

78:2–2 (2016) 21–26 | www.jurnalteknologi.utm.my | eISSN 2180–3722 |

Jurnal

Teknologi

Full Paper

INNER AABB FOR DISTANCE COMPUTATION IN

COLLISION DETECTION

Hamzah Asyrani Sulaimana*, Abdullah Badeb, Mohd Harun

Abdullahb

aUniversiti Teknikal Malaysia Melaka, Melaka, Malaysia
bUniversiti Malaysia Sabah, Sabah, Malaysia

Article history

Received

15 June 2015

Received in revised form

1 October 2015

Accepted

13 October 2015

*Corresponding author

asyrani@computer.org

Graphical abstract

Abstract

Distance computation technique is one of the important elements for completing

narrow phase collision detection system. Checking an accurate distance between

two piece of polygons (or some researchers named it as primitives/triangles) is

always a challenging tasks where it involves two common measurements, which is

speed of the distance checking and the accuracy of the distance itself. In this

paper, we performed an experiment using our latest technique called Inner AABB of

Dynamic Pivot Point (DyOP) where it’s tremendously reduced number of testing and

increase the speed of the distance computation. Based on the analyzed results, we

believed that our technique is superior compared to other techniques in term of the

speed of the detection.

Keywords: Collision detection, virtual environment, distance computation

Abstrak

Teknik pengiraan jarak adalah salah satu elemen penting bagi menyiapkan fasa

sempit sistem pengesanan perlanggaran. Semakan jarak yang tepat antara dua

sekeping poligon (atau beberapa penyelidik menamakannya sebagai primitif/segi

tiga) sentiasa tugas yang mencabar di mana ia melibatkan dua ukuran yang sama,

iaitu kelajuan penyemakan jarak dan ketepatan jarak itu sendiri. Dalam kertas ini,

kami melakukan satu eksperimen dengan menggunakan teknik terkini yang dikenali

sebagai Inner AABB Dinamik Pivot Point (DyOP) di mana ia dengan ketara

mengurangkan bilangan ujian dan meningkatkan kelajuan pengiraan jarak.

Berdasarkan keputusan dianalisis, kami percaya bahawa teknik kami adalah lebih

baik berbanding teknik lain dari segi kelajuan pengesanan.

Kata kunci: Pengesanan perlanggaran, persekitaran maya, pengiraan jarak

© 2016 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

Before an event of collision takes place, both objects

that might come into contact need to check their

movement into each other and approximate the

distance between them [1-8]. By using information

such as object directions, nearest point of contact

between objects and maximum and minimum points

of objects, we can approximate the time of contact

and the distance between object before they are

colliding. Distance computation is one of the

important element for narrow phase collision

detection method where it is generally used for

medical and other accuracy based simulation. It

helps researchers to properly measure the proper

distance. Figure 1 shows an overlap area where the

contact between both AABBs show a collision

between them but in reality, both triangles are not in

contact.

22 Hamzah Asyrani, Abdullah & Mohd Harun / Jurnal Teknologi (Sciences & Engineering) 78:2–2 (2016) 21–26

The conventional technique tries to find the correct

distance from both triangles by computing each

vertex, edge, and face. However, the total cost of

finding hundreds of them is too expensive and thus it

requires a lot of computational cost. Hence, we have

implemented in this paper a foundation work on how

to prepare a vertex distance computation using

Dynamic Origin Point [9, 10] for 3D object without

using expensive calculations.

Figure 1 Overlap area for AABB Testing

2.0 IMPLEMENTATION

In a two-component gel, it is easy to modify the

molecular structure of either of the two components.

In 3D implementation, the algorithm needs to use all

X,Y, and Z axis of each vertex in order to find the

correct distance. Figure 2 shows an algorithm used

for searching the closest midpoint of object face with

the DyOP.

