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SYSTEM IDENTIFICATION OF HAMMERSTEIN MODEL
A QUARTER CAR PASSIVE SUSPENSION SYSTEMS USING

MULTILAYER PERCEPTRON NEURAL NETWORKS (MPNN)

DIRMAN HANAFI1 & MOHD. FUA’AD RAHMAT2

Abstract. Recently, some researchers have focused on the applications of neural networks for
system identification. In this paper, a Hammerstein model of a quarter car passive suspension system
is identified using multilayer perceptron neural networks. Input and output data are acquired by
driving a car on a special road event. The networks structure is based on system model. The network
learning algorithm is based on Fisher’s scoring method. Fisher information is given as a weighted
covariance matrix of inputs and outputs of the network hidden layer. Unitwise, Fisher’s scoring method
reduces to the algorithm in which each unit estimates its own weights by a weighted least square
method. The results show that the minimum mean square error (MSE) value of the training process
was found with a short record.

Keywords: System identification, Hammerstein model, multilayer perceptron, weighted least square,
Fisher information, Fisher’s scoring

Abstrak. Sejak kebelakangan ini, ramai penyelidik telah memberi perhatian kepada aplikasi
rangkaian neural untuk pengenalpastian sistem. Dalam penulisan ini, model Hammerstein untuk
suspensi pasif kereta suku telah dikenal pasti menggunakan rangkaian perceptron neural anggapan
berbilang lapis. Data masukan dan keluaran telah diperolehi dengan memandu sebuah kereta pada
satu paras jalan yang khas. Struktur daripada rangkaian adalah berdasarkan kepada model daripada
sistem. Rangkaian algoritma pembelajaran adalah berdasarkan kaedah pemarkahan Fisher. Maklumat
Fisher ini diberikan sebagai pemberat matrix kovarian masukan dan keluaran lapisan rangkaian yang
tersembunyi. Unitwise daripada kaedah pemarkahan Fisher berkurangan kepada algoritma di mana
setiap unit menganggarkan sendiri pemberat pemberat dengan menggunakan kaedah pemberat kuasa
dua terkecil. Hasilnya telah menunjukan bahawa nilai ralat minimum punca kuasa dua proses
pembelajaran diperoleh dengan satu lelaran yang singkat.

Kata kunci: Pengenalpastian sistem, model Hammerstein, rangkaian perceptron neural berbilang
lapis, pemberat kuasa dua terkecil, maklumat Fisher, pemarkahan Fisher
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1.0 INTRODUCTION

Multilayer perceptrons have been applied successfully to solve some difficult and
diverse problems by training them in a supervised manner. The highly popular training
algorithm is known as the error backpropagation algorithm [1-3]. Squared error criterion
is usually used as the cost function. The network weights are found by minimizing the
cost function using the steepest descent method [4].

In this paper, the error is assumed to have a Gaussian distribution. The cost function
is minimized by applying the maximum likelihood parameter estimation technique
[5-7]. The iterative weighted least squares algorithm is derived from the cross entropy
cost function by applying maximum likelihood estimation procedure [4]. A learning
algorithm is presented based on Fisher’s scoring method. The Hessian matrix is
constructed using Newton Raphson method and Fisher’s information matrix. The
algorithm is presented as an iterative weighted least square method [4,8]. Fisher
information is also given as the weighted covariance matrix of input output of hidden
layer neuron. In this research, the weight increment is controlled to ensure that it
changes smoothly.

The neural network developed in this research is used to identify the nonlinear
model of a quarter car passive suspension system. The car model is derived using
Hammerstein model. The Hammerstein cascade can be a useful model, especially
when representing systems containing hard nonlinearities, such as the car suspension
system dynamics, where functional expansions would be impractical [9]. The input
and output data of the car were obtained in the experiment. The car was driven on the
random type of artificial road surface.

The objectives of work are:

(1) To design a neural network structure based on the nonlinear model of a quarter
car passive suspension system. The network is a multilayer perceptron.

(2) To design and implement the system identification algorithm using neural
networks and weighted least square method. The algorithm is called Multilayer
Perceptron Neural Networks (MPNN).

(3) To identify the model parameters of the Hammerstein model of a quarter car
passive suspension system.

