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GENERALIZED POISSON REGRESSION: AN ALTERNATIVE
FOR RISK CLASSIFICATION

NORISZURA ISMAIL1 & ABDUL AZIZ JEMAIN2

Abstract. The Poisson regression model has been widely used for risk classification in the
recent years. However, the Poisson regression model assumes that the mean and variance of the
dependent variable is equal, whereas in practice, the data may display overdispersion or extra-
Poisson variation, i.e., a situation where the variance exceeds the mean. Inappropriate imposition
of the Poisson may underestimate the standard errors and overstate the significance of the regression
parameters, and consequently, giving misleading inference about the regression parameters.
Therefore, the objective of this paper is to suggest the Generalized Poisson regression model as an
alternative for risk classification. In this paper, the Poisson and Generalized Poisson regression
models are fitted, tested and compared on two types of Malaysian motor insurance claims count
data; Own Damage (OD) and Third Party Bodily Injury (TPBI). The Poisson regression model for
OD claims gives large values for Pearson chi-squares and deviance, indicating possible existence
of overdispersion. Based on the results of goodness-of-fit tests, the Generalized Poisson is superior
to the Poisson. On the contrary, the small deviance for Poisson regression model in TPBI claims
implies that the model is adequate. Based on the likelihood ratio test, the likelihood ratio is
insignificant, implying that the Poisson is adequate.

Keywords: Risk classification, Generalized Poisson, claim frequency

Abstrak. Semenjak beberapa tahun yang lepas, model regresi Poisson telah diguna secara
meluas untuk pengkelasan risiko. Namun, model regresi Poisson mengandaikan bahawa min dan
varians pemboleh ubah bersandar adalah sama, sedangkan secara praktis, masalah lebih-serakan
mungkin wujud di dalam data, yakni, situasi di mana varians adalah lebih besar daripada min.
Penggunaan model Poisson yang kurang bersesuaian mungkin boleh menyebabkan nilai sisihan
piawai terkurang-anggar dan kesignifikan parameter regresi terlebih-anggar, yang akhirnya, boleh
memberikan penta’abiran parameter regresi yang agak mengelirukan. Oleh itu, tujuan kertas ini
adalah untuk mencadangkan model regresi Poisson Teritlak sebagai alternatif terhadap pengkelasan
risiko. Dalam kertas ini, model regresi Poisson dan Poisson Teritlak akan disuai, diuji dan
dibandingkan terhadap dua jenis data bilangan tuntutan insurans motor di Malaysia; Kerosakan
Sendiri (OD) dan Kecederaan Badan Pihak Ketiga (TPBI). Model regresi Poisson bagi tuntutan
OD memberikan nilai khi-kuasa dua Pearson dan devians yang besar, dan ini mengimplikasikan
kemungkinan wujudnya masalah lebih-serakan. Berdasarkan hasil ujian kebagusan, model Poisson
Teritlak adalah lebih baik daripada model Poisson. Sebaliknya, nilai devians yang kecil bagi model
regresi Poisson tuntutan TPBI mengimplikasikan bahawa model yang disuai adalah memadai.
Berdasarkan ujian nisbah kebolehjadian, nisbah kebolehjadian adalah tidak signifikan, dan ini
menunjukkan bahawa model Poisson adalah memadai.

Kata kunci: Pengkelasan risiko, Poisson Teritlak, kekerapan tuntutan
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1.0 INTRODUCTION

Risk classification is the process of statistical modeling that classifies risks with similar
risk characteristics into cross-classified classes. The risks may be categorized according
to risk or rating factors. In motor insurance for instance, the driver’s gender, claim
experience and age, or the vehicle’s model, capacity and year may be considered as
rating factors. The goal of risk classification in an insurance system is to estimate
“fair” classification rates, i.e., high risk insureds should be classified into higher risk
classes and vice versa. Failure to achieve this goal may lead to adverse selection to
insureds and economic losses to insurers.

In an insurance system, the premium charged to the policyholders comprises two
components; risk premium and related expenses. The risk premium, which exclude
the expenses, is equivalent to the product of expected claim frequency and expected
claim severity. In this paper, risk classification will be used to estimate claim frequency
rates and to classify the frequency rates into supposedly homogeneous rating classes.
For motor insurance, the claim frequency rate is equal to the claim count per exposure
unit, and the exposure is usually expressed in terms of car-year unit [1].

