
ENACTING THE WATERFALL SOFTWARE DEVELOPMENT MODEL USING VRPML 125

Jurnal Teknologi, 43(D) Dis. 2005: 125–142
© Universiti Teknologi Malaysia

ENACTING THE WATERFALL SOFTWARE DEVELOPMENT
MODEL USING VRPML

KAMAL ZUHAIRI ZAMLI1* & NOR ASHIDI MAT-ISA2

Abstract. This paper describes the use of a new visual language called the Virtual Reality
Process Modeling Language (VRPML), in order to specify a software process. In particular, this
paper demonstrates the use of VRPML to model and enact (i.e. execute) the waterfall software
development model. The main objective of this paper is to investigate whether VRPML provides
a sufficiently rich notation to enable the modeling and enacting of software processes.

Keywords: Software process, software engineering, process modeling languages, VRPML

Abstrak. Artikel ini menggariskan penggunaan bahasa visual yang baru, Bahasa
Permodelan Proses Realiti Maya (VRPML) untuk spesifikasi proses pembangunan
perisian. Secara khususnya, artikel ini membincangkan penggunaan VRPML dalam
proses permodelan dan larian model air terjun. Matlamat utama kertas kerja ini adalah
untuk mengkaji sama ada VRPML mempunyai notasi yang mencukupi untuk tujuan
permodelan dan larian proses pembangunan perisian.

Kata kunci: Proses pembangunan perisian, kejuruteraan perisian, bahasa permodelan
Proses, VRPML

1.0 INTRODUCTION

A software process can be defined as sequences of steps that must be followed by
software engineers to pursue the goals of software engineering. In order to allow a
better control of a particular software process, a model of that process (termed a
process model) can be created using a process modeling language (PML) making
the process explicit and open to examination. Furthermore, through enactment (or
execution) of the process model, automation, guidance, and enforcement of the
policy embedded in a particular process model can be usefully achieved.

While there has been much fruitful research into PMLs (see [1] for a recent survey),
their adoption by industry has not been widespread [2]. While the reasons for this
lack of success may be many and varied, our research identified two areas in which
PMLs may have been deficient: human dimension issues; and support for addressing

1&2 School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Engineering Campus,
14300 Nibong Tebal, Pulau Pinang, Malaysia. Tel: 604-5937788 (ext 6079), Fax: 604-5941023.

* Corresponding author: E-mail: {eekamal, ashidi}@eng.usm.my

JTDIS43D[09]new.pmd 02/15/2007, 16:26125

KAMAL ZUHAIRI ZAMLI & NOR ASHIDI MAT-ISA126

management and resource issues that might arise dynamically when a PML is being
enacted [3]. Furthermore, no single existing PML has emerged as the de facto standard
for supporting the modeling and enacting of software processes. These reasons suggest
that research into PMLs is still necessary.

This paper describes our assessment of a new visual PML, called the Virtual
Reality Process Modeling Language (VRPML) [1, 3, 4-8] developed as part of our
on-going research. The main design objectives for VRPML are:

(1) To develop an expressive, executable, and easy to use visual PML
(2) To address some of the perceived deficiencies in existing PMLs particularly in

terms of the support for dynamic creation and assignment of tasks and resources,
as well as the support for the awareness and visualization issues.

Although VRPML has been successfully employed to model and enact the standard
benchmark problem in software engineering (i.e. the ISPW-6 problem) involving
the software change request [9], the author felt that such experience may be insufficient
to evaluate VRPML completely. One reason is that the ISPW-6 problem is perhaps
too specific to the software change request process.

A more general case study process, particularly involving the software processes
for a complete software development model is required. These processes must be
explicit and well-defined in terms of their inputs and outputs. Arguably, if one could
use an existing definition of a development model in which activities and their
inputs and outputs have already been well-defined, more effort can be concentrated
on the modeling and enacting issues and less on defining the stages (and activities).
As the waterfall software development model seems to fit well into this category, it
will be used here. The focus of this paper is, therefore, to explore the expressiveness
of the VRPML notation for supporting the modeling and enacting of a complete
software development model.

2.0 OVERVIEW OF VRPML

VRPML is a control-flow based visual PML for supporting the modeling and enacting
of software processes. In VRPML, software processes are generically modeled.
Resources (in terms of software engineers, artifacts and tools) can be dynamically
assigned and customized for specific projects from a generic model.

