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Abstract. A dual response surface approach consists of two responses of a quality characteristic.
These two responses are the mean response and the standard deviation (variance) response, which are
estimated from an experimental design after performing a model fitting. The standard deviation
response is usually estimated using the sample standard deviation. The main drawback of this estimator
by means of sample standard deviation is that it is easily influenced by extreme points. For this case, the
fitted model based on the sample standard deviation may not be accurate. Thus, the use of this
approach may not produce the correct compromised setting. In this paper, an estimation of the
standard deviation based on Downton’s estimator in a dual response surface optimization is proposed.
A Downton estimator is a robust estimator of standard deviation. A robust estimator is less affected by
extreme points compared to the sample standard deviation. Here, a model based on a robust estimator
will give better results. An example is used to illustrate the effectiveness of our proposal in optimization.
In this example, mean squared error (MSE) will be used as the optimization criterion.

Keywords: Downton’s estimator, dual response surface optimization, mean squared error, optimization,
compromise setting

Abstrak. Kaedah sambutan dual terdiri daripada dua sambutan bagi suatu cirian kualiti. Dua
sambutan tersebut ialah sambutan min dan sambutan sisihan piawai (varians) yang dianggarkan
daripada reka bentuk eksperimen selepas penyuaian model dijalankan. Sambutan sisihan piawai
biasanya dianggar daripada sisihan piawai sampel. Kelemahan utama penganggar yang berdasarkan
sisihan piawai sampel adalah ia mudah dipengaruhi oleh titik ekstrim. Bagi kes sedemikian, model
yang tersuai berdasarkan sisihan piawai sampel adalah mungkin tidak jitu. Oleh itu, penggunaan
pendekatan ini mungkin tidak dapat memberi titik kompromi yang betul. Dalam kertas kerja ini,
suatu anggaran sisihan piawai berdasarkan penganggar Downton dicadangkan dalam pengoptimuman
kaedah sambutan dual. Penganggar teguh kurang dipengaruhi oleh titik ekstrim berbanding dengan
sisihan piawai sampel. Dalam hal ini, suatu model tersuai yang berdasarkan penganggar teguh akan
memberikan keputusan yang lebih baik. Suatu contoh digunakan untuk mengilustrasikan kecekapan
cadangan kami dalam pengoptimuman. Dalam contoh ini ralat kuasadua min (MSE) akan digunakan
sebagai ciri pengoptimuman.

Kata kunci: Penganggar Downton, pengoptimuman sambutan dual, ralat min kuasa dua,
pengoptimuman, titik kompromi
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1.0 INTRODUCTION

Practitioners realize that statistical tools like Response Surface Methodology (RSM)
should be applied to improve their products so that they can continue to gain customer
satisfaction and be the champion in a competitive market place. Dual response surface
methodology is one of the favourite choices of practitioners in optimizing the primary
response subjected to an appropriate constraint on the value of the secondary response.
Due to the demand, researchers like Castillo and Montgomery [1], Copeland and
Nelson [2], Fan [3], Fathi [4], Kim and Lin [5], Lin and Tu [6], Myers and Carter [7],
Vining and Bohn [8], Vining and Myers [9], and others have contributed significantly
to the development of dual response surface optimization.

In dual response surface optimization, models for the mean and standard deviation
(or variance) of a quality characteristic are needed in the optimization. These models
are based on data collected in an experimental design. Table 1 is a general form of an
experimental design for a dual response surface optimization with m design points, k
coded process settings, and n replications at each design point.

Table 1 General form of an experimental design for a dual response surface optimization

Design Coded process settings Replication

point x1 x2 …………… xk 1 2 … n

1 –1 –1 … –1 Y11 Y12 … Y1n
2 0 –1 … –1 Y21 Y22 … Y2n
: : : : : : : : :
m 1 1 1 0 Ym1 Ym2 … Ymn

Copeland and Nelson [2], Kim and Lin [5], Lin and Tu [6], and Vining and Myers
[9] make use of the arithmetic mean and the sample standard deviation (a.k.a. S.S.D.)
in their model fitting. The arithmetic mean and the S.S.D. at a design point are defined
as:
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In this paper, we would like to propose Downton’s estimator (a.k.a. D.E.) as a
replacement for the S.S.D. in estimating the standard deviation of a design point. The
Downton estimator and its properties will be discussed in the next section. Next, a
data set described in Box and Draper [10] will be used to illustrate its use. Finally,
conclusions will be drawn with regards to our proposal.

