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Abstract 
 

Use of fishing weirs can be seen throughout the world to trap migratory fish in rivers. In 

rivers flowing into Lake Biwa, Shiga prefecture, Japan, a peculiar type of traditional 

fishing weir has been operated, targeting anadromous fish species such as Plecoglossus 

altivelis and Oncorhynchus masou rhodurus. That type of fishing weir has the advantage 

of catching fish alive, adding an extra value to the fish. Hence the structure of such a 

weir is considered to be historically optimized so that physiological damages to the fish 

are minimum. In this study, assuming that the horizontal shape is designed to minimize the 

traveling time of fish from any point along the downstream side of the weir to the gate of 

no return situated at the bank, as well as to minimize the size of structure, a 

mathematical problem is formulated in the framework of dynamic programming to 

determine the optimal shape. Geometric consideration results in the traveling time as a 

functional of the shape, whose slope of the tangent is dealt with as the control variable. 

The value function and the optimal control solve the Hamilton-Jacobi-Bellman equation, 

which represents the principle of optimality. The system of the Hamilton-Jacobi-Bellman 

equation is finally reduced to an ordinary differential equation with an initial condition. 

Some computational results are in good agreement with the actual shapes of the fishing 

weirs installed across the rivers flowing into Lake Biwa. This mathematical approach is 

also applicable to other problems such as optimal design of fish ladders. 
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equation 

 

 © 2016 Penerbit UTM Press. All rights reserved 

  

 

1.0  INTRODUCTION 
 

Fishing weirs are traditionally used for trapping 

migratory fish, and many types of the fishing weirs are 

operated around the world. Fishing by means of the 

weirs has been playing an important role for a long 

time to harvest animal protein without damaging 

local environment. The shapes and materials of 

fishing weirs differ, depending on geomorphological, 

social and ecological conditions. Erickson (2000) 

studied a complex artificial network of hydraulic 

earthworks covering 525 km2 in the Baures region of 

Bolivia to categorize particular zigzag earthwork 

structures used for fishing, based on form, orientation, 

location, association with other hydraulic works, and 

ethnographic analogy [1]. Tveskov et al. (2003) 

focused on estuarine wood stake fishing weirs in the 

southern Cascadia coast and summarized native 

oral traditions and archaeological researches 

indicating that fishing by means of the weirs had 

been primarily household, day-to-day activity with a 

wide range of anadromous and resident target fish 
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species [2]. Operation of fishing weirs in Japan is 

important not only for catching fish as food but also 

for developing tourism industry and fisheries. 

Landscapes with fishing weirs in rural areas 

themselves come to special attractions for tourists. 

Some types of fishing weirs are physiologically least 

damaging the fish, which have an extra gastronomic 

value and also can be utilized in pisciculture or 

stocked in other rivers for maintenance of fishery 

resources. 

This study focuses on the fishing weirs installed 

across the rivers flowing into Lake Biwa, Japan. Since 

that type of fishing weirs has been traditionally 

operated for a long time, it is assumed that the 

horizontal shapes are designed to optimize 

performance of the structures in terms of harvesting 

rate, stress to the fish, structural strength, and so on. A 

mathematical problem is formulated in the 

framework of dynamic programming to determine 

the optimal shape, and the governing Hamilton-

Jacobi-Bellman (HJB) equation is presented and 

solved. 

 

 

2.0  FISHING WEIRS AROUND LAKE BIWA 
 

In Japanese rivers, two types of fishing weirs are 

common: Kudari-yana and Nobori-yana. Kudari-

yana is set in rapid flows and targeting catadromous 

fish species. In major rivers flowing into Lake Biwa, a 

peculiar type of traditional fishing weir called Nobori-

yana has been operated [3]. This type of fishing weir 

is targeting anadromous fish species such as 

Plecoglossus altivelis and Oncorhynchus masou 

rhodurus. P. altivelis caught alive is mainly transported 

to other basins for being stocked. O. masou rhodurus 

is a species endemic to Lake Biwa. In order to 

conserve the species, eggs are collected from adult 

O. masou rhodurus caught alive by the fishing weirs, 

before hatched artificially and then stocked in the 

river for growth. 