Software processes are specified in VRPML as graphs, by interconnecting nodes
from top to bottom using arcs that carry run-time control-flow signals. The complete
description of the syntax and semantics of VRPML can be found in [6].

As an illustration, Figure 1 presents an excerpt of the VRPML solution to the
ISPW-6 problem. Similar to JIL [10] and Little JIL [11], software processes in VRPML
are described using process step abstractions, which represent the most atomic
representation of a software process (i.e. the actual activity that software engineers

JTDIS43D[09]new.pmd 02/15/2007, 16:26126

ENACTING THE WATERFALL SOFTWARE DEVELOPMENT MODEL USING VRPML 127

are expected to perform). These activities are represented as nodes, called activity
nodes (shown as small ovals with stick figures).

As depicted in Figure 1, VRPML supports many different kinds of activity nodes.
They include: general-purpose activity nodes (shown as individual small ovals with
stick figures); multi-instance activity nodes (shown as overlapping small ovals with
stick figures); and meeting activity node (shown as small and shaded overlapping
ovals with stick figures). Both multi-instance activity nodes and meeting activity nodes
have associated depths, indicating the actual number of engineers involved (and
also the number of identical activities in the case of multi-instance activity).

Figure 1 Excerpt of the VRPML graph

ModifyTestPlans

QAEngr

ModifyCode

DsgnEngr

D

ModifyUnitTestPackage

QAEngr

D

D

ModifyDesign

DsgnEngr

ReviewMeeting

DsgnEngr
P

FReviewDesign

DsgnEngr
D

D

ModifyUnitTestPackage
QAEngr

ModifyCode

DsgnEngr

TestUnit

D

D

ModifyUnitTestPackage

QAEngr

D
ModifyCode

DsgnEngr
D

JTDIS43D[09]new.pmd 02/15/2007, 16:26127

KAMAL ZUHAIRI ZAMLI & NOR ASHIDI MAT-ISA128

The firing of activity nodes is controlled by the arrival of a control flow signal. In
VRPML, an initial control flow signal is always generated from a start node (a white
circle enclosing a small black circle). A stop node (a white circle enclosing another
white circle) does not generate any control flow signals. Control flow signals may
also be generated at the completion of a node, often from special completion events
called transitions (shown as small white circles with a capital letter, attached to an
activity node) or decomposable transitions (small black circles with a capital letter).
Decomposable transitions enable automation scripts or sub-graphs to be specified
(and executed if selected) as post-conditions before allowing transition to generate a
control flow signal. The sub-graph associated with the decomposable transition
representing Done (labeled D) for the activity node called Modify Code is given in
Figure 2.

Figure 2 Sub-graph for decomposable transition labeled D in Modify Code

Check Compilation
SWEngr

R D

When Check Compilation fails, the assigned software engineer can select the transition
R (for re-do). As a result, a control-flow signal will be generated to re-enact its parent
node (i.e. Modify Code) through a re-enabled node (shown as two white circles
enclosing black circle). Otherwise, if the compilation is successful, the assigned
engineer can select the transition D (for Done). In this case, the control-flow signal
will be generated and propagated back to the main graph to enable the subsequent
connected node.

In VRPML, activity nodes can also be enacted in parallel using combinations of
language elements called merger and replicator nodes (shown as trapezoidal boxes
with arrows inside). To improve readability, a set of VRPML nodes can be grouped
together and replaced by a macro node (shown as dotted line ovals), with the macro
expansion appearing on a separate graph. For example, referring to Figure 1, Test
Unit is a macro node. The macro expansion of Test Unit is given in Figure 3.

For every activity node, VRPML provides a separate workspace, the concept
borrowed from ADELE-TEMPO [12], APEL [13] and MERLIN [14]. Figure 4 depicts
the sample workspace for the activity node called Review Meeting in Figure 1. A
workspace typically gives a work context of an activity as it hosts resources needed

JTDIS43D[09]new.pmd 02/15/2007, 16:26128

ENACTING THE WATERFALL SOFTWARE DEVELOPMENT MODEL USING VRPML 129

for enacting the activity: transitions, artifacts (shown as overlapping two overlapping
documents with arrows for depicting access rights), communication tools (shown as
a microphone, and an envelope), and any task descriptions (shown as a question
mark). Effectively, when an activity is undertaken, the workspace is mapped into a
virtual room, transitions into buttons, and artifacts, communication tools (i.e. for
synchronous and asynchronous forms of communications) and task description into
objects which can be manipulated by software engineers to complete the particular
task at hand.

