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Graphical abstract 
 

 

Abstract 
 

In order to provide good level of security, modern cryptosystems need to implement large 

numbers and complicated mathematical operations. As a consequence, efficiency 

becomes a new major issue in cryptography. By using proper parameters, some of 

established asymmetric cryptosystems are believed to be able to provide a good level of 

security. Since that, aim to develop a mechanism to accelerate encryption and 

decryption processes of asymmetric cryptosystem without altering their original encryption 

and decryption algorithms become a big consideration. The aim of this paper is to propose 

the integration of a compression technique that named as CFEA-Compression technique 

into some established asymmetric key cryptosystem such as RSA, El-Gamal and Elliptic 

Curve cryptosystems. CFEA-technique is a combination of Continued Fraction and 

Euclidean Algorithm (CFEA) which is able to reduce the number of plaintext and ciphertext 

prior the encryption and decryption procedures.  

 

Keywords: Compression Techique, RSA Cryptosystem, ElGamal Cryptosystem, Elliptic Curve 

Cryptosystem, Continued Fraction, Euclidean Algorithm 

 

Abstrak 
 

Demi membekalkan tahap keselamatan yang baik, sistemkripto moden perlu 

menggunakan nombor-nombor besar dan dilaksanakan menggunakan operasi-operasi 

matematik yang rumit. Natijahnya, kecekapan menjadi isu besar dalam kriptografi. 

Dengan menggunakan parameter-parameter yang bersesuaian, beberapa sistemkripto 

tak simetri adalah dipercayai mampu untuk membekalkan suatu tahap keselamatan yang 

baik. Sejak itu, matlamat untuk membangunkan suatu mekanise bagi melajukan proses-

proses enkripsi-dekripsi sistemkripto tak simetrik tanpa mengubah algoritma-algoritma 

enkripsi dan dekripsi yang asal menjadi suatu pertimbangan yang besar. Matlamat kertas 

kerja ini adalah untuk mencadangkan integrasi suatu teknik mampatan yang dinamakan 

sebagai teknik Mampatan-CFEA ke dalam beberapa sistemkripto tak simetri yang terkenal 

seperti sistemkripto RSA, ElGamal dan Lengkung Eliptik. Teknik Mampatan-CFEA 

merupakan gabungan Pecahan Berterusan dan Lagoritma Euklid yang mampu 

mengurangkan bilangan teks biasa dan teks sifer sebelum prosedur enkripsi dan dekripsi.  

 

Kata kunci: Teknik Mampatan, Sistemkripto RSA, Sistemkripto Elgamal, Sistemkripto 

Lengkung Eliptik, Pecahan Berterusan, Algoritma Euklid 
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1.0  INTRODUCTION 
 

We are now living in digital age. Almost all people in 

the world are now connected via variety of 

communication devices. We perform a lot of tasks 

and businesses by simply clicking a mouse or 

touching a screen. That is why we may easily 

exposed to various types of threats and network 

security problems. Cryptography is one of the most 

important part in network security. Basically, 

cryptography is a science of secret writing which is 

able to provide network security purposes such as 

confidentiality, authentication, data integrity and 

non-repudiation [1]. To provide confidentiality, 

cryptography scrambles the original and readable 

message becomes unreadable message. The 

original message is called plaintext and the 

scrambled message is called ciphertext. Through 

encryption process, the plaintext will be scrambled 

becomes ciphertext. The inverse of encryption is 

called decryption which is able to recover the 

plaintext. Both processes need parameters called 

key. We may classify cryptography into two major 

classes based on the usage of keys. Symmetric 

cryptography involves single key call secret key to 

perform encryption and decryption. On the other 

hand, asymmetric cryptography involves two 

different keys called public and private keys [2]. 

Mathematically, we may represents both encryption 

and decryption processes as follows [3]: 
𝐸(𝑚)𝑘 = 𝐶                                          (1) 
𝐷(𝐶)𝑘′ = 𝑚                                         (2) 

 

where 𝐸 is an encryption function, 𝑚 is a plaintext, 𝑘 is 

an encryption key, 𝐶 is a ciphertext, 𝐷 is an 

decryption key and 𝑘′ is an decryption key. Three 

main characters in cryptography are Alice 

(authorized sender), Bob (authorized recipient) and 

Eve (unauthorized third party). To explain how 

cryptography provides confidentiality, we consider a 

scenario where Alice wants to send a secret 

message to Bob and Eve is interested to intercept the 

transmitted message between Alice and Bob and 

read to content of the message. 