Figure 2 3D Distance Computation Main Algorithm for DyOP

Based on the figure 2, for each 3D object that

contained face with the triangle vertices, we need to

obtain the closest midpoint to the DyOP. The

algorithm will perform iteration for all the object faces

with their triangle vertices until the closest midpoint is

found. The distance between closest midpoints of the

corresponding object with the DyOP for each

iteration can be calculated using formula (1) below:

𝐺𝑒𝑡𝑀𝑖𝑑𝐷𝑖𝑠𝑡 = √𝑋𝑀𝑖𝑑

2 + 𝑌𝑀𝑖𝑑
2 + 𝑍𝑀𝑖𝑑

2
(1)

where X_Mid, Y_Mid, and Z_Mid represented the

current midpoint for the object face

Implementation of 3D object distance

computation required face to face, face to vertex

and face to edge calculation in order to determine

the correct distance between a closest point to the

nearest intersecting point. By referring to the Figure 3

and making assumption that vertex A and C from left

triangle and vertex P and Q from the right triangle

near to the DyOP, we calculate the distance

between based on formula (2) and we obtained

formula (3), (4), (5) and (6).

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑠𝑞𝑟𝑡[(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)2 + (𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛)2] (2)

Step 1: Finding vertex distance using formula 3

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑠𝑞𝑟𝑡[(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)2 + (𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛)2

+ (𝑍𝑚𝑎𝑥 − 𝑍𝑚𝑖𝑛)2]
(3)

Figure 3 Vertex of A and C from the left triangle and vertex

of P and Q from the right triangle are the closest point and

edge to the DyOP

𝐴 (𝑋𝐴, 𝑌𝐴, 𝑍𝐴) with 𝑃 (𝑋𝑃, 𝑌𝑃, 𝑍𝑃)

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐴𝑃 = 𝑠𝑞𝑟𝑡[(𝑋𝐴 − 𝑋𝑃)2 + (𝑌𝐴 − 𝑌𝑃)2 + (𝑍𝐴 − 𝑍𝑃)2]
(4)

𝐴 (𝑋𝐴, 𝑌𝐴, 𝑍𝐴) with 𝑄 (𝑋𝑄, 𝑌𝑄, 𝑍𝑄)

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐴𝑄 = 𝑠𝑞𝑟𝑡 [(𝑋𝐴 − 𝑋𝑄)
2

+ (𝑌𝐴 − 𝑌𝑄)
2

+ (𝑍𝐴 − 𝑍𝑄)
2

]
(5)

𝐶 (𝑋𝐶 , 𝑌𝐶 , 𝑍𝐶) with 𝑃 (𝑋𝑃, 𝑌𝑃, 𝑍𝑃)

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐶𝑃 = 𝑠𝑞𝑟𝑡[(𝑋𝐶 − 𝑋𝑃)2 + (𝑌𝐶 − 𝑌𝑃)2 + (𝑍𝐶 − 𝑍𝑃)2]
(6)

𝐶 (𝑋𝐶 , 𝑌𝐶 , 𝑍𝐶) with 𝑄 (𝑋𝑄, 𝑌𝑄, 𝑍𝑄)

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐶𝑄 = 𝑠𝑞𝑟𝑡 [(𝑋𝐶 − 𝑋𝑄)
2

+ (𝑌𝐶 − 𝑌𝑄)
2

+ (𝑍𝐶 − 𝑍𝑄)
2

]
(7)

Step 2: Finding distance between edges by obtaining

directing vector for AC and PQ

𝐷𝑖𝑟𝑒𝑐𝑡𝑉𝑒𝑐𝑡𝐴𝐵𝐶 = 𝑉𝑒𝑟𝑡𝑒𝑥𝐶 − 𝑉𝑒𝑟𝑡𝑒𝑥𝐴 (8)
𝐷𝑖𝑟𝑒𝑐𝑡𝑉𝑒𝑐𝑡𝑃𝑄𝑅 = 𝑉𝑒𝑟𝑡𝑒𝑥𝑄 − 𝑉𝑒𝑟𝑡𝑒𝑥𝑃 (9)

where DirectVecABC representing the left triangle

directing vector and DirectVectPQR representing the

right triangle directing vector.