2.0 A QUARTER CAR MATHEMATICAL MODEL

The main functions of the ground vehicle suspension are to: support the car weight,
keep the wheel on the ground, minimize transient force to the body, maintain good
ride comfort and enhance handling performance [10,11].

Suspension systems are influenced by the excitations due to the road unevenness
and variable velocity. In earlier work on the analysis of car response, the car velocity
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was considered as constant, since it was difficult to introduce the effect of variable
velocity formulation of the model [12].

The physical constraint of the suspension system is the limited suspension travel. A
basic passive suspension consists of a spring with a parallel damper at each wheel.

In this paper, a generic quarter car passive suspension model is used for analysis
[13-19]. A quarter car system offers a quite reasonable representation of the actual
suspension system [17].The nonlinear components are affected by the suspension
dynamics. The tyre is assumed to be linear. Figure 1 shows the schematic diagram of
this model.

In the past decade, the car dynamics system suspension have been modeled using
nonlinear formulae [13-16,18-21]. The dynamics of real suspensions are inherently
nonlinear.

Assumed Cs and Ks are nonlinear as shown in [9]:

( )s so sn s usC C C Z Z= + −  (1)

( )s so sn s usK K K Z Z= + − (2)

Using Newton’s second law, the nonlinear dynamic equation of the masses yields:

( ) ( ) ( ) ( )22sn snso so
us s us s us s us s us

s s s s

K CK C
Z Z Z Z Z Z Z Z Z

M M M M
= − − − − − − − − (3)

( ) ( )

( ) ( )22

so so us us us us
us s us s us us us o o

us us us us us us

so so
s us s us

us us

K C K C K C
Z Z Z Z Z Z Z Z Z

M M M M M M

K C
Z Z Z Z

M M

= − − + − − − + +

+ − + −

(4)

Figure 1 A quarter car suspension schematic diagram
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where, Zs, Zus, Zo are the displacement of sprung mass, wheel, and road surface
elevation;   Ms, Mus are their respective masses. Between these masses, Ks, Kus are the
spring rates and Cs, Cus are the damping rates as indicated. Kso and Cso are the linear
coefficient and Ksn and Csn are the nonlinear coefficient of the suspension spring and
damping component.

Equations (3) and (4) have similar structure to the nonlinear Hammerstein mathematical
model. The nonlinear Hammerstein structure has been widely used to formulate
explanation [2,14,15,22-24]. The general form of nonlinear Hammerstein model of a
quarter car passive suspension system are represented by Equations (5), (6) and (7).

Zs (kT) A (q–1) = B (q–1) x (kT) (5)

Zus (kT) A (q–1) = B (q–1) z0 (kT) + B (q–1) x (kT) (6)

x (kT) = r0 + rngY
ng (kT) + ... + rNGYNG (kT), ng = 1,2,...,NG (7)

where, A (q–1) = a0 + a1q
–1 + ... + anq

–n, B(q–1) = b1q
–1 + ... + bmq–m, x (kT)  is the static

nonlinear part of the model. z0 (kT) is input variable, Y(kT) is output variable. q–1 is a
unit delay, (n,m) is the order of linear part, ng is nonlinearity degree, T is sampling
time.

In this study, the output variable of the system is the car suspension deflection Y(kT)
and v(kT) is the noise measurement with the function shown below.

Y(kT) = d1Zs (kT) – d2Zus(kT) + v(kT)   (8)

The block diagram of a nonlinear Hammerstein structure of a quarter car passive
suspension system is shown in Figure 2.

2.1 Multilayer Perceptron Neural Networks (MPNN)
Structure

Model parameters are taken to be the neural networks weights. Input vector for each
layer of the networks is written as the following:

(1) First hidden layer neuron

x1 = [Z1((k – 1)T),..., Z1 ((k – n)T), Yng ((k – 1)T),..., Yng ((k – m –1)T)] (9)

(2) Second hidden layer neuron

x2 = [Z2((k – 1)T),..., Z1 ((k – n)T), z0(kT),..., z0 ((k – m)T), Yng ((k – 1)T),...,

Yng ((k – m – 1)T)] (10)
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(3) Output layer neuron

Z = [Z1(kT), Z2(kT)] (11)

2.2 Training Algorithm

The cost function in this research is formulated using the log likelihood formulation
[4,7].