Recently, asymmetric cryptosystem is more 

preferred due to its practicality. The asymmetric 

cryptosystem has solved the key distribution problem 

in symmetric cryptosystem. But in order to provide a 

good level of security, the asymmetric cryptosystem 

need to use large numbers and implement more 

complicated mathematical operations. As a 

consequence, asymmetric cryptosystem becomes 

slower compared to symmetric cryptosystems 

especially when involving large amount of data. 

Simple example, let say we want to encrypt 100 

messages 𝑚1, 𝑚2, 𝑚3, … , 𝑚100. We need to repeat the 

encryption processes 100 times to produce 100 

ciphertext 𝐶1, 𝐶2, 𝐶3, … , 𝐶100. Symbolically, the 

processes are as follows: 
𝐸(𝑚1)𝑘 = 𝐶1 

⋮ 
𝐸(𝑚100)𝑘 = 𝐶100                                    (3) 

To recover the original message, we need to decrypt 

the 100 ciphertext 100 times as follows: 
𝐷(𝐶1)𝑘 = 𝑚1 

⋮ 
𝐷(𝐶100)𝑘 = 𝑚100                                    (4) 

 

The whole encryption-decryption processes 

consume large amount of time. Larger number of 

message will consume larger amount of time. 

 

 

2.0  CFEA-COMPRESSION TECHNIQUE 
 

The emergence of asymmetric key cryptography has 
solved the biggest problem in symmetric key 
cryptography, which is the key distribution problem. 
By using a pair of key consists of a public key and a 
private key, Bob is able to communicate securely with 
Alice without any exchange of secret information 
through secure channel. Every communication can 
be done through open channel like the Internet. Only 
Bob as the owner of the private key can decipher the 
ciphertext which have been encrypted by using his 
corresponding public key. As a tradeoff, 
computational cost becomes a new major problem 
in modern cryptography. Due to calculation 
complexity and implementation of large numbers, it is 
found that the asymmetric key cryptosystems perform 
slower than symmetric key cryptosystems.  

To address this problem, some cryptologists lead 
the improvement of the RSA cryptosystem by 
proposing four improved RSA cryptosystems which are 
Batch RSA, Multi Prime RSA, Multi Power RSA [4] and 
Rebalanced RSA [5]. One of the similarities between 
these improvements is the major modification on the 
cryptosystem itself especially on the encryption and 
decryption algorithms. This modification will alter the 
security level of the original cryptosystem which 
probably makes the cryptosystem easier to attack [6, 
7]. Thus, any improvement on the performance of 
cryptosystem must avoid major modification on the 
encryption and decryption algorithms to store its 
security level.  

In 2013, Chang and Mandangan proposed a 
Compression-RSA cryptosystem which is the 
integration of a compression technique into the RSA 
cryptosystem [8]. The compression technique is a 
combination of simple Continued Fraction and 
Euclidean Algorithm. By using this compression 
technique, the number of plaintext can be reduced 
from 𝑘-plaintext where 𝑘 ∈ ℤ+ and 𝑘 > 2, becomes 
only 2-plaintext. That means, only two plaintext will 
undergo the encryption process and produce 2-
ciphertext. To verify the efficiency of the proposed 
Compression-RSA technique, Loh and Mandangan 
run some experiments in 2013 [9]. Finding from the 
experiments show that the Compression-RSA 
cryptosystem with integrated perform better in 
encrypting and decrypting large number of plaintext 
and ciphertext compared to the original RSA 
cryptosystem. Since the compression technique has 
potential to be integrated into other asymmetric key 
cryptosystems, it has been rebranded into CFEA-
Compression technique where the acronym CFEA is 
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comes from Continued Fraction and Euclidean 
Algorithm [10]. 

Let the set of original plaintext as 
{𝑚1, 𝑚2, 𝑚3, ⋯ , 𝑚𝑘−1, 𝑚𝑘} where 𝑘 ∈ ℤ+and 𝑘 > 2. By 
using the CFEA- Compression technique, these 𝑘 
plaintext can be compressed to a pair of 2-plaintext, 
denoted as {𝑀1, 𝑀2}. No matter how big the value 𝑘 is, 
the plaintext will be reduced to only 2 plaintext 𝑀1 
and 𝑀2 [8]. The CFEA- Compression technique is 
basically designed by combining two methods 
namely Continuous Fraction and Extended Euclidean 
Algorithm and consists of two main procedures 
namely compression and decompression procedures. 
The algorithms of these procedures are shown below: 

A. Algorithm: (Compression procedure)  

Let the set of original plaintext as 
{𝒎𝟏, 𝒎𝟐, 𝒎𝟑, ⋯ , 𝒎𝒌−𝟏, 𝒎𝒌} where 𝒌 ∈ ℤ+and 𝒌 > 𝟐. 