In the last forty years, researchers suggested various statistical procedures to estimate
the parameters in risk classification model. For example, Bailey and Simon [2]
suggested the minimum chi-squares, Bailey [3] devised the zero bias, Jung [4] produced
a heuristic method for minimum modified chi-squares, Ajne [5] proposed the method
of moments for minimum modified chi-squares, Chamberlain [6] applied the weighted
least squares, Coutts [7] suggested the method of orthogonal weighted least squares
with logit transformation, Harrington [8] applied the maximum likelihood procedure
for models with functional form, and Brown [9] suggested the bias and likelihood
functions for minimum bias and maximum likelihood models.

Research on risk classification in the recent actuarial literature is still continuing
and developing. For example, Mildenhall [10] merged the models which were
introduced by Bailey and Simon [2], i.e., the minimum bias models, with the
Generalized Linear Models (GLMs), i.e., the maximum likelihood models. Besides
providing strong statistical justifications for the minimum bias models which were
originally based on a non-parametric approach, his effort also allowed a variety of
parametric models to be chosen from. Later, Fu and Wu [11] also developed the
model of Bailey and Simon by following the same approach which was created by
Bailey and Simon, i.e., the non-parametric approach. As a result, their research
offers a wide range of non-parametric models to be created and applied. Ismail and
Abdul Aziz [12] found a match point that merged the available parametric and non-
parametric models, i.e., minimum bias and maximum likelihood models, by rewriting
the models in a generalized form. The parameters were solved by applying weighted
equation, regression approach and Taylor series approximation.

The Poisson regression model has been widely used for risk classification in the
recent years. For instance, McCullagh and Nelder [13] proposed the model for
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number of damage incidents of cargo-carrying vessels in marine insurance. In motor
insurance, Brockman and Wright [14] applied the model to the U.K. motor own
damage claims, and Renshaw [15] suggested the model for motor claims which
were provided by a leading insurance company in the U.K. For local claims
experience, the Poisson regression model was fitted by Ismail and Jemain [16] to a
set of private car own damage claims which was provided by an insurance company
in Malaysia.

However, the Poisson regression model assumes that the mean and variance of
the dependent variable is equal. In practice, the data may display overdispersion or
extra-Poisson variation, i.e., a situation where the variance exceeds the mean.
Inappropriate imposition of the Poisson may underestimate the standard errors and
overstate the significance of the regression parameters, and consequently, giving
misleading inference about the regression parameters. Therefore, the objective of
this paper is to suggest the Generalized Poisson regression model as an alternative
for risk classification. In this paper, the Poisson and Generalized Poisson regression
models are fitted, tested and compared on two types of Malaysian motor insurance
claims count data; Own Damage (OD) and Third Party Bodily Injury (TPBI).

2.0 POISSON REGRESSION MODEL

Let Yi be the random variable for claim counts in the ith class, i = 1,2,...,n, where n
is the number of rating classes. If Yi follows a Poisson distribution, the probability
density function is,

( ) ( )exp
Pr 0 1

yi
i i

i i i
i

Y y , y , , ,
y !

µ µ−
= = = … (1)

with mean and variance, ( ) ( )i i iE Y Var Y .µ= =
To incorporate covariates and to ensure non-negativity, the mean or the fitted

value is assumed to be ( ) ( )expi i iE Y | e ,µ= = T
i ix x b  where ei denotes a measure

of exposure, xi, a vector of covariates and βββββ, a vector of regression parameters.
The estimates of bbbbb may be obtained by using the maximum likelihood method.

For Poisson regression model, the likelihood is,

0 1 2i i i

ij i j

y
j , , , p ,

µ µ
β µ β

−∂ ∂= = =
∂ ∂∑A … (2)

where p is the number of regression parameters. Since Equation (2) is also equivalent
to the weighted least squares, the estimates of bbbbb may be solved by using the Iteratively
Weighted Least Squares (IWLS) procedure.
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3.0 GENERALIZED POISSON REGRESSION MODEL

In this paper, two different types of Generalized Poisson regression models will be
discussed; each will be referred as the Generalized Poisson I (GPI) and Generalized
Poisson II (GPII).