2.0 THE DOWNTON ESTIMATOR

Let 1 2, ,..., nY Y Y  be a random sample from a Normal distribution with the mean µ
and variance 2σ , that is, ( )2

1 2, ,..., ,nY Y Y N µ σ∼ If we rearrange the observations of
the sample in ascending order so that ( ) ( ) ( )≤ ≤ ≤1 2 ... nY Y Y , Downton [11] proposed
the following estimator:
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where π = 1.772453851 and σ ∗ is an estimator of σ at a design point.
Downton [11] mentioned that this estimator is extremely simple, unbiased (that is,

the expected value of Downton’s estimator is equal to standard deviation) and
uncorrelated with the mean (that is, Downton’s estimator is independent of the mean).
In addition, this estimator has a high efficiency relative to the root-mean-squared
estimator even for small values of n. Details concerning this estimator and other
properties can be found in Downton [11].

3.0 EXAMPLE

This data set is taken from Box and Draper [10] and it has been used frequently by
other researchers. This data set is a study made to investigate the effect of speed x1,
pressure x2, and distance x3 upon a printing machine’s ability to apply coloured inks
onto package labels. This experiment is a  factorial design with 33 replicates (n = 3) at
each design point. Since n = 3 the D.E. can be simplified to the form shown below:
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Table 2 is the data set plus an additional 3 columns, which contain the computations
of the arithmetic mean y , the S.S.D., and the D.E. for each design point. We will
assume that a cuboidal region is of interest, that is, 1 1ix− ≤ ≤ for i = 1, 2 and 3. This
is because Vining and Bohn [8] restricted the optimization to the cube since the

Table 2 The printing study data

Design x1 x2 x3 y1 y2 y3 y S.S.D. D.E.
point

1 -1 -1 -1 34 10 28 24.0 12.49 14.18
2 0 -1 -1 115 116 130 120.3 8.39 8.86
3 1 -1 -1 192 186 263 213.7 42.83 45.49
4 -1 0 -1 82 88 88 86.0 3.46 3.54
5 0 0 -1 44 178 188 136.7 80.41 85.08
6 1 0 -1 322 350 350 340.7 16.17 16.54
7 -1 1 -1 141 110 86 112.3 27.57 32.49
8 0 1 -1 259 251 259 256.3 4.62 4.73
9 1 1 -1 290 280 245 271.7 23.63 26.59

10 -1 -1 0 81 81 81 81.0 0.00 0.00
11 0 -1 0 90 122 93 101.7 17.67 18.91
12 1 -1 0 319 376 376 357.0 32.91 33.68
13 -1 0 0 180 180 154 171.3 15.01 15.36
14 0 0 0 372 372 372 372.0 0.00 0.00
15 1 0 0 541 568 396 501.7 92.5 101.62
16 -1 1 0 288 192 312 264.0 63.50 70.90
17 0 1 0 432 336 513 427.0 88.61 104.57
18 1 1 0 713 725 754 730.7 21.08 24.22
19 -1 -1 1 364 99 199 220.7 133.82 156.57
20 0 -1 1 232 221 266 239.7 23.46 26.59
21 1 -1 1 408 415 443 422.0 18.52 20.68
22 -1 0 1 182 233 182 199.0 29.44 30.13
23 0 0 1 507 515 434 485.3 44.64 47.86
24 1 0 1 846 535 640 673.7 158.21 183.74
25 -1 1 1 236 126 168 176.7 55.51 64.99
26 0 1 1 660 440 403 501.0 138.94 151.84
27 1 1 1 878 991 1161 1010.0 142.45 167.20
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experimental design is cuboidal. In addition, a target for the mean of 500  is used here
because Kim and Lin [5], Vining and Bohn [8], and Vining and Myers [9] fixed T =
500.

In this paper, we started with a full cubic model to fix the models for the mean, the

S.S.D. and the D.E.. The full cubic model includes the terms 2 2 2
1 2 3 1 2 3, , , , ,x x x x x x

3 3 3 2 2 2 2 2 2
1 2 1 3 2 3 1 2 3 1 2 1 3 2 1 2 3 3 1 3 2, , , , , , , , , , ,x x x x x x x x x x x x x x x x x x x x x a n d 1 2 3 .x x x M o d e l

selection procedures in SPSS, version 7.5.2, that is, Forward (a procedure begin with
no regressors in the model and attempts to insert regressors until an optimal model is
obtained), Backward (a procedure begin with all regressors in the model and attempts
to eliminate regressors until an optimal model is obtained), and Stepwise (combination
of Forward and Backward) will be employed here. We used the default settings in
SPSS, namely, the probability of F for entry is 0.05 and for removal is 0.10. For each
model selection procedure, models for the mean, the S.S.D. and the D.E. will be
obtained. In order to make this study meaningful, the adjusted R squared value will
be used to choose the best models. For example, SPSS give 8 models for the mean
when the Stepwise procedure is used. Thus, we will choose the model with the highest
adjusted R squared value among the 8 models before proceeding to the optimization.