Compress the plaintext set by using Continued 

Fraction method as follows [11]: 

𝑚1 +
1

𝑚2 +
1

𝑚3 +
1
⋮

𝑚𝑘−1 +
1

𝑚𝑘

=
𝑀1

𝑀2
 

 

The number of plaintext has been reduced from 𝑘-

plaintext becomes only 2 plaintext, 𝑀1 and 𝑀2. The 

encryption process will involve only these two 

plaintext instead of 𝑘-plaintext. To recover the 

original set of plaintext, we need to invert the 

compression procedure. The inverse of compression 

procedure is called decompression procedure. 

 

B. Algorithm: (Decompression procedure)  

 

By using Euclidean algorithm, compute the following 

[12]: 
𝑀1 = 𝑀2(𝑞1) + 𝑟1 
𝑀2 = 𝑟1(𝑞2) + 𝑟2 
𝑟1 = 𝑟2(𝑞3) + 𝑟3 
             ⋮ 
𝑟𝑘−3 = 𝑟𝑘−2(𝑞𝑘−1) + 𝑟𝑘−1 
𝑟𝑘−2 = 𝑟𝑘−1(𝑞𝑘) + 𝑟𝑘 

 

Where 𝑀1, 𝑀2 are the compressed plaintext, 𝑞𝑖 is 

quotient and 𝑟𝑖 is remainder for 𝑖 = 1,2, … , 𝑘. Finally, 

we have {𝑞1, 𝑞2, 𝑞3, ⋯ , 𝑞𝑘−1, 𝑞𝑘} =
{𝑚1, 𝑚2, 𝑚3, ⋯ , 𝑚𝑘−1, 𝑚𝑘} which is the set of original 

plaintext. 

 

 

3.0 ASYMMETRIC KEY CRYPTOSYSTEMS WITH 
INTEGRATED CFEA-COMPRESSIO TECHNIQUE 
 
Rivest-Shamir-Adleman (RSA) Cryptosystem [13], 

ElGamal Cryptosystem [14] and Elliptic Curve 

Cryptography [15] are the most established 

asymmetric cryptosystem. By implementing proper 

parameters, these cryptosystems are able to provide 

a good level of security. The CFEA-Compression 

technique can be integrated into these 

cryptosystems without major alteration on the key 

generation, encryption and decryption algorithms of 

these cryptosystems. The aim is to accelerate the 

encryption and decryption procedures and maintain 

the security level at the same time. Generally, the 

CFEA-Compression Technique can be integrated into 

the asymmetric cryptosystems as shown in Figure 1 

[10]: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Integration of CFEA-Compression in asymmetric 

cryptosystem 

 

 

To show how the CFEA-Compression technique 

integrated into RSA Cryptosystem, ElGamal 

Cryptosystem and Elliptic Curve Cryptography, we 

consider a scenario where Alice wants to send a set 

of 𝑘-plaintext  {𝑚1, 𝑚2, 𝑚3, ⋯ , 𝑚𝑘−1, 𝑚𝑘} to Bob. 

 

3.1  RSA Cryptosystem 

 

The integration of CFEA-Compression technique in 

RSA Cryptosystem is shown in the algorithm below: 

a) Key generation procedure: done by Bob 

 Step 1:Choose two large, random prime  

numbers 𝑝 and 𝑞 

Step 2:Compute 𝑁 = 𝑝𝑞 

Step 3:Compute 𝜑(𝑁) = (𝑝 − 1)(𝑞 – 1) 

Step 4:Choose a random encryption 

exponent 𝑒 such that 1 < 𝑒 < 𝜑(𝑁) and 
𝑔𝑐𝑑 (𝑒, 𝜑(𝑁))  =  1 

Step 5:Compute the decryption exponent 𝑑 

such that 𝑒𝑑 ≡ 1(mod 𝜑(𝑁)) 

Step 6:Send the public key set {𝑒, 𝑁} to Alice 

and keep the private key {𝑑, 𝑝, 𝑞} 
secretly. 