Overlap area

For each object face,i
 For each triangle vertex in object face,j
 Get the closest midpoint to the DyOP
 Update GetMidDist with nearest distance
 Update getobjTri_MidFace as the closest
point
End Loop

𝐶 (𝑋𝐶 , 𝑌𝐶 , 𝑍𝐶)

𝐴 (𝑋𝐴, 𝑌𝐴, 𝑍𝐴)

𝑃 (𝑋𝑃 , 𝑌𝑃 , 𝑍𝑃)

𝑄 (𝑋𝑄 , 𝑌𝑄 , 𝑍𝑄)
DyOP

23 Hamzah Asyrani, Abdullah & Mohd Harun / Jurnal Teknologi (Sciences & Engineering) 78:2–2 (2016) 21–26

Step 3: Find the directing vector between vertices

and edges

𝐷𝑖𝑉𝑒𝑐𝑡𝐴_𝑃 = 𝑉𝑒𝑟𝑡𝑒𝑥𝐴 − 𝑉𝑒𝑟𝑡𝑒𝑥𝑃 (10)
𝐷𝑖𝑉𝑒𝑐𝑡𝐴_𝑄 = 𝑉𝑒𝑟𝑡𝑒𝑥𝐴 − 𝑉𝑒𝑟𝑡𝑒𝑥𝑄 (11)
𝐷𝑖𝑉𝑒𝑐𝑡𝐶_𝑃 = 𝑉𝑒𝑟𝑡𝑒𝑥𝐶 − 𝑉𝑒𝑟𝑡𝑒𝑥𝑃 (12)

𝐷𝑖𝑉𝑒𝑐𝑡𝐶_𝑄 = 𝑉𝑒𝑟𝑡𝑒𝑥𝐶 − 𝑉𝑒𝑟𝑡𝑒𝑥𝑄 (13)

Step 4: Distance calculation using cross product

𝐷𝑖𝑠𝑡𝑃𝑜𝑖𝑛𝑡𝐴𝑝

= √
𝑋𝐷𝑖𝑉𝑒𝑐𝑡𝐴𝑃

2 + 𝑌𝐷𝑖𝑉𝑒𝑐𝑡𝐴𝑃

2 + 𝑍𝐷𝑖𝑉𝑒𝑐𝑡𝐴𝑃

2

𝑋𝐷𝑖𝑟𝑒𝑐𝑡𝑉𝑒𝑐𝑡𝐴
2 + 𝑌𝐷𝑖𝑟𝑒𝑐𝑡𝑉𝑒𝑐𝑡𝐴

2 + 𝑍𝐷𝑖𝑟𝑒𝑐𝑡𝑉𝑒𝑐𝑡𝐴
2

(14)

𝐷𝑖𝑠𝑡𝑃𝑜𝑖𝑛𝑡𝐴𝑄

= √
𝑋𝐷𝑖𝑉𝑒𝑐𝑡𝐴𝑃

2 + 𝑌𝐷𝑖𝑉𝑒𝑐𝑡𝐴𝑃

2 + 𝑍𝐷𝑖𝑉𝑒𝑐𝑡𝐴𝑃

2

𝑋𝐷𝑖𝑟𝑒𝑐𝑡𝑉𝑒𝑐𝑡𝐴
2 + 𝑌𝐷𝑖𝑟𝑒𝑐𝑡𝑉𝑒𝑐𝑡𝐴

2 + 𝑍𝐷𝑖𝑟𝑒𝑐𝑡𝑉𝑒𝑐𝑡𝐴
2

(15)

𝐷𝑖𝑠𝑡𝑃𝑜𝑖𝑛𝑡𝐶𝑝

= √
𝑋𝐷𝑖𝑉𝑒𝑐𝑡𝐴𝑃

2 + 𝑌𝐷𝑖𝑉𝑒𝑐𝑡𝐴𝑃

2 + 𝑍𝐷𝑖𝑉𝑒𝑐𝑡𝐴𝑃

2

𝑋𝐷𝑖𝑟𝑒𝑐𝑡𝑉𝑒𝑐𝑡𝐴
2 + 𝑌𝐷𝑖𝑟𝑒𝑐𝑡𝑉𝑒𝑐𝑡𝐴

2 + 𝑍𝐷𝑖𝑟𝑒𝑐𝑡𝑉𝑒𝑐𝑡𝐴
2

(16)