3.1 GPI

Let Yi be the random variable for GPI distribution. The probability density function
is [17],

( ) ( ) ( )1 1
Pr exp 0 1

1 ! 1

iy
i i ii

i i i
i i i

ay ay
Y y , y , , .

a y a

µµ
µ µ

+ +  = = − =  + +   
… (3)

The mean is also assumed to be equal to ( ) ( )expi i iE Y | eµ= = T
i ix x b . However,

the conditional variance is equivalent to ( ) ( )21i i iVar Y | a .µ µ= +ix
The GPI is a natural extension of the Poisson. When the dispersion parameter, a,

is equal to zero, the probability density function, which is shown by Equation (3),
reduces to the Poisson so that the mean is equal to the variance, i.e.,

( ) ( )i iE Y | Var Y |=i ix x . For 0a > , the variance is larger than the mean, i.e.,

( ) ( )i iVar Y | E Y |>i ix x , and for this situation, the regression model represents

count data with overdispersion. For 0a < , the variance is smaller than the mean,

i.e., ( ) ( )i iVar Y | E Y |<i ix x , so that now the regression model represents count
data with underdispersion.

If bbbbb is estimated by the maximum likelihood method, the related equations are,

( ) ( ) ( ) ( ) ( )1
log 1 log 1 log !

1 1
i ii

i i i i
i i i

ay
,a y y ay y ,

a a

µµ
µ µ

+ = + − + − − + + 
∑A b (4)

( )
( )2 0 1 2
1
i i i

ij ji i

y
j , , , p.

a

µ µ
β βµ µ

−∂ ∂= = =
∂ ∂+∑A … (5)

Since Equation (5) is also equivalent to the weighted least squares, with a slight
modification, the estimates of bbbbb may also be solved using the IWLS procedure.

In this paper, two methods are suggested for solving the dispersion parameter, a;
maximum likelihood method and method of moments. Under the maximum
likelihood method, the related equations are,

( ) ( )
( )2

1
0

1 1 1
i i i i ii i

i i i i

y y yy
,

a a ay a

µ µµ
µ µ

− −∂ = − + − =
∂ + + +∑A

 (6)
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( )
( )

( )
( )

( )

2 222

2 2 32

1 2

1 1 1
i i i i ii i

i i i i

y y yy
.

a a ay a

µ µµ
µ µ

− −∂ = − +
∂ + + +∑A

 (7)

The maximum likelihood estimate of a  maybe solved simultaneously with bbbbb and
the procedure involves sequential iterations. In the first sequence, by using an initial

value of a,  a(0), ( ),aA b is maximized with respect to bbbbb, producing bbbbb(1). The related
equations are Equations (4) and (5). In the second sequence, by holding bbbbb fixed at

bbbbb(1), ( ),aA b is maximized with respect to a, producing )1(a . The related equations
are Equations (6) and (7). By sequentially iterating between holding a fixed and
holding bbbbb fixed, the maximum likelihood estimates of bbbbb and a will be obtained.

Under the method of moments, a may be estimated by equating the Pearson chi-
squares with the degrees of freedom, as suggested by Breslow [18],

( )
( )

2

21
i i

i i i

y
n p,

a

µ
µ µ

−
= −

+∑ (8)

where n denotes the number of rating classes and p the number of regression
parameters. The sequential iteration procedure similar to the one mentioned above
can also be used, this time producing maximum likelihood estimates of bbbbb and moment
estimate of a.

In this paper, when a is estimated by the maximum likelihood, the model will be
denoted by GPI(MLE). Likewise, when a is estimated by the method of moments,
the model will be denoted by GPI(moment).

3.2 GPII

Let iY  be the random variable for GPII distribution. The probability density function
is [19],

( ) ( )( )
( )

1

1
exp

1 0 1Pr
!