 

b) Compression procedure: done by Alice 

 Upon receiving the public key set from Bob, 

Alice compress the 𝑘-plaintext set  
{𝑚1, 𝑚2, 𝑚3, ⋯ , 𝑚𝑘−1, 𝑚𝑘} 

to only two plaintext 𝑀1 and 𝑀2 as follows: 
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𝑚1 +
1

𝑚2 +
1

𝑚3 +
1
⋮

𝑚𝑘−1 +
1

𝑚𝑘

=
𝑀1

𝑀2
 

  

c) Encryption procedure: done by Alice 

 Step 1: Encrypt the new plaintext 𝑀1 and 𝑀2  

as follows 
𝐶1 = 𝑀1

𝑒(mod 𝑁) 
𝐶2 = 𝑀2

𝑒(mod 𝑁) 
Step 2: Submit the ciphertext set {𝐶1, 𝐶2} to 

Bob. 

 

d) Decryption procedure: done by Bob 

 Upon receiving the ciphertext set {𝐶1, 𝐶2} from 

Bob, decrypt the ciphertext 𝐶1 and 𝐶2 as 

follows: 

𝑀1 = 𝐶1
𝑑(mod 𝑁) 

𝑀2 = 𝐶2
𝑑(mod 𝑁) 

 

e) Decompression procedure: done by Bob 

 Step 1: Decompress the plaintext set {𝑀1, 𝑀2} 
as    

            follows : 
  𝑀1 = 𝑀2(𝑞1) + 𝑟1 
𝑀2 = 𝑟1(𝑞2) + 𝑟2 
   𝑟1 = 𝑟2(𝑞3) + 𝑟3 

             ⋮ 
            𝑟𝑘−3 = 𝑟𝑘−2(𝑞𝑘−1) + 𝑟𝑘−1 

   𝑟𝑘−2 = 𝑟𝑘−1(𝑞𝑘) + 𝑟𝑘 

 

Where 𝑀1, 𝑀2 are the compressed plaintext, 𝑞𝑖 

is  quotient and 𝑟𝑖 is remainder for 𝑖 = 1,2, … , 𝑘. 

Step 2: From Step 1 above, Bob has a set of 

quotient where  
{𝑞1, 𝑞2, 𝑞3, ⋯ , 𝑞𝑘−1, 𝑞𝑘} = {𝑚1, 𝑚2, 𝑚3, ⋯ , 𝑚𝑘−1, 𝑚𝑘} 
which is the set of original plaintext. 

 
3.2  ElGamal Cryptosystem 

 

The integration of CFEA-Compression technique in 

ElGamal Cryptosystem is shown in the algorithm 

below: 

a) Compression: done by Alice 

 Step 1: Compress the set of 𝑘-plaintext 
{𝑚1, 𝑚2, 𝑚3, ⋯ , 𝑚𝑘−1, 𝑚𝑘} as follows 

𝑚1 +
1

𝑚2 +
1

𝑚3 +
1
⋮

𝑚𝑘−1 +
1

𝑚𝑘

=
𝑀1

𝑀2
 

Step 2: Choose a large prime 𝑝 such that 

𝑀1, 𝑀2 < 𝑝. 

Step  3:   Choose an integer 𝑏 ∈ [0, 𝑝 − 2] as 

her private key 
Step 4: Choose an integer 𝑔 where 𝑔 is a 

generator of finite field 𝔽𝑝
∗ . 

Step 5: Send the chosen 𝑝 and 𝑔 to Bob. 

 

b) Key generation: done by Bob 

 Step 1: Compute 𝑒𝐵 = 𝑔𝑏 𝑚𝑜𝑑 𝑝 as his public 

key  

Step 2: Send his public key 𝑒𝐵 to Alice and 

keeps his private key 𝑏 secretly  

 

c) Encryption procedure: done by Alice 

 Step 1: Choose two random integers 𝑢, 𝑣 ∈ 𝔽𝑝
∗   

             as her ephemeral keys 

Step 2: Encrypt the new plaintext pair 𝑀1 and 

𝑀2 to get the ciphertext pairs 

 
𝐶1,1 = 𝑔𝑢 𝑚𝑜𝑑 𝑝 

𝐶2,1 = 𝑔𝑣  𝑚𝑜𝑑 𝑝 

         and 
𝐶1,2 = 𝑀1(𝑒𝐵)𝑢  𝑚𝑜𝑑 𝑝 

𝐶2,2 = 𝑀2(𝑒𝐵)𝑣 𝑚𝑜𝑑 𝑝 

Step 3: Send the ciphertext pairs (𝐶1,1, 𝐶1,2) 

and (𝐶2,1, 𝐶2,2) to Bob. 