𝐷𝑖𝑠𝑡𝑃𝑜𝑖𝑛𝑡𝐶𝑄

= √
𝑋𝐷𝑖𝑉𝑒𝑐𝑡𝐴𝑃

2 + 𝑌𝐷𝑖𝑉𝑒𝑐𝑡𝐴𝑃

2 + 𝑍𝐷𝑖𝑉𝑒𝑐𝑡𝐴𝑃

2

𝑋𝐷𝑖𝑟𝑒𝑐𝑡𝑉𝑒𝑐𝑡𝐴
2 + 𝑌𝐷𝑖𝑟𝑒𝑐𝑡𝑉𝑒𝑐𝑡𝐴

2 + 𝑍𝐷𝑖𝑟𝑒𝑐𝑡𝑉𝑒𝑐𝑡𝐴
2

(17)

Figure 4 3D Distance Computation Main DyOP algorithm

In order to find the distance between faces from

vertices of both objects, we have implemented

vector-based calculation based on DyOP in order to

minimize the computation cost for computing

distance between vertices and faces unlike the Lin-

Canny method that needs to use brute force

technique by using all the triangles in their

computation [3-6]. In our implementation, we

concentrated on preparing vertex to face

calculation as most researchers have made

assumption that face to face and edge to face

calculation is rarely occurred [3-6, 8, 11-14]. Figure 4

shows main algorithm for vector-based distance

between face calculations.

Based on Figure 4, the algorithm starts by finding

the two vectors for the targeting triangle with a fixed

vertex (let say Triangle PQR and we can use any of

the vertex as a reference point). Then, use any of two

vertices from another triangle (let say Triangle ABC)

to find the directing vectors.

Step 1: Directing vectors based on triangle PQR by

using two vertices from triangle ABC

𝐷𝑉𝑃𝑄 = 𝑉𝑒𝑟𝑡𝑒𝑥𝑃 − 𝑉𝑒𝑟𝑡𝑒𝑥𝑄 (18)
𝐷𝑉𝑃𝑅 = 𝑉𝑒𝑟𝑡𝑒𝑥𝑅 − 𝑉𝑒𝑟𝑡𝑒𝑥𝑃 (19)

where 𝐷𝑉𝑃𝑄 representing the vector calculated using

vertex P to vertex Q of triangle PQR and 𝐷𝑉𝑃𝑅

representing the vector calculated using vertex P to

vertex R.

Step 2: Vector normal based on two vectors by

computing their cross product.

 | i j k |

 | 𝑋𝐷𝑉𝑃𝑄
 𝑌𝐷𝑉𝑃𝑄

 𝑍𝐷𝑉𝑃𝑄
 |

 | 𝑋𝐷𝑉𝑃𝑅
 𝑌𝐷𝑉𝑃𝑅

 𝑍𝐷𝑉𝑃𝑅
 |

𝑋𝑁𝑜𝑟𝑚𝑎𝑙𝐷𝑉𝑃
= [(𝑌𝐷𝑉𝑃𝑄

∗ 𝑍𝐷𝑉𝑃𝑅
) − (𝑌𝐷𝑉𝑃𝑅

∗ 𝑍𝐷𝑉𝑃𝑄
)] 𝑖

(20)

𝑌𝑁𝑜𝑟𝑚𝑎𝑙𝐷𝑉𝑃
= − [(𝑋𝐷𝑉𝑃𝑄

∗ 𝑍𝐷𝑉𝑃𝑅
) − (𝑋𝐷𝑉𝑃𝑅

∗ 𝑍𝐷𝑉𝑃𝑄
)] 𝑗

(21)

𝑍𝑁𝑜𝑟𝑚𝑎𝑙𝐷𝑉𝑃
= [(𝑋𝐷𝑉𝑃𝑄

∗ 𝑌𝐷𝑉𝑃𝑅
) − (𝑋𝐷𝑉𝑃𝑅

∗ 𝑌𝐷𝑉𝑃𝑄
)] 𝑘

(22)

where the normal vector is represented by

 (𝑋𝑁𝑜𝑟𝑚𝑎𝑙𝐷𝑉𝑃
, 𝑌𝑁𝑜𝑟𝑚𝑎𝑙𝐷𝑉𝑃

, 𝑍𝑁𝑜𝑟𝑚𝑎𝑙𝐷𝑉𝑃
)