0 1

i i

i i

y y
i i i ii i

i

i

a y
aa y a , y , , ,Y y

y

, y m,a

µ

µ µ − −

 + − −    + − == = 

 > <

…

(9)

where ( )1
2 41 ia max , µ≥ − , and m is the largest positive integer for which

( )1 0i m aµ + − >  when a < 1. The mean is also assumed to be equal to

( ) ( )expi i iE Y | eµ= = T
i ix x b . However, the conditional variance is equivalent to

( ) 2
i iVar Y | a µ=ix .
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When the dispersion parameter, a, is equal to one, the probability density function
of GPII, which is shown by Equation (9), reduces to the Poisson so that the mean is
equal to the variance. For a > 1, the variance is larger than the mean, and for this
situation, the regression model represents count data with overdispersion. For
1
2 1a≤ <  and 2iµ > , the variance is smaller than the mean, so that now the regression
model represents count data with underdispersion.

If bbbbb is estimated by the maximum likelihood method, the related equations are,

( ) ( ) ( ) ( )( ) ( )
( )

( )

1
log 1 log 1 log

log !

i i
i i i i i

i

i

a y
,a y u a y y a

a

y ,

µµ + −= + − + − − −

−

∑A b (10)

             ( )
11 1

0 1 2
1

i i

ij i i i j

y
, j , , , p.

a a y
µ

β µ µ β
−∂ ∂ = − + = = ∂ + − ∂ 

∑A … (11)

The maximum likelihood estimates of bbbbb are numerically difficult to be solved
because Equation (11) is not equal to the weighted least squares. Since the GPII
distribution has a constant variance-mean ratio, the method of weighted least squares
is suggested, i.e., by equating,

( )
2 0 1 2i i i

i i j

y
, j , , , p.

a

µ µ
µ β

− ∂ = =
∂∑ …  (12)

The same IWLS procedure of the Poisson can also be used to solve for bbbbb because
Equation (12) is equivalent to the likelihood equation of the Poisson which is shown
by Equation (2). As a result, the least squares estimates of bbbbb for GPII are also equal
to the maximum likelihood estimates of Poisson, but the standard errors could be
larger or smaller than the Poisson because they are multiplied by a where 1a ≥ or
1
2 1a≤ < .

For simplicity, the estimate of a may be obtained by using the method of moments,
i.e., by equating the Pearson chi-squares with the degrees of freedom,

( )2

2
i i

i i

y
n p.

a

µ
µ

−
= −∑ (13)

An example of S-PLUS programming for solving estimates of bbbbb and a for
GPI(moment) is available in Ismail and Jemain [20]. Similar programming can also
be used for the Poisson, GPI(MLE) and GPII.

4.0 MODEL EVALUATION

The goodness-of-fit of the models may be measured by several statistical criteria;
some of them are discussed briefly below.
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4.1 Pearson Chi-squares

The Pearson chi-squares is equal to 
( )

( )

2
i i

i i

y

Var Y

µ−∑ . For an adequate model, the

Pearson chi-squares has an asymptotic chi-squares distribution with n – p degrees of
freedom.

4.2 Deviance

The deviance is equivalent to ( ) ( )( )2 ; ;−A Ay y ym , where ( );A ym  and ( );A y y

are the log likelihoods evaluated under mmmmm and y, respectively.     For an adequate
model, the deviance also has an asymptotic chi-squares distribution with n – p degrees
of freedom. Thus, if the values for both Pearson chi-squares and deviance are close
to the degrees of freedom, n – p, the model may be considered as adequate.

The deviance could also be used to compare between two nested models, one
of which is a simplified version of the other. Let D1 and df1 be the deviance and
degrees of freedom for such model, and D2 and df2 be the values by fitting a

simplified version of the model. The chi-squares is 2 1

2 1

D D
df df

−
−

 and it should be

compared to a chi-squares distribution with  df2 – df1degrees of freedom.

4.3 Likelihood Ratio Test

The advantage of using the maximum likelihood method is that the likelihood ratio
test can be implemented to assess the adequacy of the GPI(MLE) over the Poisson
because the GPI(MLE) will reduce to the Poisson when the dispersion parameter, a,
is equal to zero.

For testing Poisson against GPI(MLE), the hypothesis can be stated as H0: a = 0
against H1: a ≠ 0. The likelihood ratio is T = 2(A1 – A0), where A1 and A0 are the
model’s log likelihood under the respective hypothesis. Under null hypothesis, T
has an asymptotic chi-squares distribution with one degree of freedom (see [17]).