d) Decryption procedure: done by Bob 

 Step 1: Upon receiving ciphertext pairs 

(𝐶1,1, 𝐶1,2) and (𝐶2,1, 𝐶2,2) from Alice, Bob 

computes 

𝑠 = (𝐶1,1)
𝑏

 𝑚𝑜𝑑 𝑝 

𝑡 = (𝐶2,1)
𝑏

 𝑚𝑜𝑑 𝑝 

Step 2: Compute the multiplicative inverse of 

𝑠 and 𝑡 modulo 𝑝, denotes as 𝑠−1 and 

𝑡−1 such that 
𝑠(𝑠−1) ≡ 1 (𝑚𝑜𝑑 𝑝) 
𝑡(𝑡−1) ≡ 1 (𝑚𝑜𝑑 𝑝) 

Step 3: Recover the original message 𝑚 as  

follow 

𝑀1 = 𝑠−1(𝐶1,2) 𝑚𝑜𝑑 𝑝 

𝑀2 = 𝑡−1(𝐶2,2) 𝑚𝑜𝑑 𝑝 

e) Decompression procedure: done by Bob 

 Decompress the plaintext set {𝑀1, 𝑀2} as 

follows: 
𝑀1 = 𝑀2(𝑞1) + 𝑟1 
𝑀2 = 𝑟1(𝑞2) + 𝑟2 
𝑟1 = 𝑟2(𝑞3) + 𝑟3 

⋮ 
𝑟𝑘−3 = 𝑟𝑘−2(𝑞𝑘−1) + 𝑟𝑘−1 

𝑟𝑘−2 = 𝑟𝑘−1(𝑞𝑘) + 𝑟𝑘 

where 𝑀1, 𝑀2 are the compressed plaintext, 𝑞𝑖 

is quotient and 𝑟𝑖 is remainder for 𝑖 = 1,2, … , 𝑘. 

From Step 1 above, Bob has a set of quotient  

where  
{𝑞1, 𝑞2, 𝑞3, ⋯ , 𝑞𝑘−1, 𝑞𝑘} = {𝑚1, 𝑚2, 𝑚3, ⋯ , 𝑚𝑘−1, 𝑚𝑘}  
which is the set of original plaintext. 

 

3.3  Elliptic Curve Cryptosystem 

 

The integration of CFEA-Compression in Elliptic Curve 

Cryptography (ECC) is slightly different with the 

previous two cryptosystems. This is because plaintext 

in ECC are in point form (𝑎, 𝑏) where 𝑎, 𝑏 ∈ ℤ. The 

point (𝑎, 𝑏) is lies on the elliptic curve 𝐸: 𝑦2 = 𝑥3 + 𝐴𝑥 +
𝐵. 

a) Agreement: done by Alice and Bob 

 Step 1: Agree to use an elliptic curve 
𝐸: 𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵 

             and a large prime 𝑝 
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Step 2: Form the finite field 𝔽𝑝 

Step 3: Pick a point 𝑃 that lies on 𝐸. 

 

b) Key generation: done by Bob 

 Step 1: Choose a random integer 𝑥 

Step 2: Compute 𝑄 = 𝑥𝑃 

Step 3: Send 𝑄 to Alice and keep 𝑥 secretly. 

 

c) Compression: done by Alice 

 Step 1: Let 
{(𝑎1, 𝑏1), (𝑎2, 𝑏2), (𝑎3, 𝑏3), ⋯ , (𝑎𝑘−1, 𝑏𝑘−1), (𝑎𝑘 , 𝑏𝑘)} 
be the set of plaintext points. Denote 

plaintext points as follows: 
𝑎1 = 𝑚11, 𝑏1 = 𝑚12 
𝑎2 = 𝑚21, 𝑏2 = 𝑚22 
𝑎3 = 𝑚31, 𝑏3 = 𝑚32 

⋮ 
𝑎𝑘−1 = 𝑚(𝑘−1)1, 𝑏𝑘−1 = 𝑚(𝑘−1)2 

𝑎𝑘 = 𝑚𝑘1, 𝑏𝑘 = 𝑚𝑘2 

Step 2: The new set of plaintext is  

{
𝑚11, 𝑚12, 𝑚21, 𝑚22, 𝑚31, 𝑚32, ⋯ ,

𝑚(𝑘−1)1, 𝑚(𝑘−1)2, 𝑚𝑘1, 𝑚𝑘2
} 

d) Encryption: done by Alice 

 Step 1: Choose a random integer 𝑦 

Step 2: Compute 𝑅 = 𝑦𝑃 

Step 3: For each 𝑀1, 𝑀2 ∈ 𝐸(𝔽𝑝), calculate 

𝐶1 = 𝑀1 + 𝑦𝑄 
𝐶2 = 𝑀2 + 𝑦𝑄 

Step 4: Send the ciphertext pair {𝐶1, 𝐶2} to Bob. 

