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Abstract 
 

Recently, nanocarbons (carbon nanofibers (CNFs) and carbon nanotubes (CNTs)) have 

been used efficiently in numerous research works to significantly enhance the mechanical 

properties of composites. With their amazing mechanical properties and exceptionally high 

aspect ratios, nanocarbons (NCs) are seen as one of the most beneficial nanomaterials for 

nano-reinforcement. The dispersion of NCs is one of the key factors that strongly influence 

the properties of nanocomposites. Several researches have been carried out with chemical 

agents to achieve a consistent dispersal of carbon nanomaterials in water, although, if the 

process is uncontrolled, it can shorten or damage the NCs or even dissolve them, and this 

can have a negative effect on the composites as well. Therefore, if NCs are to be used as 

reinforcement for composites, physical methods have to be employed to disperse the NCs 

before they can be mixed into the composites. This paper presents an overview of the 

different types of NCs, their different uses and the research conducted for the dispersion of 

NCs by chemical and physical methods. Furthermore, a summary is given of the 

measurement and characterization of the dispersibility of NCs. 
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Abstrak 
 

Baru-baru ini, karbon nano (nano fiber karbon (CNF) dan nano tiub karbon (CNT)) telah 

digunakan dengan berkesan dalam pelbagai kerja penyelidikan untuk meningkatkan sifat 

mekanikal komposit. Dengan sifat mekanikal yang luar biasa dan aspek nisbah yang sangat 

tinggi, nano karbon (NC) dianggap sebagai bahan nano yang paling bermanfaat untuk 

peneguhan nano. Penyerakan NC adalah salah satu faktor utama yang mempengaruhi ciri 

komposit nano. Banyak penyelidikan telah dijalankan dengan menggunakan agen-agen 

kimia untuk mencapai penyerakan homogen bagi bahan nano karbon di dalam air, 

meskipun tanpa kawalan yang sempurna, ia boleh merosakkan atau memendekkan NC 

tersebut, malahan melarutkannya, dan ini boleh juga memberii kesan yang negatif 

terhadap komposit itu. Oleh yang demikian, untuk menggunakan NC sebagai peneguhan 

rencam tanpa kesan kimia, kaedah fizikal  perlu digunakan untuk penyerakan NC, sebelum 

mencampurkannya dengan komposit. Kertas ini membincangkan tentang pelbagai jenis 

NC, kegunaannya dan penyelidikan penyerakan NC melalui kaedah fizikal dan kimia. 

Pengukuran dan pencirian penyerakan NC telah juga disimpulkan. 
  

Kata kunci: Tiub-tiub nanocarbon, serat, penyerakan fizikal, ultrasonic, mikrostruktur 
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1.0  INTRODUCTION 
 

Nanocarbon (NC) particles have been used primarily 

in industrial sectors such as the automotive, 

electronics, sports, concrete, marine, and aeronautics 

industries. NCs are also one of the capable innovative 

materials in the construction industry. NC particles, 

particularly carbon nanofibers (CNFs), and carbon 

nanotubes (CNTs) have good material properties such 

as electrical properties, elastic modulus, high tensile 

strength and hardness.  

Carbon nanofibers have a history that goes back 

more than a century, when a category of carbon 

nanomaterials, known as vapour-grown carbon 

nanofibers (VCNFs), was first explored in 1889 by 

Hughes and Chambers. It was discovered that carbon 

filaments could be grown from carbon, and their 

hollow graphitic structure was first revealed by 

Radushkevich and Lukyanovich in the early 1950s [1, 2]   

VCNFs can be catalytically synthesized by 

hydrocarbons such as natural gas, propane, 

acetylene, benzene, and ethylene using the chemical 

vapour deposition (CVD) of carbon monoxide with a 

metal (Fe, Ni, Co, Au) or metal alloy (Ni-Cu, Fe-Ni) as a 

catalyst at a temperature of 500–1500 °C [3-8]. 

 

 

2.0  CARBON NANOTUBES 
 

Carbon nanotubes, discovered by Iijima in 1991  [9] 

are one of the most favourable classes of original 

materials to have emerged from nanotechnology so 

far. Nanotubes, which belong to the fullerene 

structural family, derived their name from their long, 

hollow structure, with walls moulded by one-atom-

thick sheets of carbon known as graphene. Allotropes 

of carbon that have a cylindrical nanostructure are 

known as carbon nanotubes (CNTs). They were 

discovered in Damascus steel in the 17th century, and 

probably assisted in justifying the renowned strength of 

swords made from them [10-12].  