We focus on Kattori-yana (Figure 1) which is a kind 

of Nobori-yana in the rivers flowing into Lake Biwa. 

This traditional type of fishing weir has unique features 

for trapping anadromous fish. Fish ascending to 

downstream side of the weir jump toward upstream, 

hit against the weir and then get back to 

downstream. Repeating this jumping and bouncing, 

fish move toward the bank. At the bank, a special 

structure is set in order to catch fish alive without 

failing. The flow from an edge of the weir is divided 

into two directions by a plate; one is to the 

downstream of the river and the other is to the gate 

of no return, called Kattori-guchi (Figure 2). Fish 

jumping toward the vicinity of the edge of the weir 

are reflected toward the gate, and then kept alive in 

the fish preserve. 

Different horizontal shapes of Kattori-yana are 

found in the different rivers flowing into Lake Biwa. 

We hypothesize that this difference is due to different 

intention of design, such as durability of weirs 

themselves or efficiency for the catchment of fish. 

Here, the traveling time of fish from any point along 

the downstream side of the weir to the gate of no 

return situated at the bank, as well as the size of 

structure, is considered as the performance index to 

be minimized in dynamic programming. 

 

 
 
3.0  OPTIMAL CONTROL MODEL 

 

A mathematical problem is formulated in the 

framework of dynamic programming to determine 

the optimal shape. Geometric consideration results in 

the traveling time as a functional of the shape, 

whose slope of the tangent is dealt with as the 

control variable. Figure 3 shows the schematic 

diagram for trajectory of an indivisual fish in a fishing 

weir. A Cartesian coordinate system is taken so that 

the x -axis directs the right bank of the river across 

the flow and the y -axis directs downstream. The right 

bank B , where the gate of no return is installed, is 

located at x B . The shape is represented as a 

function ( )y f x . An ascending fish at ( )f x L , 

where L  is the representative distance of a jump of 
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the fish, jumps toward the structure. Then, the fish is 

reflected to another position closer to the right bank. 

That position is assumed to be the distance L  apart 

from the structure, and the trajectory has the angle 

2 , where   is the angle between the y -axis and 

the normal vector of ( )f x  at the hitting point of the 

fish. The resulting moving distance x  of the fish is 

deduced as 

2

2

1

f
x L

f


  


. (1) 

For the fish jumping C L  times per unit time, the 

moving dynamics is governed by 

2

2
d d

1

Cu
x t

u
 


  (2) 

where t  is the time, and the slope f   is dealt with as 

the control variable u . The fish positioned at x  at the 

current time s  arrives at the gate of no return at the 

first exit time   such that 

2

2
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f

 
 

 . (3) 

The traveling time of fish from x  to the gate of no 

return is 

1
s

s dt


      (4) 

where s  is the current time. While, the shape ( )f x  of 

structure is also given by 
2
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An optimal control problem is formulated to 

maximize the performance index with the weight   

 
2

2

2
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u
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J s x s f x t
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 
 

 
       

 
 . (6) 

A control variable ( , )u u s x  that achieves the 

maximum of the performance index ( , )uJ s x  is 

referred to as the optimal control *u , while the value 

function  ,s x   is defined as 

 
*

, ( , ) sup ( , )u u

u

s x J s x J s x   . (7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3  Schematic diagram of the model 

 

According to [4], the value function   and the 

optimal control *u  are governed by the HJB 

equation 
* *2

*2 *2
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2 2

2 2
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1 1

2 2
sup 1 0

1 1u

Cu Cu

s u x u

Cu Cu

s u x u
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 
  

   

  
     

    

. (8) 

A steady solution *u  to (8), if any, represents the 

optimally designed shape of the fishing weir. 

Therefore, the ordinary differential equation 

  *2

*

1 2 1d

d 2

C u

x Cu

 
      (9) 

with the initial condition 

( ) 0B    (10) 

is examined. The optimal control is analytically 

computed as 

*

2 2
u

 


 

 
. (11) 

For any point x  (9) and (11) constitute a non-linear 

algebraic equations system, which is solved at each 

step of numerical integration of (9) with (10).  