2.3 Likelihood

In this case, we assumed that: j = 1, 2, ..., J are numbers of hidden layer neuron; k = 1,
2, ..., K are numbers of output layer neuron; i = 1, 2, ..., I are numbers of input layer
neuron or unit input; and p = 1, 2, ..., P are numbers of input data. xp = (xp1, ..., xpI) is
the networks input vector. The network block diagram is shown by Figure 3.

The output vector of the network in Figure 3, Yp = [Yp1,..., YpK] is determined for an
input vector.

( ) ( )
( ) 1

exp
,

1 exp

Ipj
pj pj pj ji pi

ipj

z w x
ς

ς ς
ς =

= =
+

∑ (12)

( ) ( )
( ) 1

exp
,

1 exp

j
pk

pk pk pk kj pj
jpk

y v z
η

η η
η =

= =
+

∑  (13)

Figure 2 The block diagram of a nonlinear Hammerstein model of a quarter car passive suspension
system dynamic
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Figure 3 MPNN structure
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Let the set of learning samples be {<xpi,tpk>|p = 1,2,...,P}, P is a number of input
variable. tpk is the teacher’s signal. The error is assumed to have Gaussian distribution.
If each element of the output vector of the network is conditionally independent, then
the log likelihood of the network for the set of learning samples is given by:

( ) ( ) ( ){ }22
2

1 1

1 1
log 2 log

2 2 2

P K

pk pk
p k

P
l t yπ σ

σ= =
= − − − −∑∑ (14)

2.4 Fisher Information

In this network, Fisher Information for hidden layer is calculated explicitly [17,26].
The first and second derivative of Equation (11) are given as:

(1) The first derivatives

1 1

P K

pk pj pj pi
ji p k

l
x

w
ω σ υ

= =

∂ =
∂ ∑∑ (15)

1

P

pk pk pj
kj p

l
z

v
δ ω

=

∂ =
∂ ∑  (16)

where, ( ) ( )2
1

1
, , , 1 ,

K

pj pk kj pk pk pk pk pk pk pk pk
k

v t y y yσ δ δ ω
σ=

= = − = Ω Ω = −∑ and

( )1pj pj pjz zυ = −

(2) The second derivatives

( )

( )

1

2
1

1

1

1 2

1 2

P

pl pk pk pjj pj pj pi
p

P

pl pk pjj pj pj pi
p

P
ml ji

pl pk pk pmj pj pm pi
p

P

pl pk pk pm km pi
p

x y x

x x
l

w w
x y x

x x

δ χ υ υ

χ υ υ

δ χ υ υ

ω υ υ

=

=

=

=


−



− Ω
∂ = ∂ ∂  −



− Ω


∑

∑

∑

∑

(17)

otherwise

if  j = k
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( )

( )

1

2
1

1

1

1 2

1 2

P

pl pk pk pk pj kj pj
p

P

pl pk pk pj pi
p

P
ml kj

pl pm pk pk pm pj
p

P

pl pk pk pm km pi
p

x y v z

x x
l

w v
x y z

x v x

δ ω υ

ω υ

σ ω υ

ω υ

=

=

=

=


−



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


− Ω


∑

∑

∑

∑

(18)

( )

( )

1

2
1

1

1

1 2

1 2

P

pi pk pk pk pj pm
p

P

pi pj pk pk kj pm
p

P
nm ji

pi pk pk pm pj pm
p

P

pi pk kj pm pj pm
p

x y z

x v z
l

v w
x y z

x v z

σ ω υ

υ ω

σ ω υ

ω υ

=

=

=

=


−



− Ω
∂ = ∂ ∂  −



− Ω


∑

∑

∑

∑

(19)

( )2

1

1 2

0

P

pm pk pk pk pj
p

bn kj

z y z if j kl
v v

otherwise

δ ω
=


− =∂ = ∂ ∂ 



∑ (20)

where 
1 1

,
K K

pmj km pk kj p pk
k k

v vχ ω δ δ
= =

= =∑ ∑ ,

Minimization of the criteria function is given by:

( )
( )0
1

pk pk

pk pk

E t yl
E

Y y y

−∂ = = ∂  −
 (21)

otherwise

if  j = k

otherwise

if  j = k
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Fisher Information related for each weight vector of network is written as the following

( )
1 1

1 2
ml ji

P P

w w pl pk pk pmj pj pm pi pl pk pmj pj pm pi
p p

F x y x x xδ χ υ υ χ υ υ
= =

= − − Ω∑ ∑ (22)

( )
1 1

1 2
ml kj

P P

w v pl pm pk pk pm pj pl pk pk pm km pi
p p

F x y z x xσ ω υ ω υ υ
= =

= − − Ω∑ ∑ (23)

( )
1 1

1 2
nm ji

P P

v w pi pk pk pm pj pm pi pk kj pm pj pm
p p

F x y z x v zσ ω υ ω υ
= =

= − − Ω∑ ∑ (24)

( )
1

1 2

0
nm kj

P

pm pk pk pk pj
pv v

z y z for j k
F

otherwise

δ ω
=


− == 




∑
(25)

2.5 Iterative Weighted Least Squares Algorithm

The weight update learning algorithm is done by minimizing Equation (11). We apply
steepest decent optimization method using the first derivative of objective function
[17,25,26]. Assume the current estimate of the weights is W. Then the estimate is
repeatedly updated by:

W W lα∗ = − ∇  (26)

If weights are updated to each set of learning sample, Equation (23) can be modified
to be:

pW W lα∗ = − ∇ (27)

where ∇lp is the first derivative to the sample (xp,tp) and the relation 
1

P

p
p

l l
=

∇ = ∇∑
hold. This is called steepest descent method.

In this case, Fisher’s scoring algorithm is developed which uses Fisher’s information.
The estimated is repeatedly changed by

W* = W + δ W (28)

where the increment δ W is calculated by solving the following equation.

F δ W = ∇l (29)

This is called Fisher’s scoring method.
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2.6 Unitwise Iterative Weighted Least Squares Algorithm

Fisher’s information related with the weights from input layer to hidden layer are
given by [10].

( )
1 1

1 2
P P

wj pl pk pk pmj pj pm pi pl pk pmj pj pm pi
p p

T
wj

F x y x x x

X Q X

δ χ υ υ χ υ υ
= =

= − − Ω

=

∑ ∑

(30)

where, Qwj = diag ((δpk(1 – 2ypk) – ωpkΩpk) υpjχpjjυpj) and j is the number of hidden
neuron. This is a weighted covariance matrix of input vectors. Using Equations (26)
and (27), the normal equation of weighted least squares estimation to obtain the current
estimates of the weights W*wj as the following

( )1T T
wj wj wj j wj wjX Q XW X Q Qς δ∗ −= +  (31)

where,

1 1 1
1 1

, ,
K K

wj k j j pk pj pj
k k

δ ω σ υ ω σ υ
= =

 
=  

 
∑ ∑ (32)

( )1, ,
T

j j pjς δ ς= (33)

Similarly, Fisher’s information for output layer weights and corresponding normal
equation are written as:

( )1 2 T
vk pm pk pk pk pj vkF z y z Z Q Zδ ω = − =  (34)

and

( )1
k k k kk

T T
v v v k v vZ Q ZV Z Q Qη δ∗ −= +  (35)

where,

( )1 2, , ,T
pZ z z z=  (36)

( )( )1 2
kv pk pk pkQ diag yδ ω= −  (37)

( )1 , ,
T

k k pkη η η=  (38)
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( )1 1 , ,
k

T
v k k pk pkδ δ ω δ ω= (39)

The estimates {Wwj
|j = 1,..., J} and {Vvk

|k = 1,..., K} are repeatedly updated by
solving normal equation. This method is called Unitwise Fisher’s scoring method. In
this algorithm each neuron weights unit of the networks is estimated by the iterative
weighted least squares algorithm.

Next we will consider the recursive formulation to solve these normal equations for
the weighted least squares. This reveals the close relation between the proposed
Unitwise Fisher’s Scoring algorithm and the back propagation learning algorithm.

