception level 

protocol using AEP signals have been proposed to 

determine the inter-hearing perception level of the 

normal hearing subjects. The normal safe hearing level 

of a human subject ranges from 20 dB to 80 dB. In the 

experimental study, the AEP signals are stimulated at 

four distinct hearing frequency levels (1000 Hz, 2000 Hz, 

4000 Hz, and 8000 Hz) and along with different sound 

intensity levels (20 dB, 30 dB, 40 dB, 50 dB and 60 dB); 

the corresponding hearing perception levels have 

been unilaterally recorded with monaural acoustical 

stimulus. Higuchi fractal feature vectors were 

extracted from the recorded AEP signals, whereas 

previous researchers have not explicitly used this 

fractal feature for any hearing perception analysis. 

Feed forward and feedback neural network models 

for the left and right ears were developed. The block 

diagram of AEP based hearing ability level assessment 

system is shown in Figure 1. 

 
 

 
 

Figure 1 An intelligent hearing ability level assesment system 

 

 

2.0  MATERIALS AND METHODS 

 

2.1  Subjects 

 
A participant selection criterion plays an important role 

in minimizing the confounding variables. Fourteen 

subjects were participated in the experimental study. 

The normal hearing group (NHG) consisted of fourteen 

normal hearing subjects (NHG: fourteen males; age 

25.4 ± 3.6 years). The experimental procedure and the 

protocols were explained to NHG with help of research 

scholars. Participants with external ear pathology, a 

neurological disorder, or who were under the period of 

certain medications were excluded from the study. A 

written consent was obtained from all the subjects 

prior to proceeding with the experiments. All the 

subjects were healthy and free of any medication. 

 

2.2  Behavioral Audiometry Test 

 

To record the auditory evoked EEG signal from the 

normal hearing subjects, a simple hearing perception 

level protocol was formulated and proposed in this 

study. The experimental study involves a two-fold 

procedure to acquire the AEP data from the subjects. 

First, the subjects were allowed to participate in the 

hearing screening test and the hearing threshold 

values were determined using the behavioral pure-

tone audiometric test [12]. 

Behavioral pure tone screening audiometry test was 

conducted in a soundproof booth at the acoustic 

research lab, Universiti Malaysia Perlis, Perlis. A SM960-D 

diagnostic memory audiometer was used to perform 

the diagnostic behavioral pure tone audiometry. A 

pure tone stimulus was presented through 

headphones. Behavioral pure tone stimulated at 1 kHz, 

2 kHz, 4 kHz and 8 kHz at various stimulus intensities 

range from 70 dB to 20 dB in the left and right ear.    
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2.3  AEP Based Hearing Protocol 

 

The EEG signals were recorded using the Mindset-24 

EEG amplifier portable biosignal acquisition system 

(nineteen EEG bipolar channels; filters: 0.5-100 Hz; data 

acquisition: A/D converter with 12-bit resolution and 

sampling frequency range: 128 Hz, 256 Hz, 512 Hz, 

meets IEC 60601-1 standard for research purpose) [13, 

14]. Using 10-20 electrode positioning system (Standard 

Positioning Nomenclature, American 

Encephalographic Association), electrodes was 

placed (temporal) over the locations T3, T4, T5 and T6. 

The left and right mastoid was made as the reference 

electrodes [15]. The EEG signals were initially recorded 

from the subjects with their eyes closed and also in the 

open position for 60 seconds. Subsequently, the signals 

were investigated manually in order to ensure that the 

data recorded were in appropriate manner [16]. The 

experimental setup for AEP data collection is shown in 

Figure 2. 

 

 

 

 

 
 

Figure 2 Experimental setup for AEP data collection 

 

 

3.0  BOX COUNTING FRACTAL FEATURE  
 

Fractal Dimension (FD) is a descriptive quantitative 

measure that provides a single non-integer value 

(fractional) and quantifies the characteristics of a 

signal. One of the main characteristic of fractal 

feature is that it presents invariance under time and/or 

space translations. Box-counting method employs the 

self similarity property to compute the FD values and it 

is the most commonly employed method used to 

compute the FD values. In this method, the signal is 

completely covered with collection of square boxes 

and the numbers of square boxes are then counted 

[17].  