Carbon nanotube constructions, with a length-to-

diameter ratio of up to 132,000,000:1, are considerably 

bigger than those of any other material, with a perfect 

structure shaped by carbon atoms in a single 

dimension [13]. The unusual properties possessed by 

the cylindrical carbon molecules make them valuable 

for electronics, nanotechnology, optics and various 

fields of material science and technology [14]. 

Furthermore, as CNTs show pronounced mechanical 

properties together with exceptionally high aspect 

ratios (length-to-diameter ratios), they are expected to 

yield composites that are considerably stronger and 

tougher than traditional reinforcement materials (e.g. 

glass fibres or carbon fibres) [15]. 

Research has been piloted for possible CNT usage 

in environmental protection applications. CNTs are 

being used as a selective sorbent for the removal of 

organic/biological contaminants, for example, 

carcinogenic cyanobacterial microcystins in water 

streams [16]. Additionally, research on the usage of 

carbon nanotubes as an effective source and storage 

of hydrogen is also significant as they have 

predominant adsorption features owing to their high 

surface area of 50-1315 m2/g [17], [18-20]. Moreover, 

CNTs have been efficiently used for the adsorption of 

dissolved heavy metals and actinides comprised of 

Cd(II), Cu(II), Ni(II), Pb(II), Zn(II), and M(III) [21-23], which 

are significant adsorbers of phenol [24]. 

Carbon nanotubes (CNTs) are seen as  one of the 

most valuable nanomaterials for nano-reinforcement, 

with their amazing mechanical properties and 

exceptionally high aspect ratios [25]. The electrical 

and chemical properties of CNTs make them 

attractive for the reinforcement of composite materials 

[9, 26]. Their Young’s modulus and tensile strength are 

described as being as high as 1 TPa and 200 GPa, 

respectively, with a density of approximately 1.33 

g/cm3 [27], and a tensile stress in the region of 65 to 93 

GPa [28]. However, CNTs have distinctive physical 

properties. For instance, their thermal stability can 

potentially be up to 2800 °C, their thermal conductivity 

is equally good in comparison to diamond, and their 

electrical conductivity is approximately 1000 times 

better than that of copper [29]. With their more unique 

properties, CNTs are also extremely malleable. Like 

macroscopic tubes, they have the capability to bend 

in circles and form knots, and to be clasped or 

compressed under appropriate loadings [30]. 
 

2.1 Synthetic Methods for the Preparation of Carbon 

Nanotubes  
 

Various methods have been utilized for the 

preparation of CNTs. These comprise arc discharge 

[31], laser ablation [32], and chemical vapour 

deposition (CVD) [33], each of which has its own 

benefits and shortcomings. The first two methods can 

produce high quality CNTs, but the quantities 

produced are rather low. The third method (CVD) has 

the ability to produce larger batches of CNTs (despite 

having a huge number of defects), and it appears to 

be an encouraging method for reducing future costs, 

and for large scale production, which would intensify 

the usage of CNTs in environmental protection 

applications [21, 34, 35]. 
 

2.2  Structures and Types of Carbon Nanotubes 
 

Two renowned carbon nanotube types are explained 

below: 
 

2.2.1  Single-Walled Carbon Nanotube (SWCNTs) 
 

The SWNT structure can be conceptualized as 

graphene, which is a one-atom-thick layer of graphite, 

wrapped into a seamless cylinder, as displayed in 

Figure 1. The majority of single-walled nanotubes 

(SWNTs) have a diameter that is close to 1 nanometre, 

with a tube length that can be millions of times longer 

[36, 37].  
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Figure 1 Single-walled carbon nanotube (SWCNT) [1] 

 

 

2.2.2  Multi-Walled Carbon Nanotubes (MWCNTs)  
 

Generally, multi-walled nanotubes (MWNTs) are made 

up of multiple rolled layers (concentric tubes) of 

graphene, with diameters ranging from 5 to 50 nm 

[38], as shown in Figure 2. The two models that are 

used to describe multi-walled nanotube structures are 

first, the Parchment model, where a single sheet of 

graphite is rolled around itself to resemble a 

parchment scroll or a rolled newspaper, as in Figure 

3(a); and second, the Russian Doll model, where the 

graphite sheets are arranged in concentric cylinders, 

as in Figure 3(b). 