As part of its enactment model, VRPML relies on its resource exception handling
mechanism. In VRPML, resources include roles assignment, artifacts and tools
(including communication tools) in a workspace as well as the depths of multi-
instance activity nodes and meeting activity nodes. Depending on the needs of a
particular software development project, these resources can either be allocated
during graph instantiation or dynamically during graph enactment.

Figure 3 Macro expansion for Test Unit

Test
DsgnEngr

D

TestAnalysis
QAEngr

C

T
B

FeedbackForCode
DsgnEngr

D

FeedbackFor
TestPackage

D

FeedbackForCode
AndTestPackage

D

P DsgnEngr
DsgnEngr

Figure 4 Sample workspace for activity node review meeting

OutcomeNotification

RequirementChange

DesignReviewFeedback

CommunicationTool

ModifiedDesign

EmailTool ?

P

ReviewMeeting

DsgnEngrF

JTDIS43D[09]new.pmd 02/15/2007, 16:26129

KAMAL ZUHAIRI ZAMLI & NOR ASHIDI MAT-ISA130

3.0 OVERVIEW OF THE WATERFALL DEVELOPMENT MODEL

The earliest form of the software processes based on the waterfall model was
introduced by Royce [15]. Since then, many variants from the original waterfall
model have been proposed. One of its variants [16] is shown in Figure 5.

Figure 5 The waterfall model

Among the characteristics of the waterfall model are:

(1) The model is divided into a number of separate stages from system feasibility
to maintenance.

(2) Each stage has a clearly delineated activity which is performed in a linear and
sequential manner.

(3) Each stage is also independent that is, there is no overlap among stages.
(4) Feedback is usually provided to the preceding stage.
(5) The completion of a stage is determined by a review either formally or informally

and conducted at the end of each stage so that development can proceed to the
next stage. This is important because the output of the current stage often
becomes the input of the next stage.

In order to support the modeling and enacting of software processes implementing
the waterfall model, each stage of the model must be precisely defined in detail.
Building on the work by Sommerville [17] and the waterfall model given earlier,
Table 1 in the next page summarizes the possible activities along with their inputs

System
feasibility

Requirements
specification

Preliminary
design

Detailed
design

Module coding
and testing

System
integration

System
testing

JTDIS43D[09]new.pmd 02/15/2007, 16:26130

ENACTING THE WATERFALL SOFTWARE DEVELOPMENT MODEL USING VRPML 131

Table 1 Waterfall model activities, inputs, and outputs

Waterfall Activities Inputs Outputs
stage

Analyse and define Customer requirements Draft feasibility study
requirements Draft requirement

documents

Review system feasibility Draft feasibility study Feasibility study
Draft requirement Requirement documents
documents

Prepare functional specificationRequirement documents Draft functional
specification

Prepare acceptance test plan Requirement documents Draft acceptance test plan
Requirements Prepare draft user manual Draft functional specification Draft preliminary user
specification manual

Review specification Draft functional specification Functional specification
Draft acceptance test plan Acceptance test plan
Draft preliminary user Preliminary user manual
manual

Prepare architectural Requirement documents Draft architectural
specification Functional specification specification

Prepare system test plan Requirement documents Draft system test plan
Functional specification

Review preliminary design Draft architectural Architectural specification
Specification
Draft system test plan System test plan

Prepare interface specification Functional specification
Architectural specification Draft interface specification
Requirement documents

Prepare integration test plan Functional specification
Architectural specification Draft integration test plan
Requirement documents

Prepare design specification Functional specification
Detailed Architectural specification
design Draft interface specification Draft design specification

Requirement documents

Prepare unit test plan Functional specification
Architectural specification Draft unit test plan
Draft interface specification
Requirement documents

Review detailed design Draft interface specification Interface specification
Draft design specification Design specification
Draft integration test plan Integration test plan
Draft unit tast plan Unit test plan

System
feasibility

Preliminary
design

(cont.)