3.1 Model Selection Procedure: Stepwise

Let µω denotes the fitted response surface for the mean, ω . . .S S D denotes the fitted
response surface for the S.S.D. and . .ωD E  denotes the fitted response surface for the
D.E.. Then, the best models for the mean, the S.S.D. and the D.E. are, respectively:

1 2 3 1 2 1 3

2
2 3 3 2 1 2 3

314.674 177.011 147 131.467 66.033 75.458

43.583 56.367 82.788

x x x x x x x

x x x x x x x

µω = + + + + +

+ − + (5)

. . . 3 1 2 347.944 29.190 29.565S S D x x x xω = + +     (6)

. . 3 1 2 353.939 34.006 34.414D E x x x xω = + +     (7)

Table 3 shows the R squared and adjusted R squared values for (5), (6) and (7)
when the Stepwise procedure is used. Table 3 clearly indicates that the adjusted R
squared values for (6) and (7) are close to each other.

Table 3 R Ssquared and adjusted R squared values for (5), (6) and (7)

Model R squared Adjusted R squared

(5) 0.966 0.952
(6) 0.373 0.321
(7) 0.381 0.329
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Here, we used the mean squared error (MSE) criterion proposed by Lin and Tu [6]
as the optimization criterion. The MSE consists of two terms: the bias and the variance.
In addition, the Generalized Reduced Gradient algorithm in the “Solver” option in
Microsoft Excel is used to minimize the MSE and to find the optimal settings of this
example. The starting point of this example is ( )= 1,1,1x′ . Two types of minimization
had been carried out separately, that is, minimize ( )2 2

. . .500 S S Dµω ω− + subject to
1 1ix− ≤ ≤  for  i = 1,2,3 and ( )2 2

. .500 D Eµω ω− +  subject to 1 1ix− ≤ ≤  for i = 1,2,3.
Table 4 summarizes the optimization of S.S.D. and D.E. in the dual response

problem. The use of S.S.D. led to the optimal setting (x1, x2, x3) = (1.0000, 1.0000,
– 0.5665) which resulted in an expected mean of 497.8238, and a variance of 216.3959
(MSE = 221.1314). With D.E., the optimal setting (x1, x2, x3) = (1.0000, 1.0000, –0.5676)
resulted in an expected mean of 497.3982 and a variance of 228.2214 (MSE = 234.9919).
These two estimators typically produced almost identical results.

The Appendix describes the Microsoft Excel spreadsheet implementation used for
this example when Stepwise is the model selection procedure.

3.2 Model Selection Procedure: Backward

We repeated the whole analysis again but now with the use of the Backward procedure.
The best models for the mean, the S.S.D. and the D.E. are, respectively:

2 2 2
1 2 3 1 2 1 3

3 3 3 2
2 3 1 2 3 3 2 1 2 3

327.630 32.011 22.389 29.056 66.033 75.458

43.583 177.011 147 131.467 56.367 82.788

x x x x x x x

x x x x x x x x x x

µω = + − − + +

+ + + + − +  (8)

2 3 3 3
. . . 3 2 3 1 2 3

2 2
1 2 2 1 1 2 3

36.809 16.778 14.082 36.495 30.442 29.190

22.677 37.451 29.565

S S D x x x x x x

x x x x x x x

ω = + + + + −

− − +     (9)

2 3 3 3
. . 3 2 3 1 2 3

2 2 2
1 2 1 3 2 1 1 2 3

41.029 19.366 15.409 42.154 34.463 21.270

24.814 19.103 43.917 34.414

D E x x x x x x

x x x x x x x x x

ω = + + + + +

− + − + (10)

Table 5 shows the R squared and adjusted R squared values for (8), (9), and (10)
when the Backward procedure is used. Both (9) and (10) produce almost identical

Table 4 Comparison of the optimal settings for S.S.D. and D.E.

Method Optimal settings µω Variance MSE

( )2 2
. . .500 S S Dµω ω− + (1.0000, 1.0000, -0.5665) 497.8238 216.3959 221.1314

( )2 2
. .500 D Eµω ω− + (1.0000, 1.0000, -0.5676) 497.3982 228.2214 234.9919
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adjusted R squared values. Tables 3 and 5 also indicate that the Backward procedure
can give a better model than the Stepwise procedure, based on the adjusted R squared
values.