4.4 Other Tests

When several maximum likelihood models are available, one can also compare the
performance of alternative models based on several likelihood measures. One
commonly used measure is the Akaike information criteria [21] which is defined as
AIC = –A + p, where A denotes the log likelihood evaluated under mmmmm and p the
number of parameters. For this measure, the smaller the AIC, the better the model
is.
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Another goodness-of-fit measure is by using the Bayesian-Schwartz criteria [22]

which is defined as log
2
n

BSC p
π

 = −   
A , where A denotes the log likelihood

evaluated under mmmmm, p is the number of parameters and n is the number of rating
classes. For this measure, the larger the BCS, the better the model is.

5.0 RESULTS AND DISCUSSION

In Malaysian practice, motor insurance claims can give rise to multiple types such as
Own Damage (OD), Third Party Property Damage (TPPD) and Third Party Bodily
Injury (TPBI). For practical and statistical reasons, the claims are strongly suggested
to be treated separately. In this paper, risk classification is carried out on two types
of motor insurance claims count data; OD and TPBI. Specifically, the OD claims
are the claims for loss or damage to the insured vehicle, and the TPBI claims are the
claims for death or bodily injury to any person.

The claims count data, which was based on 170,000 private car policies for a
three-year-period of 1998 to 2000, was supplied by the Persatuan Insurans Am
Malaysia (PIAM). The data, which enclosed the exposures and number of incurred
claims for each claim type, also contained information for the rating factors and
rating classes. The rating factors and rating classes for each claim type are summarized
in Table 1.

The OD claims have only four rating factors because the claims may only occur
in comprehensive coverage. Therefore, the total number of cross-classified rating
classes is 2 × 3 × 4 × 5 = 120. For TPBI claims, the total number of cross-classified
rating classes is 2 × 2 × 3 × 4 × 5 = 240.

The rating factor for use-gender represents vehicles which are used for private
and business purposes. The vehicles used for private purposes are further classified
by the driver’s gender. However, for vehicles used for business purposes, the driver’s
gender is not provided.

The rating factor for location corresponds to the postcode written in the driver’s
policy. Specifically, the location for Central are represented by Kuala Lumpur and
Selangor, North by Perlis, Kedah, Pulau Pinang and Perak, East by Terengganu,
Kelantan and Pahang, South by Negeri Sembilan, Melaka and Johor, and East
Malaysia by Sabah and Sarawak.

5.1 Own Damage Claims (OD)

The claim counts were first fitted to the Poisson regression model. Several models
were fitted by including different rating factors; first the main effects only, then the
main effects plus each of the paired interactions. By using the deviance and degrees
of freedom, the chi-squares statistics were calculated and compared to choose the
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best model. The best model suggests that two of the rating factors, i.e., use-gender
and vehicle year, are significant and none of the paired interaction is significant. The
two-factor model was then fitted to the regression models of GPI(MLE), GPI(moment)
and GPII. The results are summarized in Table 2.

The regression parameters for all models give similar estimates. The Poisson,
GPI(MLE) and GPII give almost similar inferences about their regression parameters,
i.e., their standard errors are almost similar. On the contrary, the GPI(moment)
gives a relatively large values for standard errors, and hence, resulted in an insignificant
regression parameter for β6.

The Pearson chi-squares and deviance were reduced significantly if the GPI(MLE)
or GPI(moment) were fitted. In particular, the GPI(moment) gives the smallest values
for Pearson chi-squares and deviance, and the GPI(MLE) gives the largest value for
log likelihood. However, this result is to be expected because the estimation of a in
GPI(moment) was carried out by equating the Pearson chi-squares with the degrees
of freedom, whereas in GPI(MLE), a was estimated by maximizing the log likelihood.