For each object, j
 Step 1: Get two vectors of corresponding triangle with
one fixed vertex
 Step 2: Compute normal vector based on both vectors
 Step 3: Normalize the normal vector
 For each triangle vertex, i
 Step 3.1: Get a vector from i to j
 Step 3.2: Compute Magnitude for 3.1
 Step 3.3: Find angle of the vector based on j
and I
 Step 3.4: Compute the length of the vector
End Loop

24 Hamzah Asyrani, Abdullah & Mohd Harun / Jurnal Teknologi (Sciences & Engineering) 78:2–2 (2016) 21–26

Step 3: Normalize the normal vector and find their

magnitude.

Magnitude of the normal vector:

𝑀𝑎𝑔𝑁𝑜𝑟𝑚𝑎𝑙𝐷𝑉𝑝

= √𝑋𝑁𝑜𝑟𝑚𝑎𝑙𝐷𝑉𝑃

2 + 𝑌𝑁𝑜𝑟𝑚𝑎𝑙𝐷𝑉𝑃

2 + 𝑍𝑁𝑜𝑟𝑚𝑎𝑙𝐷𝑉𝑃

2

(23)

Normalize the vector:

𝐷𝑉𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 =
𝑋𝑁𝑜𝑟𝑚𝑎𝑙𝐷𝑉𝑃

𝑀𝑎𝑔𝑁𝑜𝑟𝑚𝑎𝑙𝐷𝑉𝑝

 (24)

Calculate the magnitude of normalized vector:

𝑀𝑎𝑔𝐷𝑉𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒

= √𝑋𝐷𝑉𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒

2 + 𝑌𝐷𝑉𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒

2 + 𝑍𝐷𝑉𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒

2

(25)

Next, we need to calculate the distance between

the vectors by performing iteration for each triangle

vertex. For example, Triangle ABC has three vertices

where each vertex needs to find their directing

vector from the triangle PQR reference point. In this

case, vertex P from triangle PQR has become a

reference point to calculate directing vector towards

triangle ABC.

Step 3.1: Get a directing vector for each vertex

Triangle ABC to Triangle PQR

𝐷𝑉𝑃𝐴 = 𝑉𝑒𝑟𝑡𝑒𝑥𝑃 − 𝑉𝑒𝑟𝑡𝑒𝑥𝐴 (26)
𝐷𝑉𝑃𝐵 = 𝑉𝑒𝑟𝑡𝑒𝑥𝑃 − 𝑉𝑒𝑟𝑡𝑒𝑥𝐵 (27)
𝐷𝑉𝑃𝐶 = 𝑉𝑒𝑟𝑡𝑒𝑥𝑃 − 𝑉𝑒𝑟𝑡𝑒𝑥𝐶 (28)

Step 3.2: Find the magnitude for each directing

vector

𝑀𝑎𝑔𝐷𝑉𝑃𝐴 = √𝑋𝐷𝑉𝑃𝐴

2 + 𝑌𝐷𝑉𝑃𝐴

2 + 𝑍𝐷𝑉𝑃𝐴
2

(29)
𝑀𝑎𝑔𝐷𝑉𝑃𝐵 = √𝑋𝐷𝑉𝑃𝐵

2 + 𝑌𝐷𝑉𝑃𝐵

2 + 𝑍𝐷𝑉𝑃𝐵
2

(30)
𝑀𝑎𝑔𝐷𝑉𝑃𝐶 = √𝑋𝐷𝑉𝑃𝐶

2 + 𝑌𝐷𝑉𝑃𝐶

2 + 𝑍𝐷𝑉𝑃𝐶
2

(31)

Step 3.3: Find angle of the vector based on vector

𝐷𝑉𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 with 𝐷𝑉𝑃𝐴, 𝐷𝑉𝑃𝐵, and 𝐷𝑉𝑃𝐶