The “Solver” option will be used again here with the same information (including
T = 500, 1 1ix− ≤ ≤  for i = 1, 2, 3, minimize ( )2 2

. . .500 S S Dµω ω− +  and
( )2 2

. .500 D Eµω ω− + , separately) except that equations (8), (9), and (10) would replace
equations (5), (6), and (7). Table 6 summarizes the optimization of S.S.D. and D.E. in
the dual response problem. The use of the S.S.D. led to the optimal setting
(x1, x2, x3) = (1.0000, 1.0000, –0.7009) which resulted in an expected mean of 498.6252
and a variance of 125.8929 (MSE = 127.7836). With the D.E., the optimal setting
(x1, x2, x3) = (1.0000, 1.0000, –0.6990) which resulted in an expected mean of 499.5843
and a variance of 8.5574 (MSE = 8.7299). The use of optimal settings obtained by the
D.E. can obviously reduce the MSE by up to 93%, which is a great achievement.
Generally, the great reduction of MSE was due to the variance. Thus, the D.E. can
help practitioners in finding better optimal settings with smaller MSEs.

Table 5 R squared and adjusted R squared values for (8), (9) and (10)

Model R squared Adjusted R squared

(8) 0.977 0.960

(9) 0.680 0.538

(10) 0.701 0.543

3.3 Model Selection Procedure: Forward

The use of the Forward procedure in this example produces the same models for the
mean, the S.S.D., the D.E., R squared and adjusted R squared values as the Stepwise
procedure. Thus, the Forward procedure as a model selection procedure will give
exactly the same results (optimal settings, expected mean, variance, and MSE) as the
Stepwise procedure.

Table 6 Comparison of the optimal settings for S.S.D. and D.E.

Method Optimal settings µω Variance MSE

( )2 2
. . .500 S S Dµω ω− + (1.0000, 1.0000, -0.7009) 498.6252 125.8929 127.7836

( )2 2
. .500 D Eµω ω− + (1.0000, 1.0000, -0.6990) 499.5843 8.5574 8.7299
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4.0 CONCLUSION

Great improvements in dual response surface optimization can be achieved with the
use of optimal settings obtained by using Downton’s estimator in estimating the
standard deviation of every design point. As indicated in the previous section, a
reduction of the MSE of up to 93% can be achieved when the Backward procedure is
considered with a little bias from the target value. In addition, the Downton’s estimator
and the sample standard deviation gave comparable results when the Stepwise and
Forward procedures were used.
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APPENDIX

MICROSOFT EXCEL SPREADSHEET

In this paper, a full cubic model is used to obtain the best models for the mean, the
S.S.D. and the D.E.. Hence, these three models have the following general form:
Expected Value

= + + + + + + + + +

+ + + + + + + +

+ +

2 2 2
0 1 1 2 2 3 3 4 1 5 2 6 3 7 1 2 8 1 3 9 2 3

3 3 3 2 2 2 2 2
10 1 11 2 12 3 13 1 2 14 1 3 15 2 1 16 2 3 17 3 1

2
18 3 2 19 1 2 3

b b x b x b x b x b x b x b x x b x x b x x

b x b x b x b x x b x x b x x b x x b x x

b x x b x x x

Figure 1 shows the Microsoft Excel spreadsheet used to optimize the dual response
surface. Using Excel’s notation, the estimated parameters of models are as follows:

(i) the mean is shown in cells B3:K3 and B8:K8,
(ii) the S.S.D. is shown in cells B4:K4 and B9:K9, and
(iii) the D.E. is shown in cells B5:K5 and B10:K10

Figure 1 Microsoft Excel implementation
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In addition, the values of the factor levels (x) are shown in cells B13:B15. Initially,
cells B13:B15 had all ones. The expected values for the mean, the S.S.D. and the D.E.
at x are found in E13, E14 and E15, respectively. Finally, our objective is to minimize
the functions ( )2 2

. . .500 S S Dµω ω− +  and ( )2 2
. .500 D Eµω ω− + , separately. They are

shown in cells H13 and H14, respectively.
The Generalized Reduced Gradient algorithm is invoked by selecting the “Solver”

option of the Microsoft Excel. In the solver menu, we choose to minimize cell H13 by
changing cells B13:B15. Constraints 1 1ix− ≤ ≤  for i = 1, 2 and 3 are included. Thus,
the optimal settings, the expected mean, and the variance will be shown after we press the
“solve” button. After getting the results for the objective function ( )2 2

. . .500 S S Dµω ω− + ,
we proceed to minimize cell H14 to get the results for the objective function
( )2 2

. .500 D Eµω ω− + .
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