The deviance for the Poisson is relatively larger than the degrees of freedom, i.e.,
2.17 times larger, indicating possible existence of overdispersion. To test for

Table 1 Rating factors and rating classes

OD claims TPBI claims

Rating factors Rating classes Rating factors Rating classes

Vehicle make Local Coverage Comprehensive
Foreign Non-comprehensive

Use-gender Private-male Vehicle make Local
Private-female Foreign
Business

Use-gender Private-male
Vehicle year 0-1 year Private-female

2-3 years Business
4-5 years
6+ years Vehicle year 0-1 year

2-3 years
Location Central 4-5 years

North 6+ years
East
South Location Central
East Malaysia North

East
South
East Malaysia
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overdispersion, the likelihood ratio test of Poisson against GPI(MLE) is implemented.
The likelihood ratio of 25.12 is significant, implying that the GPI(MLE) is a better
model. For further comparison, the results of AIC and BSC also indicate that the
GPI(MLE) is a better model compared to the Poisson.

To find the best model for GPI(MLE), several models are also fitted and compared,
including the main effects only, then the main effects plus each of the paired
interactions. Based on the deviance and degrees of freedom, the best model suggests
that none of the rating factors are significant. Therefore, if the claim counts were
based on GPI(MLE), all insureds are proposed to be classified under only one
rating class. The results for the null-factor model are summarized in Table 3.

Comparison between observed and fitted frequency rates for the best regression
model of Poisson and GPI(MLE) is given in Appendix 1. As a conclusion, the
estimates of bbbbb do not change drastically if the Poisson is used. However, their standard
errors do, and consequently, the Poisson overstates the significance of the rating
factors. For instance, the Poisson regression model for OD claim counts data indicates
that two of the rating factors are significant. This result contradicts with the result of
GPI(MLE), which implies that none of the rating factor is significant.

5.2 Third Party Bodily Injury Claims (TPBI)

The claim counts were first fitted to the Poisson regression model. The fitting involves
only 221 data points because nineteen of the rating classes have zero exposures.
Again, several models were fitted by including different rating factors, first the main
effects only, then the main effects plus each of the paired interactions. By using the
deviance and degrees of freedom, the chi-squares statistics were calculated and
compared to choose the best model. The best model suggests that only three rating
factors, i.e., coverage, use-gender and location, are significant and none of the paired
interaction is significant. The three-factor model was then fitted to the models of
GPI(MLE), GPI(moment) and GPII. The results are summarized in Table 4.

All models give similar values for parameter estimates and similar inferences
about the regression parameters.

Table 3 Results for GPI(MLE) null-factor model

Parameter Estimate Std. error p-value

a 0.049 – –
bbbbb1 (Intercept) –3.04 0.05 0.00

Degrees of freedom 118
Pearson chi-squares 119.10
Deviance 160.83
Log L –509.55
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The Pearson chi-squares and deviance were slightly reduced if the GPI(MLE) or
GPI(moment) were fitted. As expected, the GPI(moment) gives the smallest values
for Pearson chi-squares and deviance, and the GPI(MLE) gives the largest value for
log likelihood.

The Poisson gives a small deviance, indicating that the model is adequate. To test
for overdispersion, the likelihood ratio test of Poisson against GPI(MLE) is
implemented. The likelihood ratio of 1.88 is insignificant, implying that the Poisson
is adequate. On the contrary, the AIC and BSC values for Poisson and GPI(MLE)
are almost similar, indicating that there is not much difference between choosing
either the Poisson or the GPI(MLE).

Even though the AIC and BSC values indicate that there is no difference between
choosing the Poisson or the GPI(MLE), the actuaries or practitioners may choose
their models based on the results of profitability analysis. The profitability analysis,
which is also similar to the sensitivity analysis, allows the actuarial management to
check whether the model assumptions agree or disagree with the actual experience
by translating the difference between actual experience and model assumptions into
effects on profits. However, further discussion on profitability analysis will not be
included here because it is outside the scope of this study.

Comparison between observed and fitted frequency rates for the best regression
model of Poisson is given in Appendix (Table 1).