With regard to the “Global Market for Carbon 

Nanotubes” report, SWNTs, which were observed as 

being too costly for extensive applications, are now 

estimated to have a great impact on electronic 

applications by 2020. In addition, the presence of 

MWCNTs in composites is more beneficial compared 

to SWCNTs. Campillo et al. [39], in utilizing carbon 

nanotubes (MWCNTs and SWCNTs) in cement 

composites, showed that those cement composites 

that contained MWCNTs have a considerably higher 

compressive strength compared to their counterparts 

that contain SWCNTs. 
 

 
 

Figure 2 Multi-walled carbon nanotubes (MWCNTs) [1] 

 

 
 
Figure 3 Multi-walled carbon nanotubes (MWCNTs): (a) 

Parchment model, (b) Russian Doll model 

 

 

2.3  Carbon Nanotube (CNT) Applications  
 

There seems to be an infinite variety of carbon 

nanotubes ranging from electronic, biological, and 

chemical composites to multi-functional composites 

[27, 40]. A carbon nanotube is theoretically described 

as possessing a very high strength that is 100 times 

more than that of steel, yet which is 6 times lighter, and 

with a perfect arrangement shaped by carbon atoms 

[41-43]. 

Due to their outstanding physical properties, as well 

as high strength and small dimensions, these structures 

are distinctive materials with a varied series of 

favourable applications in areas such as field emission, 

biomedical science, and structural composites [44-47]. 

It has been discovered that the utilization of CNTs 

improves the properties of polymer–CNT composites 

by intensifying their mechanical properties [48, 49]. It 

has been stated that the addition of carbon 

nanotubes significantly improves the mechanical 

behaviour of polymer-based composites. Studies have 

indicated that more than 500 MPa of stress is 

transferred via the interface between a polymer and a 

carbon nanotube, which is 10 times higher than that 

between a polymer and carbon fibres [50, 51]. 

Concrete is the most extensively used construction 

material in the world, and a distinctive cementitious 

material reinforcement is generally prepared on a 

mesoscale (millimetre scale) level and/or on a  micro-

scale level utilizing macrofibres and microfibres, 

respectively [52]. The first researchers to assimilate 

CNTs in cement paste were Makar and Beaudoin [25], 

[53], and the product displayed the positive bridging 

of micro-cracks, thereby preventing the formation of 

micro-cracks, and this was validated by [54] as well. 

They discovered that the morphological structure of 

the samples displayed the MWCNTs as bridging the 

cement particles, leading to an efficient and good 

load transfer from the cement matrix to the nanotubes 

in tension. Initial experimental characterization studies 

concentrated on the reinforcing effect of CNTs on 

cement composites [55-57]. Konsta-Gdoutos et al. [6], 

Konsta-Gdoutos et al. [58], and Abu Al-Rub et al. [59] 

investigated the improved mechanical properties of 

cement pastes reinforced by pristine multi-walled CNTs 
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of different lengths. The mechanical properties and 

transport properties of CNT–cement composites have 

been studied by various researchers, and the  

incorporation of CNTs will possibly efficiently improve 

the resilience of the cement-based composites [29, 56, 

60, 61], increase the strength of the cement-based 

materials [62, 63], fill the pores between the Portland 

cement hydration products [64], produce electrical, 

electromagnetic, thermal and sensing properties in the 

cementitious materials [65], increase the ductility and 

flexural strength [66, 67], improve the tensile strength 

[68], increase the Young's modulus [58, 69], and 

decrease the porosity of the cement [55, 64]. 
 

 

3.0  CARBON NANOFIBERS (CNFs) 
 

Carbon nanofibers are hollow-core nanofibers 

containing a single or double layer of graphite planes, 

as shown in Figure 4. Further, the dimensions and 

structures of CNFs are highly dependent on their 

manufacturing and post-treatment methods [70, 71]. 