The AEP signal 
jX obtained from the 

thj  channel is 

divided into F number of frames and written as  
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Further, each frame of the AEP signal consists of 256 

samples and the ith frame can be represented as: 
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where, 
j

iX
is AEP signal corresponding to the 

thi frame of the 
thj  channel.  

The FD can be estimated mathematically using box 

counting method using the following relationship,  
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N(r) is the total number of boxes of size r required to 

cover the AEP signal. 

The value of nr (m) from the difference between the 

maximum and minimum amplitude values of the data 

divided by the radius. 
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where, 

 

r (m)- is a radius by changing a step size of k 

   1Llog1,2,3,...,k2rfor 2
k   

 

   

4.0  NEURAL NETWORK CLASSIFIERS 
  

Artificial neural network (ANN) provides us with a 

new tool for designing an intelligent machine that can 

learn, recognize and controls the decision-making 

process. In general, neural network is an information 

processor; a single neuron performs the computation 

of its weighted inputs and yields an output through a 

non-linear activation function [18].  In this study, an 

intelligent hearing ability level assesment design with 

feed forward model multilayer perceptron neural 

network (MLPNN) and feedback model Elman neural 

network (ENN) classifers are investigated to find 

suitable neural network architecture for a hearing 

SM 960-D Diagnostic 

Memory Audiometer 

 
 

Sound proof Booth 
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perception level assessment system. The neural 

network models are configured based on selection of 

activation function, hidden neurons learning rate and 

momentum factor. In this experiment a five class 

intelligent hearing ability level assessment system is 

designed using MLPNN and ENN classifiers. Using 

Higuchi fractal features, eight different neural network 

models are developed for the left and right ears in 

distinguishing the five hearing perception levels (20 dB, 

30 dB, 40 dB, 50 dB and 60 dB) for four distinct hearing 

frequencies. In order to classify AEP dataset the each 

network is modeled with 4 input neurons, 3 output 

neurons. Table 1 shows the configuration of MLPNN 

and ENN models. The master dataset consists of 350 

samples for the left and right ears. 60% of the data (210 

samples) is used in the network training and the 

performances of the classifier are observed for 

remaining 40% of the data (140 samples). In order to 

develop a generalized neural network model, the 

training samples are selected randomly from total 

samples. 

The results of the MLPNN classifier for left and right 

ears for four distinct hearing frequencies are shown in 

Table 1; the Table 2 displays the performance of the 

network classification of the AEP signal into the five 

hearing perception levels.   

 

 

 

Table 1 Configuration of MLPNN and ENN models 

 

NN 

 

Hidden 

neurons 

 

Input 

activation 

function 

 

Output 

activation 

function 

 

Learning 

rate 

 

Mean square 

error (MSE) 

 

Learning algorithm 

 

MLPNN 

 

15 

 

log sigmoid 

 

log sigmoid 

 

0.8 

 

0.001 

 

Levenberg Marrqdt 

 

ENN 

 

21 

 

log sigmoid 

 

log sigmoid 

 

0.7 

 

0.001 

Gradient descent BP algorithm 

with an adaptive learning rate 

 

 

Table 2 Classiifcation of hearing perception levels using MLPNN 

Hearing 

Frequency 

Level 

(Hz) 

 

Ear 

 

#Epoch 

Min     Max     

Mean 

 

Classification   

Accuracy 

Min     Max     Mean 

1000 L 3500   4200       3850 65.71      69.28     67.49 

2000 L 3850   4185     4520        67.14      72.85     69.99 

4000 L 4000    4574      4287 69.28      75.00     72.14 

8000 L 3900   4659       4280 71.42      78.87     75.14 

1000 R 4462   4686    4850       65.71     71.42       68.56 

2000 R 4530   4641    4752       69.28     72.85       70.93 

4000 R 4756  4853     4950       70.00     77.14       73.57 

8000 R 4850 5025  5200       72.85     80.17       76.51 
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Table 3  Classiifcation of hearing perception levels using ENN 

 

Hearing 

Frequency 

Level 

(Hz) 