JTDIS43D[09]new.pmd 02/15/2007, 16:26131

KAMAL ZUHAIRI ZAMLI & NOR ASHIDI MAT-ISA132

and outputs. It must be stressed that this is only one of the possible list of activities as
there are a number of variations to the waterfall model.

Referring to Table 1, the summary of activities involved in each stage of the
waterfall model raises a number of issues. Firstly, the roles associated with each
defined activity have not been identified. In this case, it is assumed that all of the
software engineers involved have the required skills to perform the activities assigned
to them. Hence, the role for each activity will be simply software engineers.

Secondly, although the ordering of activities in each stage has not been defined,
they can be indirectly inferred from their input dependencies. In fact, activities in a
stage can also be enacted in parallel when they are independent, that is, they do not
require any input from each other. This will be reflected in the VRPML solution
given below.

Finally, in order to highlight only the key aspects of VRPML, only a partial solution
of the waterfall model from Table 1 will be presented here. The complete solution
can be found in Zamli [7].

Table 1 (continued)

Waterfall Activities Inputs Outputs
stage

Perform coding Requirement document Draft program code
Design specification

Perform unit and module Unit test plan Draft unit test report
testing Draft program code

Review coding and testing Draft program code Program code
Draft unit test report Unit test report

Perform integration testing Integration test plan Draft integration test
Program code report

Preliminary user manual
Prepare final user manual Functional specification Draft user manual

Program code

Review integration testing Draft integration test report Integration test report
Draft user manual User manual

System test plan
Perform system testing Acceptance test plan Draft system test report

Program code

Review system Program code
User manual Final release
Draft system test report

System
testing

System
integration

Module coding and
testing

JTDIS43D[09]new.pmd 02/15/2007, 16:26132

ENACTING THE WATERFALL SOFTWARE DEVELOPMENT MODEL USING VRPML 133

4.0 VRPML SOLUTION OF THE WATERFALL DEVELOPMENT
MODEL

The main graph of the VRPML solution for the software processes based on the
waterfall model is given in Figure 6 consisting of 7 macros namely: System feasibility;
Requirements specification; Preliminary design; Detailed design; Module coding
and testing; System integration; and System testing.

To further illustrate the VRPML notation, one of the macros, called Detailed Design,
is shown in Figure 7. The presence of macros related to other stages in the Figure is
merely to give focus and context to the expansion.

The macro expansion for Detailed Design consists of four multi-instance activity
nodes (Prepare Interface Specification, Prepare Integration Test Plan, Prepare Design
Specification, and Prepare Unit Test Plan) and one meeting node (Review Detailed
Design). Since Prepare Interface Specification and Prepare Integration Test Plan are

Figure 6 Main VRPML graph for the Waterfall Model

System
feasibility

Detailed
design

Preliminary
design

Requirements
specification

Module coding
and testing

System
integration

System
testing

JTDIS43D[09]new.pmd 02/15/2007, 16:26133

KAMAL ZUHAIRI ZAMLI & NOR ASHIDI MAT-ISA134

Figure 7 Macro expansion for Detailed Design

Module coding
and testing

System
integration

System
testing

ReviewDetailed
Design

SWEngr

PrepareIntegration
TestPlan
SWEngr

PrepareUnit
TestPlan
SWEngr

PrepareDesign
Specification

SWEngr

PrepareInterface
Specification

SWEngr

Preliminary
design

Requirements
specification

System
feasibility

R

P

F

DD

D D

JTDIS43D[09]new.pmd 02/15/2007, 16:26134

ENACTING THE WATERFALL SOFTWARE DEVELOPMENT MODEL USING VRPML 135

independent of each other, they can be enacted in parallel. However, Prepare Design
Specification and Prepare Unit Test Plan can only be enacted after Prepare Interface
Specification has been completed. This is because both Prepare Design Specification
and Prepare Unit Test Plan require an artifact from Prepare Interface Specification,
called the Interface Specification, as one of their inputs (see Table 1). Actually, once
Prepare Interface Specification has been completed, both Prepare Design Specification
and Prepare Unit Test Plan can be enacted in parallel. Lastly, Review Detailed
Design is enacted when all the above activities have been completed.