 

 

4.0 COMPUTATIONAL RESULTS AND 
APPLICATION 

 

Specifying five different values of   as 0, 0.1, 1, 10, 

and 100, the system consisting of (9), (10), and (11) is 

computed for six different functions of jumping rates 

0 1C  , 1 1 / 2C B  , 2 1C x  , 3 1 ( )C B x   , 
2

4 1 ( )C B x   , and 2 2

5 min(1 ( ) ,1 ( / 5) )C B x B     with 

B  = 100 m. The varying jumping rates 2C , 3C , 4C , 

and 5C  assume cross-sectional heterogeneity of the 

flow fields in the river. The computational grid size is 

set as /1000B .  

The computational results of the value function  , 

the optimal control *u , and y  for the different   and 

C  are shown in Figures 4–9. For every case of C ,   

increases monotonically as x  increases. As the 

weight   increases,   decreases and *u  increases 

monotonically, and * 1u    with the weight 0  . 

When C  is constant as 0C  and 1C , *u  is constant, 

and the optimal shape is a straight line for every  . 

  and *u  for 0C  are smaller than those for 1C  for 

any x  for 0  . For varying 2C , *u  is monotone 

increasing convex upward for 0  . For varying 3C  

and 4C , *u  is monotone decreasing convex upward, 

and   and *u  for 3C  are smaller than those for 4C  

for any x  for 0  . The resulting optimal shapes are 

convex downward for 2C , and convex upward for 

3C  and 4C . For 5C , *u  levels off when 0 0.8x B  , 

and monotone decreasing convex upward when 

0.8B x B  . The resulting optimal shape is a straight 

line when 0 0.8x B   and monotone decreasing 

convex upward when 0.8B x B  .  

The shapes of the fishing weirs actually found i n 

the rivers flowing into Lake Biwa are gene rally 

classified into two types. One has a straight line 

shape except in the vicinity of the gate of no return 

as shown in Figure 10 (Ane River), and the other has a 
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dominantly curved shape as shown in Figure 11 (Ado 

River). The optimal shapes for 5C  is in good 

accordance with the fishing weirs shown in Figure 10 

if   is taken as 0.005. However, the curved shape as 

shown in Figure 11 is not computationally reproduced 

in any case of C . The operators of the weir shown in 

Figure 11 claim that the curved shape has been 

established so as not to be destroyed by flood 

events. The balance between the tension applied to 

the structure and the forces from the water flows 

might better ex plain that catenary-like shape, rather 

than the assumption in this study.  

Figure 4 Computational results of  , 
*u , and y  for 0C  

Figure 5 Computational results of  , 
*u , and y  for 1C  

Figure 6 Computational results of  , 
*u , and y  for 2C  
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Figure 7 Computational results of  , 
*u , and y  for 3C  

Figure 8 Computational results of  , 
*u , and y  for 4C  

Figure 9 Computational results of  , 
*u , and y  for 5C  
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5.0  CONCLUSIONS 

 

The optimal shapes of the peculiar type of fishing 

weir are discussed, assuming that the horizontal 

shape is designed to minimize the traveling time of 

fish as well as to minimize the size of weir itself. The 

slope f   of the shape function is dealt with as the 

control value u , and the optimal shapes are 

deduced as the solutions of HJB equations, which 

represent the principle of optimality. The 

computational results indicate that a varying jumping 

rate C  controls curvature of the optimal shape. The 

optimal shape for 5C  with   = 0.005 well explains the 

actual shape of the fishing weir installed in Ane River.  

For further studies, the performance index shall be 

improved to include mechanical interaction 

between the structure and water flows considering 

hydro-environmental characteristics of the river. 

Then, this mathematical approach shall be 

applicable to other problems such as optimal design 

of fish ladders to facilitate fish migration without 

hindering their hydraulic and structural functions. 
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Figure 10 Fishing weir in Ane River (Map Data: Google, 

DigitalGlobe) 

Figure 11 Fishing weir in Ado River (Map Data: Google, 

DigitalGlobe) 