In addition, the graphite planes can be angled in a 

certain way, or can be parallel stacks from the fibre 

axis and planted with one another to form diverse 

structures, for example, bamboo-like, parallel, and 

cup-stacked structures [72, 73]. In the same context, 

their stacked shape (as displayed in Figure 5) is 

advantageous as it presents unprotected, non-existent 

edge planes in the carbon nanotube, thereby 

introducing an increased surface area and better 

bond features [74]. Furthermore, the outer surface 

generally involves conically-shaped graphite planes 

canted in relation to the longitudinal fibre axis. The 

presence of the edges along the circumference of the 

fibre can be utilized to benefit the fibre anchor in the 

matrix and avoid interfacial slip. The nanofiber 

sidewalls are thin lines on the surface [71, 75]. 

  

 
 
Figure 4 CNF TEM micrograph displaying (a) a single layer. 

and (b) a double layer [71, 72] 

 

 
 
Figure 5 A) Stacked-cup CNF. B) Cross section view showing 

the internal structure of a CNF stacked-cup (Source: 

Pyrograf). 

 

 

 

 

 

a 

b 
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On the other hand, carbon nanofibers (diameters 

ranging from 3–100 nm; lengths ranging from 0.1–1000 

µm) have been identified for a substantial number of 

years as a nuisance that often appears throughout the 

catalytic conversion of carbon-containing gases. CNFs 

possess excellent properties, including electrical 

properties, high stiffness, tensile strength, thermal 

conductivity and corrosion resistance. Nanoscale 

three-point bending tests revealed that the Young’s 

modulus of the individual nanofibers varied from 25 to 

200 GPa, depending on the thickness of the nanofiber 

wall [76]. Reports from prior studies showed higher 

tensile strength and Young’s modulus of 12 GPa and 

600 GPa, respectively [7]. Ozkan et al. [77], in 

investigating CNTs and CNFs, performed direct 

mechanical measurements on CNFs, and found that 

the tensile strength of CNFs is between 2 and 5 GPa, 

with an average modulus of elasticity of 300 GPa. 
 

3.1  Carbon Nanofiber Applications 
 

Considering these unique properties, the expectation 

is that CNFs are perfect for the development of 

advanced nanocomposites. Tennent [78] discussed 

the unique mechanical and electrical properties of 

carbon nanofibers, thereby triggering the search for 

applications for composite materials. The 

reinforcement of materials, in addition to the 

enhancement of electrical conductivity has been 

keenly considered. Lafdi and Matzek [79] investigated 

numerous issues impacting the capability of carbon 

nanofibers to improve the tensile strength of 

composite materials. The factors consisted of the 

weight fraction, strength and dispersion of the 

nanofibers, the aspect ratio, and the interface 

strength. However, the studies showed that nanofibers 

that are heat-treated to 1500 oC offer optimal 

properties to nanofiber-enhanced polypropylene 

composites [80].  

Since 1990, carbon fibres have frequently been 

added to cement paste by investigators. The addition 

of carbon fibres to cement-based materials has many 

beneficial mechanical and electrical properties 

comprising ductility, increased strength and 

conductivity [81-86]. Currently, the reinforcement of 

concrete with carbon nanomaterials is a fast-growing 

research area. However, there exists a large difference 

in the structure and chemistry of a polymeric and a 

cementitious matrix, and, therefore, a great deal of 

research activities is being directed toward 

understanding the interaction between these 

nanomaterials and cementitious matrices for their 

successful application [87-89]. Carbon nanofibers and 

nanotubes have rapidly become two of the most 

favourable nanomaterials as a result of their distinctive 

mechanical properties. In turn, there have been 

improvements in the microstructure and mechanical 

properties of cementitious materials [90]. Certain 

studies have revealed enhancements of up to 50% 

and 75% in the flexural strength and Young's modulus, 

respectively [90-93]. Hunashyal et al. [94] mentioned 

that CNFs augmented the load carrying capability 

and failure strain of cement composites by 54% and 

44%, respectively, and increased the tensile strength 

[95], enhanced the refraction behaviour [86], and 

produced tougher concrete with the interruption of 

crack formation immediately on initiation [96]. 

Metaxa et al. [97] provided evidence from SEM 

nano-imaging that CNFs have the ability to control 

cracking by linking the nanocracks and pores in a 

cementitious matrix. As a consequence of these 

features, it has been shown that CNFs bring about 

significant improvements to the mechanical properties 

of a matrix. Additionally, it has been observed that 

there is a good bond between CNFs and cement 

hydration products, indicating that in the matrix, the 

nanofibers can be adequately secured to ensure that 

the full capacity of the fibres is used to transfer the 

load. 
 