6.0 CONCLUSION

This paper proposed the Generalized Poisson regression model as an alternative for
risk classification. Even though the Poisson regression model has been widely used
for risk classification in the recent years, this paper has shown that for an overdispersed
claim data, the Generalized Poisson is superior to the Poisson. It is suggested that the
discussions and results from this paper would also encourage similar analysis by the
practitioners, especially those involved in the rating of premium for their insurance
companies, towards contributing to a more accurate measure of claim frequency
rates, and ultimately a “fair” premium rates for all.
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APPENDIX

Table 1 Observed and fitted rates for comprehensive coverage and local vehicle make

Use- Vehicle Location
         OD        TPBI

gender year Expo- Obser- Fitted Fitted Expo- Obser- Fitted
sure ved Pois- GPI sure ved Pois-

son (MLE) son

Male 0-1 yr Central
North
East
South
EastMsia

2-3 yr Central
North
East
South
EastMsia

4-5 yr Central
North
East
South
EastMsia

6+ yr Central
North
East
South
EastMsia

Female 0-1 yr Central
North
East
South
EastMsia

2-3 yr Central
North
East
South
EastMsia

4-5 yr Central
North
East
South
EastMsia

4243
2567
598

1281
219

6926
4896
1123
2865
679

6286
4125
1152
2675
700

6905
5784
2156
3310
1406

2025
1635
301
608
126

3661
2619
527

1192
359

2939
1927
439
959
376

0.061
0.045
0.080
0.062
0.041
0.080
0.077
0.098
0.083
0.081
0.075
0.071
0.098
0.076
0.081
0.063
0.067
0.064
0.063
0.080

0.048
0.035
0.053
0.046
0.032
0.061
0.066
0.046
0.059
0.064
0.048
0.050
0.043
0.052
0.040

0.058
0.058
0.058
0.058
0.058
0.077
0.077
0.077
0.077
0.077
0.076
0.076
0.076
0.076
0.076
0.066
0.066
0.066
0.066
0.066

0.043
0.043
0.043
0.043
0.043
0.057
0.057
0.057
0.057
0.057
0.057
0.057
0.057
0.057
0.057

0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048

0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048

0.029
0.043
0.041
0.036
0.015
0.029
0.043
0.041
0.036
0.015
0.029
0.043
0.041
0.036
0.015
0.029
0.043
0.041
0.036
0.015

0.021
0.032
0.031
0.027
0.011
0.021
0.032
0.031
0.027
0.011
0.021
0.032
0.031
0.027
0.011

0.040
0.040
0.034
0.038
0.000
0.024
0.038
0.038
0.032
0.011
0.033
0.038
0.036
0.041
0.007
0.028
0.051
0.050
0.033
0.023

0.024
0.033
0.035
0.023
0.000
0.017
0.033
0.044
0.020
0.024
0.033
0.034
0.012
0.026
0.000

1447
1027
178
557
117

2560
441
319
898
177

1310
880
247
559
140

1442
1252
439
615
261

756
544
115
222
51

1373
672
135
351
85

425
320
81

151
74

cont.
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Table 1 continued

Use- Vehicle Location
         OD        TPBI

gender year Expo- Obser- Fitted Fitted Expo- Obser- Fitted
sure ved Pois- GPI sure ved Pois-

son (MLE) son

6+ yr Central
North
East
South
EastMsia

Business 0-1 yr Central
North
East
South
EastMsia

2-3 yr Central
North
East
South
EastMsia

4-5 yr Central
North
East
South
EastMsia

6+ yr Central
North
East
South
EastMsia

2215
1989
581
937
589

290
66
24
52
6

572
148
40
91
17

487
100
 40
59
22

468
93
33
77
25

0.048
0.048
0.048
0.048
0.048

0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048
0.048

0.021
0.032
0.031
0.027
0.011

0.001
0.001
0.001
0.001
0.000
0.001
0.001
0.001
0.001
0.000
0.001
0.001
0.001
0.001
0.000
0.001
0.001
0.001
0.001
0.000

0.049
0.049
0.049
0.049
0.049

0.013
0.013
0.013
0.013
0.013
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.018
0.015
0.015
0.015
0.015
0.015

0.012
0.040
0.050
0.026
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.042
0.000
0.000

427
403
121
155
94

127
38
7

19
4

203
42
15
18
7

145
28
8

13
7

121
24
5

20
2

0.038
0.051
0.046
0.046
0.044

0.021
0.030
0.000
0.038
0.000
0.012
0.034
0.000
0.033
0.000
0.023
0.020
0.100
0.068
0.091
0.019
0.075
0.061
0.013
0.040
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