𝐷𝑉𝑃𝐴𝑐𝑜𝑠

=

[
(𝑋𝐷𝑉𝑃𝐴

∗ 𝑋𝐷𝑉𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒
) + (𝑌𝐷𝑉𝑃𝐴

∗ 𝑌𝐷𝑉𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒
)

+(𝑍𝐷𝑉𝑃𝐴
∗ 𝑍𝐷𝑉𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒

)
]

𝑀𝑎𝑔𝑁𝑜𝑟𝑚𝑎𝑙𝐷𝑉𝑝
∗ 𝑀𝑎𝑔𝐷𝑉𝑃𝐴

(32)

𝐷𝑉𝑃𝐵𝑐𝑜𝑠

=

[
(𝑋𝐷𝑉𝑃𝐵

∗ 𝑋𝐷𝑉𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒
) + (𝑌𝐷𝑉𝑃𝐵

∗ 𝑌𝐷𝑉𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒
)

+(𝑍𝐷𝑉𝑃𝐵
∗ 𝑍𝐷𝑉𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒

)
]

𝑀𝑎𝑔𝑁𝑜𝑟𝑚𝑎𝑙𝐷𝑉𝑝
∗ 𝑀𝑎𝑔𝐷𝑉𝑃𝐶

(33)

𝐷𝑉𝑃𝐶𝑐𝑜𝑠

=

[
(𝑋𝐷𝑉𝑃𝐶

∗ 𝑋𝐷𝑉𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒
) + (𝑌𝐷𝑉𝑃𝐶

∗ 𝑌𝐷𝑉𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒
)

+(𝑍𝐷𝑉𝑃𝐶
∗ 𝑍𝐷𝑉𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒

)
]

𝑀𝑎𝑔𝑁𝑜𝑟𝑚𝑎𝑙𝐷𝑉𝑝
∗ 𝑀𝑎𝑔𝐷𝑉𝑃𝐶

(34)

Since the result obtained from equation 32 until 34

are in cosine mode, we need to change into the

degrees mode by performing anti-cosine (acos

function in C++) then multiply with pi/180:

𝜃𝑃𝐴𝑎𝑛𝑔𝑙𝑒 = (𝐷𝑉𝑃𝐴𝑐𝑜𝑠
−1 ∗

180

𝜋
)

O

 (35)

𝜃𝑃𝐵𝑎𝑛𝑔𝑙𝑒 = (𝐷𝑉𝑃𝐵𝑐𝑜𝑠
−1 ∗

180

𝜋
)

O

 (36)

𝜃𝑃𝐶𝑎𝑛𝑔𝑙𝑒 = (𝐷𝑉𝑃𝐶𝑐𝑜𝑠
−1 ∗

180

𝜋
)

O

 (37)

Step 3.4: Total length of each directing vector from

Triangle ABC to Triangle PQR

𝐿𝑒𝑛𝑔𝑡ℎ𝑃𝐴

= (√(𝑋𝑣𝐴 − 𝑋𝑣𝑃)2 + (𝑌𝑣𝐴 − 𝑌𝑣𝑃)2 + (𝑍𝑣𝐴 − 𝑍𝑣𝑃)2)

∗ 𝐷𝑉𝑃𝐴𝑐𝑜𝑠

(38)

𝐿𝑒𝑛𝑔𝑡ℎ𝑃𝐵

= (√(𝑋𝑣𝐵 − 𝑋𝑣𝑃)2 + (𝑌𝑣𝐵 − 𝑌𝑣𝑃)2 + (𝑍𝑣𝐵 − 𝑍𝑣𝑃)2)

∗ 𝐷𝑉𝑃𝐵𝑐𝑜𝑠

(39)

𝐿𝑒𝑛𝑔𝑡ℎ𝑃𝐶

= (√(𝑋𝑣𝐶 − 𝑋𝑣𝑃)2 + (𝑌𝑣𝐶 − 𝑌𝑣𝑃)2 + (𝑍𝑣𝐶 − 𝑍𝑣𝑃)2)

∗ 𝐷𝑉𝑃𝐶𝑐𝑜𝑠

(40)

where (𝑋𝑣𝐴, 𝑌𝑣𝐴, 𝑍𝑣𝐴), (𝑋𝑣𝐵, 𝑌𝑣𝐵, 𝑍𝑣𝐵), (𝑋𝑣𝐶, 𝑌𝑣𝐶, 𝑍𝑣𝐶),

and (𝑋𝑣𝑃, 𝑌𝑣𝑃, 𝑍𝑣𝑃) representing the vertex point in

X,Y, and Z coordinates.