 

4.0  DISPERSION OF NANOCARBONS  
 

Dispersion is one of the main factors that strongly 

influence the properties of nanocomposites. 

Nanomaterials tend to agglomerate as a result of the 

presence of attractive forces (Van der Waals forces) 

originating from their polarizable, extended 𝜋-electron 

systems.  Nanocarbons have a comparatively high 

melting point of 4000 K or 3675 °C [98], thereby 

indicating that they are super hydrophobic and 

chemically inert materials [99], and due to the 

attraction of the Van der Waals forces, the fibres tend 

to agglomerate to avoid being dispersed in solvents 

[100-102]. 

It is very difficult to permeate agglomerates with 

composite matrices, and therefore, their presence is 

the source of potential defects in nanocomposites. 

The deagglomeration process and subsequent 

distribution of nanomaterials within the matrices or 

solvents is known as dispersion. The occurrence of 

dispersion can be caused by the agglomerates 

abruptly splitting up into small crumbs under high stress 

(rupture) or as a result of small crumbs continuously 

detaching at a moderately lower stress (erosion). The 

dispersion behaviour of CNFs and CNTs depends on a 

small number of serious factors, for example, the 

length, volume fraction, sonication duration, 

entanglement density, and attractive forces of the 

nanomaterials [103]. 

However, it should be noted that various chemical 

routes (such as the use of a surfactant, polymers, or 

functionalization) cannot directly disperse 

nanomaterials in water; instead, they assist in the 

dispersion process by wetting the nanomaterials with 

water, and improving the dispersion stability. Therefore, 

these chemical routes are always used together with 

physical routes (such as ultrasonication) for the 

immediate dispersion of nanomaterials. 

Therefore, various methods have been employed 

recently to improve the dispersion of carbon 

nanomaterials in composite matrices, and these can 

be generally characterized as chemical and physical 

techniques.  
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4.1  Chemical Methods 
 

Numerous chemical approaches have been 

examined in an attempt to achieve the homogeneous 

dispersion of carbon nanomaterials in water and 

various polymers, for example, by utilizing solvents 

[104], surfactants [105, 106], functionalization with 

acids [107], amines [108], fluorine [109], plasma [110], 

microwave [111] and matrix moieties [112], non-

covalent functionalization [113], using block polymers 

[114, 115], and wrapping conjugated polymers [116].   

In the same context, extensive efforts have been 

carried out to improve the dispersion of carbon 

nanomaterials in cementitious composites. Ordinarily, 

two categories of techniques have been utilized in the 

dispersion of carbon nanomaterials (CNMs). One 

technique involves the use of mechanical methods, 

such as the adoption of ultrasonic machines [29, 117, 

118], ball mills or high-shear mixers [119, 120], to 

separate the CNMs. Meanwhile, changes to the 

surface of the CNMs are brought about by chemical 

methods through the use of covalent or non-covalent 

modification approaches [55, 121]. Nevertheless, 

mechanical methods are often utilized in combination 

with chemical methods [2, 65, 122].  

However, it has been shown that many of the 

chemicals that are used have negative effects on 

CNMs as the fibres are digested by these chemicals, 

thereby rendering the fibres less effective, and the 

formation of bubbles in the composite caused by the 

surfactants will decrease the strength of the materials 

[123]. Furthermore, the use of a cationic surfactant will 

decrease the dispersion capability because of the 

absence of a benzene ring on the long chain and 

positive charges which might neutralize the negative 

charges in the MWCNTs in an aqueous solution [2]. 

In utilizing surfactants as nanomaterial dispersants, 

Yu and Kwon [124], discovered that nanomaterials 

lack connectivity within a cementitious matrix as a 

result of blockages by the surfactant molecules, which 

affect the electrical and piezo-resistive properties of 

the nanocomposites. Yazdanbakhsh et al. [125] 

encountered cement hydration problems when 

surfactants were used for the dispersion of carbon 

nanomaterials in polymeric matrices, where they 

retarded or stopped the hydration, trapped air in the 

cement paste or counteracted with the water-

reducing admixtures, causing re-agglomeration. 