The optimal estimate parameters respect to the set of earlier learning samples and
the new learning samples. The recursive equation is written as:

1
j j j

N N N
w w w N N Nj Njw w R x ω σ υ−= + (40)

where the matrix  Rwj
 gives the estimates of the inverse of the weighted covariance

matrix (N)XT(N)Qwj
(N)X and its recursive formula is given by:

( )( )
( )( )

1 1
1

1

1 2

1 1 2
j j

j j

j

N T N
N N N N Nj Njj Nj w N N wN N

w w T N
N N N N Nj Njj Nj N w N

y R x x R
R R

y x R x

δ ω υ χ υ

δ ω υ χ υ

− −
−

−

− − Ω
= −

+ − − Ω
(41)

In the same way the recursive formula for the estimate vvk
 is given by:

1
k k k

N N N
v v v N Nk Nkv v R z δ ω−= + (42)

( )
( )

1
1

1

1 2

1 1 2
k k

k k

k

N T N
Nk pk Nk v N N vN N

v v T N
Nk pk Nk N v N

y R z z R
R R

y z R z

δ ω

δ ω

−
−

−

−
= −

+ −
(43)

3.0 MODEL VALIDATION AND SYSTEM IDENTIFICATION
RESULT

Model validation is needed to verify that the identified model fulfills the modeling
requirement according to the subjective and objective criteria of good model
approximation. In this paper, several criteria are applied among [14,21,26]:

(1) Compare between the signal graph of system output and estimated model output.
(2) Residual analysis: auto correlation and cross correlation, and test statistic.
(3) Percent Variance Accounted For (% VAF).
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The data sampling (T) is assumed to be 1 second.
The graph of input signal and output signal of system are shown in Figures 4(a) and
4(b).

(a) (b)

Figure 5 (a) The output comparing between system and estimate model and (b) MSE value

(a) (b)

Figure 4 (a) Random type of artificial road surface and (b) The signal graph of output system
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Figure 5(a) shows the comparison between the system and the model output. The
output model trend is similar with the output system. A typical training is shown in
Figure 5(b). The MSE on the training set is shown as a function of the number of
iterations. A standard way to present the decision problem in the case of interactive
system identification is to show a diagram of residual autocorrelation. Figure 6(a)
shows the residual autocorrelation with 99% confident interval limit. A test for the
independence of input and residual is based on the cross correlation covariance
function. Figure 6(b) shows the residual cross correlation with 99% confident interval
limit.

The best identified model has n = 2, m = 1 and ng = 3 . The MSE minimum value is
defined at iteration numbers 143 as shown in Figure 5(b). From statistical analysis, we
defined the value of the autocorrelation test statistic is 0.0273 and cross correlation test
statistic is 0 (for m = 20 theses value must be less than 37.6). Loss function and %VAF
are respectively 0.0006 and 90.4%.

4.0 DISCUSSION

Determination of the nonlinear model of a quarter car suspension system has been
discussed. The model is formulated using nonlinear Hammerstein model which is
then used to design the neural network structure. The network structure is defined as
a Multilayer Perceptron. The networks training algorithm is written down applying
Fisher’s information and Fisher’s scoring algorithm. The algorithm is interpreted as

(a) (b)

Figure 6 (a) Autocorrelation residual with 99% confidence interval and (b) Cross correlation between
residual and input with 99% confidence interval
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iterations of weighted least square method. The system input and output data are
achieved from a known parameter of nonlinear model of a quarter car passive suspension
system simulation. The development algorithm is examined using those data. A
detailed description of the taken to perform the modeling, i.e. the data acquisition and
application of neural network structures and algorithm, is given and the results are
displayed.

5.0 CONCLUSION

In this paper, system identification technique for a quarter car suspension systems
dynamic has been developed. The neural network weight update is done using weighted
least squares method. The weighted least square works as a function for tuning the
network weights. The system identification algorithm is used to identify the nonlinear
model of a quarter car passive suspension system. The results show that the trend of
output signal of estimate model is nearly similar with the output signal of the system.
The networks can converge at the short iteration number as shown in Figure 5(b). The
autocorrelation graph of residual and cross correlation graph between residual and
input signal is laying in 99% confident limit. The value of Percent Variance Accounted
For (%AVF) and loss function are acceptable.
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