Ear #Epoch 

Min    Max     

Mean 

Classification   

Accuracy 

Min     Max     Mean 

1000 L 7200 7650       7425 62.85   67.85      65.35 

2000 L 7500 7924       7712 64.28   70.00      67.14 

4000 L 78508050       7950  65.71   71.42      68.56 

8000 L 8020 8300       8160 69.28   72.85      71.06 

1000 R 74007860       7630 65.71   67.14     66.42 

2000 R 7628 7920       7774 64.28   70.00      67.14 

4000 R 7900 8500       8200 67.85   72.14      69.99 

8000 R 8250 8750       8500 69.28   75.00     72.14 

 

 

4.0  RESULTS AND DISCUSSION 
 

In this paper, a simple method to estimate the different 

hearing levels using Higuchi features has been 

discussed. Higuchi fractal features were extracted 

from the recorded AEP signals. The extracted features 

were associated to the different hearing perception 

level of the various normal hearing subjects. Form 

Table 2, an intelligent hearing ability level assessment 

system using Box counting fractal feature and 

modeled using MLPNN for the hearing frequency level 

of  8000 Hz has obtained the highest mean 

classification accuracy of 75.14% and 76.51% for the 

left and right ears. Further, it can be inferred that for 

the hearing frequency level of 8000 Hz has obtained 

the highest minimum classification accuracy of 71.42%, 

72.85% and highest maximum classification accuracy 

of 75.81%, 80.17% for the left and right ears, 

respectively. It is also observed for the hearing 

frequency level of 1000 Hz has obtained the minimum 

mean classification accuracy of 67.49% and 68.56% for 

the left and right ears. Further, it can be inferred that 

for hearing frequency level of 1000 Hz has obtained 

the lowest minimum classification accuracy of 65.71%, 

65.71% and the lowest maximum classification 

accuracy of 69.28%, 71.42% for the left and right ears, 

respectively. 

From Table 3, an intelligent hearing ability level 

assessment system modeled using ENN for hearing 

frequency level of 8000 Hz has obtained the highest 

mean classification accuracy of 71.06% and 72.14% for 

the left and right ears. Further, it can be inferred that 

the Box counting algorithm for hearing frequency level 

of 8000 Hz has obtained the highest minimum 

classification accuracy of 69.28%, 69.28% and highest 

maximum classification accuracy of 72.85%, 75.00% for 

the left and right ears, respectively. It is also observed 

that for the hearing frequency level of 1000 Hz has 

obtained the minimum mean classification accuracy 

of 65.35% and 66.42% for the left and right ears. Further, 

it can be inferred that for the hearing frequency level 

of 1000 Hz has obtained the lowest minimum 

classification accuracy of 62.85%, 65.71% and the 

lowest maximum classification accuracy of 67.85%, 

67.14% for the left and right ears, respectively.  

From the results, it can be inferred that an auditory 

frequency of 8000 Hz has relatively outperformed other 

auditory frequencies in classifying the different hearing 

perception levels. The acoustic structures of 8000 Hz 

contain higher energy components to traverse the 

auditory system, while compared with other acoustic 

structures. Further, it can be observed that the auditory 

frequency of 1000 Hz has made relatively less impact 

in classifying the different hearing perception levels 

while compared with other auditory frequencies. From 

the results, an auditory frequency of 8000 Hz stimuli 

quickly and more frequently reaches the activated 

auditory pathways. Hence, normal hearing persons 

can quickly perceive higher order auditory stimuli 

followed by the lower order auditory stimuli. From the 

results, it also indicates an asymmetric classification 

performance between the left and right ears, these 

significant differences are due to the inherent more 

active auditory stimuli perception made by the right 

ears compared to the left ears. 

 

 

5.0  CONCLUSION 

 
In this study, the hearing ability level assessment system 

using Higuchi fractal feature along with machine 

learning algorithm distinguishes the different hearing 

perception level. It also opens the possibility of devising 

a clinical test that can determine the hearing 
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perception level of infants and adults. Further, the 

intelligent hearing ability level assessment system can 

also be used to help the neuro physicians in assessing 

the specific hearing loss and then accordingly can 

suggest more suitable cochlear implant designs to the 

hearing patients.  
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