The results of previous studies on the treatment of 

CNFs–CNTs with acid indicated that the fibres are 

more soluble than in their pristine form, and if not duly 

controlled, they can destroy or reduce the 

nanocomposites or even liquefy them. The adverse 

effects do not permit remarkable enhancements in 

the mechanical properties of the hardened cement 

paste [55, 126], Additionally, there will be a 

deterioration in the qualities of the CNT along with 

serious material loss due to the acid treatment [127]. 

Another functionalization method that was described 

was the solid-phase mechanochemical reaction, 

where potassium hydroxide (KOH) was applied for the 

treatment of multi-walled CNTs (MWNTs). In this case, 

the reactants (KOH and CNTs) rigorously 

agglomerated and could not be mixed equitably 

[128]. 

Cwirzen et al. [29] and Li et al. [55] used 

functionalized carbon nanotubes to form chemical 

bonds between the –COOH groups in the nanotubes 

and the calcium silicate hydrate (CSH) in the cement 

matrix so as to enhance the stress transfer. Al-Rub et al. 

[129] studied the compatibility of the surfactant utilized 

in the dispersion of CNTs in cement, and discovered 

that the chemical reaction and cement hydration can 

be severely affected, with the possibility of the 

hydration being delayed or stopped, and the cement 

paste hardening during the process. Sobolkina et al. 

[103] utilized the selective adsorption of anionic 

sodium dodecyl sulphate (SDS)  on CNT surfaces, and 

discovered that it resulted in a high concentration of 

surfactant in water, leading to foam formation and 

consequently, high cement paste porosity. Cui [130] 

observed the effects on CNT of two types of 

treatments, with and without chemicals (surface 

functionalization), with the potential to improve the 

properties of the concrete. They discovered that there 

was no significant difference in the improvement to 

the compressive strength. 

The addition of clay minerals to polymers [131]], 

salts [132, 133], or surfactants [134, 135], have different 

effects on the electro-kinetic and rheological 

properties of the suspensions caused by interactions 

between the particles and the ions or molecules [136]. 

The interactions between ionic and non-ionic 

polymers with clay particles are different. The 

adsorption of ionic polymers on the surface of clay 

particles is caused by electrostatic interactions, 

whereas the adsorption of non-ionic polymers is 

caused by steric interactions. The interactions 

between the clay particles and the polymers can be 

affected by the polymer concentration, molecular 

weight and functional group of the polymers, the size, 

shape and changes to the surface of the clay 

particles, the suspension concentration, and the pH 

and temperature [137]. The placement of surfactant 

molecules between the clay layers by the formation of 

H-bonds may decrease the electrostatic interactions 

between the clay particles, hence reducing the zeta 

potential of the system [138]. Moreover, when 

surfactants are used in soil, they are involved in an 

amplified chemical absorption, thereby decreasing 

the double-layer thickness. The result is that the 

particles come closer together, making the net force 

attractive [139]. The particles gather randomly 

together in this environment to form loose groups, 

thereby yielding a changing structure. This soil structure 

will finally give rise to increased pores or voids for fluids 

to pass through, thus increasing the soil penetrability 

[140].  

On the basis of the above, in order to use 

nanocarbons as soil reinforcement without any 

chemical effects, physical methods must be used for 

the dispersion of the nanocomposite, before it is mixed 

with the soil composite. 
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4.2  Physical Methods 
 

Ultrasonication is frequently used to achieve a good 

dispersion of nanoparticles in an aqueous solution 

Carbon nanomaterials (CNTs and CNFs) can be 

effectively distributed ultrasonically in a water solution 

[130, 141]. Moreover, Edwards and Bremner [142], and 

Firoozi et al. [143] utilized ultrasonication to  disperse 

soil particles without any pre-treatment or addition of a 

diffusing surfactant. The advantages of ultrasonic 

dispersion are that it does not terminate organic soil 

matter, and does not change the pH of the soil, its 

electrical conductivity, or cation exchange capability, 

and the resultant suspension is stable. Consequently, 

there is no occurrence of flocculation during the 

sedimentation process. 

 The electrical voltage in the ultrasonic process is 

converted to mechanical vibrations, which are then 

shifted to a liquid medium (water or solvent), leading 

to the formation and collapse of microscopic bubbles. 

Throughout this process (identified as cavitation), 

millions of shock waves are created, and a high level 

of energy is released [144]. 