25 Hamzah Asyrani, Abdullah & Mohd Harun / Jurnal Teknologi (Sciences & Engineering) 78:2–2 (2016) 21–26

We believed that the foundation of this algorithm

is to work perfectly with our DyOP algorithm for

computing distance between two or more primitives.

Instead of using all triangles and searching for

nearest closest distance, it helps to reduce the

complexity and time consumption in finding the

distance.

3.0 RESULTS AND DISCUSSION

Based on the graph, DyOP performance is superior

compared other two prominent techniques in term of

technique speed for distance computation checks.

All techniques used the same fixed distance and the

same experiment procedures. By improving the

speed of distance computation technique, we can

potentially increase the speed of collision detection

testing especially the narrow phase collision

detection types where distance computation

technique is mainly used in high accuracy

application such as medical simulation and high

precision simulation. Which means, more testing will

be conducted when the speed is improved and

maintaining the accuracy of the collision detection

technique. Figure 5 shows in details about the

differences in percentage for distance computation

speed experiments.

In Figure 5, the highest percentage of speed

increases between DyOP and LinCanny technique is

187.3% while the lowest being 75%. Meanwhile, DyOP

had shown that it performs better than GJK

technique where DyOP set 110.9% highest speed

increase and 78.1% for the lowest speed increase. It

means that the DyOP has proven to provide faster

distance computation technique as compared to Lin

Canny and GJK technique. This proven enough that

the proposed technique works in better efficiency

than the two techniques.

4.0 CONCLUSION

Considering all experiments conducted, we

conclude that the proposed technique DyOP is

superior as compared to GJK and Lin-Canny

techniques. In term of distance computation, the

computational speed increase with the almost same

accuracy range 150% to 180% for some triangles. Our

justification is proved from the testing where number

of vertices, edges or faces, the speed for narrow

phase collision detection checking are significantly

reduced. Both GJK and Lin-Canny implementation

are strictly followed it original research paper.

Meanwhile for 3D virtual environment experiment,

we have successfully implemented the proposed

Figure 5 Overall Speed in Percentage for Distance Computation

172.7272727

139.2857143

147.3684211

171.9298246
164.2857143

75

159.3220339
167.2727273

187.2727273

160.7142857

110.9090909

105.3571429

107.0175439

92.98245614
103.5714286

78.125

89.83050847
96.36363636

107.2727273
98.21428571

0

20

40

60

80

100

120

140

160

180

200

0 2 4 6 8 10 12

P
er

ce
n

ta
ge

Triangle Sizes

Percentage of Improvement for DyOP

DyOP vs LinCanny DyOP vs GJK

26 Hamzah Asyrani, Abdullah & Mohd Harun / Jurnal Teknologi (Sciences & Engineering) 78:2–2 (2016) 21–26

technique (DyOP) and perform benchmarking

comparison between DyOP and Lin-Canny

technique. We stressed out that DyOP technique is

capable to withstand in any environment and

conditions including translational and rotational

movement. Instead of performing two-phase collision

checking, DyOP can perform collision checking with

only just a single phase with optimal accuracy and

fast response result. Hence, with this results, we have

answered the first and second objectives which are

to produce efficient and high performance

technique for narrow phase collision detection.

Acknowledgement

The authors would like to thank Universiti Teknikal

Malaysia Melaka and Ministry of Higher Education

Malaysia for the financial support given through the

research grant number FRGS

(RACE)/2013/FKEKK/TK3/4/F00197 with a title of A

Novel Interference Detection Algorithm Using Planar

Subdivision of Axis-Aligned Bounding-Box for Virtual

Reality Application.