e) Decryption: done by Bob 

 Step 1: Upon receiving ciphertext pair {𝐶1, 𝐶2} 
from Bob, compute 

𝑀1 = 𝐶1 − 𝑥𝑅 
𝑀2 = 𝐶2 − 𝑥𝑅 

Step 2: From Step 1 above, Bob has a set of 

quotient {𝑞1, 𝑞2, 𝑞3, ⋯ , 𝑞𝑘−1, 𝑞𝑘}  where 
{𝑞1, 𝑞2, 𝑞3, ⋯ , 𝑞𝑘−1, 𝑞𝑘} = {𝑚1, 𝑚2, 𝑚3, ⋯ , 𝑚𝑘−1, 𝑚𝑘} 
which is the set of original plaintext. 

f) Decompression procedure: done by Bob 

 Step 1: Decompress the plaintext set {𝑀1, 𝑀2}: 
𝑀1 = 𝑀2(𝑞1) + 𝑟1 
𝑀2 = 𝑟1(𝑞2) + 𝑟2 
𝑟1 = 𝑟2(𝑞3) + 𝑟3 

⋮ 
𝑟𝑘−3 = 𝑟𝑘−2(𝑞𝑘−1) + 𝑟𝑘−1 

𝑟𝑘−2 = 𝑟𝑘−1(𝑞𝑘) + 𝑟𝑘 

where 𝑀1, 𝑀2 are the compressed 

plaintext, 𝑞𝑖 is  quotient and 𝑟𝑖 is 

remainder for 𝑖 = 1,2, … , 𝑘. 

Step 2: From Step 1 above, Bob has a set of    

      quotient {𝑞1, 𝑞2, 𝑞3, ⋯ , 𝑞𝑘−1, 𝑞𝑘}  where 
{𝑞1, 𝑞2, 𝑞3, ⋯ , 𝑞𝑘−1, 𝑞𝑘} = 

{
𝑚11, 𝑚12, 𝑚21, 𝑚22, 𝑚31, 𝑚32, ⋯ ,

𝑚(𝑘−1)1, 𝑚(𝑘−1)2, 𝑚𝑘1, 𝑚𝑘2
} 

Step 3: Recover back the set of plaintext 

points as follows: 
𝑚11 = 𝑎1, 𝑚12 = 𝑏1 
𝑚21 = 𝑎2, 𝑚22 = 𝑏2 
𝑚31 = 𝑎3, 𝑚32 = 𝑏3 

⋮ 
𝑚(𝑘−1)1 = 𝑎𝑘−1, 𝑚(𝑘−1)2 = 𝑏𝑘−1 

𝑚𝑘1 = 𝑎𝑘 , 𝑚𝑘2 = 𝑏𝑘 

Finally Bob recovers the original set of 

plaintext points 
{(𝑎1, 𝑏1), (𝑎2, 𝑏2), (𝑎3, 𝑏3), ⋯ , (𝑎𝑘−1, 𝑏𝑘−1), (𝑎𝑘 , 𝑏𝑘)} 

 

 

4.0  CONCLUSION 

 
This paper has shown how the CFEA-Compression 

technique can be integrated into three most 

established asymmetric cryptosystems namely the 

RSA Cryptosystem, ElGamal Cryptosystem and Elliptic 

Curve Cryptography. These cryptosystems are the 

most preferred cryptosystems in real life applications. 

By integrating this compression technique, the 

number of plaintext to be encrypted and also the 

number of the ciphertext to be decrypted can be 

reduced from any number to become only a pair of 

plaintext and a pair of ciphertext. The compression 

and decompression procedures only involve simple 

and low cost mathematical operations. For future 

work, thorough analysis on the efficiency of the RSA 

Cryptosystem, ElGamal Cryptosystem and Elliptic 

Curve Cryptography with integrated CFEA-

Compression technique will be conducted to verify 

whether the RSA, ElGamal and Elliptic Curve 

cryptosystems have better performance than their 

original version or not. As a conclusion, CFEA-

Compression technique is a compression technique 

that can be easily integrated into asymmetric 

cryptosystems to reduce the number of plaintext and 

ciphertext before undergo to the encryption and 

decryption procedures.  
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