Based on the abovementioned literature, the 

effect of CNTs on the compressive strength is most 

probably due to the physical enhancement, with no 

chemical interaction between the cement matrices. 

SEM micrographs of CNTs exhibited the respective 

interactions between the carbon nanotubes and the 

fly ash cement matrix, with the carbon nanotubes 

acting as a consequential filler in a denser 

microstructure which had a higher strength when 

compared to the referenced fly ash mix without CNTs 

[145]. Carbon nanotubes are well-dispersed by 

ultrasonication. It was reported by Jiang et al. [146] 

that there is an exterior mechanical energy in 

ultrasonication that helps the particles overcome the 

attraction by Van der Waals forces at contact. 

Several studies have been carried out to increase 

the dispersibility of CNTs without the application of 

surfactants, thereby leading to useful applications 

[147]. Inam et al. [148] carried out the dispersion of 

carbon nanotubes by sonication before mixing them 

into an epoxy matrix. It was found that the 

nanocomposite with the carbon nanotubes had a 

high tensile strength, elastic modulus, fracture strain, 

and fracture toughness. Similarly, Nochaiya and 

Chaipanich [64] reported that the addition of CNTs to 

Portland cement without a surfactant improved the 

compressive strength of the cement-based material 

by filling the pores between the hydration products. Li 

et al. [56] observed through SEM images that 

untreated CNT has a uniform dispersion, and a 

bridging effect. 

Researchers investigating the effects of CNT 

dispersion on the engineering properties of CNT-OPC 

pastes by means of ultrasonication discovered that 

physical techniques (ultrasonication) have the ability 

to increase the workability, Young’s modulus, flexural 

strength, and fracture energy of cement paste [57]. 

Moreover, Chen et al. [149], based on experience with 

regard to the dispersion of CNTs by ultrasonication, 

predicted the optimal ultrasonic energy (UE) for 

yielding the best reinforcing effects in composites, 

thereby decreasing the costs of experimental trials. 

CNT suspensions prepared with different time periods 

and at the same power of sonication, present different 

levels of dispersion [150], and studies have determined 

that the optimum value of the ultrasound time for CNTs 

and CNFs is generally 5-15 minutes [91, 122, 148, 151, 

152].  

The bonds between particles and fibres are 

weakened when the fibres are shortened. 

Yazdanbakhsh et al. [153] distributed CNFs by 

ultrasonic processing for 15 minutes in a water–

superplasticizer solution. The TEM images revealed that 

after sonication, the CNFs were broken and shortened. 

This was significant as some of the important properties 

of fibrous materials, for example, improved toughness, 

are related to the elastic and frictional bonds of the 

fibres in the composite. Thus, the ultrasonic timing must 

be controlled and optimised for the best dispersal and 

minimum damage. Meanwhile, sonication. particularly 

if it is carried out for a substantial period of time, 

damages and shortens CNFs and CNTs [152-154]. 

Vera-Agullo et al. [141] tried other physical 

methods for breaking the agglomerates and 

dispersing the nanofilaments (CNTs and CNFs) 

individually, without the use of a surfactant.  High-

energy mixing machines were utilized to disperse the 

CNTs and CNFs into the cementitious matrices, and it 

was observed that in the early stages both the 

nanofibers and nanotubes increased the compressive 

strength of the mortar. 
 

 

5.0 MEASURING THE DISPERSIBILITY OF 

NANOCARBONS 
 

The dispersibility of carbon nanomaterials was studied 

by analysing the zeta potential after dispersion by 

mechanical (sonication) and chemical methods [105, 

152, 155]. A solid surface may become charged when 

fluid flows across it. Counteractive charged ions in the 

liquid medium are attracted to the surface in order to 

equalize the surface charge to create what is 

generally known as an electric double layer (EDL), as 

shown in Figure 6. The strength and polarity of the EDL 

is characterized by the parameter identified as the 

zeta potential [156]. 
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Figure 6 Electric Double Layer (EDL) 

 

 

Moreover, the significance of the zeta potential is 

that it is an essential fragment of different applications 

such as flocculation, electro-osmosis, and CNT stability. 

Advances in the study of the electrical properties of 

solid-liquid interfaces led to the expansion of fresh 

methods, where electrophoresis, electro-osmosis and 

streaming were the three electro-kinetic effects that 

were utilized to develop the zeta potential [157].  