References

[1] Sulaiman, H. A., Othman, M. A., Salahuddin, L., Zainudin,

M. N. S., Salim, S. I. M., Ismail, M. M. et al. 2013. Distance

Approximation Using Pivot Point In Narrow Phase Collision

Detection. Proc. of 2013 3rd Int. Conf. on Instrumentation,

Communications, Information Technol., and Biomedical

Engineering: Science and Technol. for Improvement of

Health, Safety, and Environ., ICICI-BME 2013, 2013. 106-110.

[2] Jia, P., Chitta, S. and Manocha, D. 2012. FCL: A General

Purpose Library For Collision And Proximity Queries.

Robotics and Automation (ICRA), 2012 IEEE International

Conference on, 2012. 3859-3866.

[3] Ma, Y., Tu, C. and Wang, W. 2012. Distance Computation

For Canal Surfaces Using Cone-Sphere Bounding Volumes.

Computer Aided Geometric Design. 29: 255-264.

[4] Chakraborty, N., Jufeng, P., Akella, S. and Mitchell, J. E.

2008. Proximity Queries Between Convex Objects: An

Interior Point Approach for Implicit Surfaces. Robotics, IEEE

Transactions on. 24: 211-220.

[5] Larsen, E., Gottschalk, S., Lin, M. C., and Manocha, D.

2000. Fast Distance Queries With Rectangular Swept

Sphere Volumes. Robotics and Automation, 2000.

Proceedings. ICRA '00. IEEE International Conference on,

2000. 4: 3719-3726.

[6] Lin, M. C. and Canny, J. F. 1991. A Fast Algorithm For

Incremental Distance Calculation. Robotics and

Automation, 1991. Proceedings, 1991 IEEE International

Conference on, 1991. 2: 1008-1014.

[7] Gilbert, E. G. and Foo, C. P. 1990. Computing The Distance

Between General Convex Objects In Three-Dimensional

Space. Robotics and Automation, IEEE Transactions on. 6:

53-61.

[8] Gilbert, E. G., Johnson, D. W. and Keerthi, S. S. 1988. A Fast

Procedure For Computing The Distance Between

Complex Objects In Three-Dimensional Space. Robotics

and Automation, IEEE Journal of. 4: 193-203.

[9] Sulaiman, H. A., Bade, A. and Abdullah, M. H. 2014.

Computing Distance Using Internal Axis-Aligned Bounding-

Box For Nearly Intersected Objects. In AIP Conference

Proceedings, 2014. 343-349.

[10] Sulaiman, H. A., Othman, M. A., Ismail, M. M., Meor Said,

M. A., Ramlee, A., Misran, M. H. et al. 2013. Distance

computation Using Axis Aligned Bounding Box (AABB)

Parallel Distribution Of Dynamic Origin Point. 2013 Annual

International Conference on Emerging Research Areas,

AICERA 2013 and 2013 International Conference on

Microelectronics, Communications and Renewable

Energy, ICMiCR 2013-Proceedings, 2013.

[11] Jia, P., Sucan, I. A., Chitta, S. and Manocha, D. 2013. Real-

time Collision Detection And Distance Computation On

Point Cloud Sensor Data. Robotics and Automation

(ICRA), 2013 IEEE International Conference on, 2013. 3593-

3599.

[12] Tang, M., Lee, M. and Kim, Y. J. 2009. Interactive Hausdorff

distance Computation For General Polygonal Models.

ACM Trans. Graph. 28: 1-9.

[13] Quinlan, S. 1994. Efficient Distance Computation Between

Non-Convex Objects. Robotics and Automation, 1994.

Proceedings., 1994 IEEE International Conference on,

1994. 3324-3329.

[14] Husain, N. A., Rahim, M. S. M., A. R. Khan, Al-Rodhaan, M.,

Al-Dhelaan, A., Saba, T. 2015. Iterative Adaptive

Subdivision Surface Approach To Reduce Memory

Consumption In Rendering Process (IteAS) 2015. Journal of

Intelligent and Fuzzy Systems. 28(1): 337-344.