With reference to the Derjaguin–Landau–Verwey–

Overbeek (DLVO) theory, as shown in Figure 7, 

particles are dispersible when electrostatic repulses, 

prompted by correspondingly charged electrical 

layers around the particles, overcome the attraction of 

the Van der Waals interactions [158]. The net 

interaction of the particles is attained by summarizing 

these two terms. If the repulsion potential surpasses the 

attraction potential, an energy barrier that opposes 

aggregation results. If the magnitude of the energy 

barrier surpasses the kinetic energy of the particle, the 

suspension is stable [105]. 

 

 
 

Figure 7 Illustration of the Derjaguin–Landau–Verwey–

Overbeek (DLVO) theory 

 

 

Jiang et al. [146], and Sano et al. [159], reported 

that CNMs are negatively charged.  As a rule, particles 

have the tendency to avoid coagulation via 

electrostatic repulsions above certain surface 

potentials, generally  35 mV. Consequently, 

knowledge of the magnitude of the net surface 

potential makes the possible aggregation behaviour 

of CNTs predictable [105]. Previous studies, such as 

those by áO'Brien [160], and Hanaor et al. [161], have 

indicated that colloids with low zeta potentials 

(negative or positive) have the tendency to coagulate 

or flocculate, while colloids with high zeta potentials  

are electrically stable, as charted in Table 1. 
 

Table 1 Zeta potential [mV] values [2]. 

 

Zeta potential [mV] Stability behaviour of the colloid 

from 0 to ±5, 
Rapid coagulation or 

flocculation 

from ±10 to ±30 Incipient instability 

from ±30 to ±40 Moderate stability 

from ±40 to ±60 Good stability 

more than ±61 Excellent stability 
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6.0  CHARACTERIZATION OF DISPERSIBILITY OF 

NANOCARBONS 
 

The dispersion of nanocarbons can be characterized 

by two approaches. The first involves observing the 

nanocarbon solution with advanced instruments, for 

example, optical microscopy, scanning electron 

microscopy (SEM), transmission electron microscopy 

(TEM), Fourier transform infrared spectroscopy, Raman 

spectroscopy, energy dispersive X-ray spectroscopy, 

environment scanning electron microscopy, ultraviolet 

visible spectroscopy, X-ray photoelectron 

spectroscopy, and small angle light scattering and 

atomic force electron microscopy [55, 63, 90, 120, 145, 

162-165]. Nevertheless, the dispersal of nanocarbons in 

solutions cannot completely exemplify their dispersion 

in composites. The second approach involves the 

observation of the distribution of nanocarbons in 

composites through microanalysis methods comprised 

of atomic force electron microscopy, SEM, TEM, 

environment scanning electron microscopy, laser 

ablation inductively coupled plasma mass 

spectrometry, and so on [6, 53, 63, 145, 163-165]. 
 

 

7.0 CONCLUSIONS 
 

The disadvantages of the dispersion of nanocarbons in 

aqueous solutions with the use of an agent 

(surfactant), and the advantages of not using an 

agent (physical methods), in terms of the 

characteristics of nanocarbons, are summarized as 

follows: 

 

1- CNTs and CNFs have distinctive properties which 

produce an array of composite applications in the 

construction field. Although CNFs have a lower 

strength and modulus of elasticity compared to CNTs, 

they are very strong and stiff compared to other 

materials, for example, steel.  

2- The integration of nanocarbons as fillers has 

important effects on the mechanical properties of 

mortars.  

3- Nanocarbons, in the form of nanofibers, exhibit a 

super-hydrophobic property, and are chemically 

passive materials that do not absorb or react with 

natural non-absorbing or non-reacting composites (soil 

moisture) or leachates. 

4- The key to the successful use of nanocarbons in 

concrete is proper mixing. Two types of mixing 

techniques are used, specifically chemical and 

physical mixing. Chemical mixing has the tendency to 

damage the nanocarbons. Consequently, this 

problem can be overcome by physical mixing  

5- Studies on the mixing of nanocarbons in 

nanocomposites by physical methods are rare. 

Therefore, more research is required to explore 

methods for the mixing of nanocarbons in 

nanocomposites. 

6- The dispersion of nanocarbons can be 

characterized by observing the nanocarbon solution 

and the distribution of nanocarbons in composites 

through microanalysis methods. 
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