In terms of transitions, Prepare Interface Specification, Prepare Integration Test
Plan, Prepare Design Specification and Prepare Unit Test Plan each have only one
defined transition for Done (labeled D) to allow their completion. However, Review
Detailed Design has three defined transitions: Redo (labeled R) in order to allow
loop back to the previous activities; Passed (labeled P) in order to move to the next
stage; and Feedback (labeled F) in order to permit feedback to the previous stage.

Figure 8 Workspaces for Detailed Design

M o d if ie d D e s ig n F e e d b a c k R e g a rd in g C o d e

W o r k s p a c e f o r P r e p a r e In te r f a c e
S p e c i f ic a t io n

W o r k s p a c e f o r R e v ie w D e t a i le d D e s ig n

?
R e q u ire m e n tD o c u m e n ts

D ra f t In te r fa c e S p e c if ic a t io n

?

R e v ie w D e ta i le d D e s ig n
S W E n g r

P

C o m m u n ic a t io n T o o l

E m a ilT o o l

F

D ra f t In te r fa c e S p e c if ic a tio n

D ra f tD e s ig n S p e c if ic a t io n

M o d if ie d D e s ig n F e e d b a c k R e g a rd in g C o d e

?
R e q u ire m e n tD o c u m e n ts

D ra f t In te g ra t io n T e s tP la n

W o r k s p a c e fo r P r e p a r e In te g r a t io n T e s t
P la n

R

F u n c t io n a lS p e c if ic a t io n F u n c t io n a lS p e c if ic a t io n

M o d if ie d D e s ig n F e e d b a c k R e g a rd in g C o d e

W o r k s p a c e fo r P r e p a r e D e s ig n
S p e c i f ic a t io n

?
R e q u ire m e n tD o c u m e n ts

D ra f tD e s ig n S p e c if ic a t io n

W o r k s p a c e fo r P r e p a r e U n it T e s t P la n

F u n c t io n a lS p e c if ic a t io n

A rc h ite c tu ra lS p e c if ic a t io n

A rc h ite c tu ra lS p e c if ic a t io nD ra f t In te r fa c e S p e c if ic a t io n

?
R e q u ire m e n tD o c u m e n ts

D ra f tU n itT e s tP la n

F u n c t io n a lS p e c if ic a t io n

D ra f t In te r fa c e S p e c if ic a t io n A rc h ite c tu ra lS p e c if ic a t io n

D ra f tU n itT e s tP la n

D ra f t In te g ra t io n T e s tP la n

P re p a re In te r fa c e S p e c if ic a t io n
S W E n g r

DDD

P re p a re In te g ra t io n T e s tP la n
S W E n g r

DDD

P re p a re D e s ig n S p e c if ic a t io n
S W E n g r

DDD

P re p a re U n itT e s tP la n

S W E n g r

DDD

JTDIS43D[09]new.pmd 02/15/2007, 16:26135

KAMAL ZUHAIRI ZAMLI & NOR ASHIDI MAT-ISA136

In terms of workspaces, they can be straightforwardly defined by analyzing the
inputs for each activity as described in Table 1. As an illustration, Figure 8 depicts
all the respective workspaces for Detailed Design.

Although not shown in this paper (see [7]), all of the macros given in Figure 6
expand into a combination of multi-instance activity nodes and meeting activity
nodes connected by arcs. The reason for using multi-instance activity nodes and
meeting activity nodes is to demonstrate that VRPML supports the dynamic creation
of tasks, that is, no prior assumption is made when constructing the model in terms
of how many engineers have to be assigned to any of the activities represented by
these nodes.

As far as enactment is concerned, the VRPML support system is responsible to
allow the process model to be enacted. The overall structure of the VRPML support
system is shown in Figure 9.

Figure 9 VRPML support system

. . . .

...

Project manager

Runtime client

PSEE

To-do-list
manager

Workspace
manager

Resource
exception

Resource
exception

rectification

Runtime client

To-do-list
manager

Software engineers

PSEE

Workspace
manager

Activities and
resource

assignments

Resource
queries

Resource manager

Databases

Communication repository layer

Transition
signals

Transition
signals

Resource
exception and

rectification

Runtime
interpreter

Compiler

Graph editor

VRPML graph

Roadmap and
resource tuples

Activities and
resource

assignments

Resource
queries

JTDIS43D[09]new.pmd 02/15/2007, 16:26136

ENACTING THE WATERFALL SOFTWARE DEVELOPMENT MODEL USING VRPML 137

The main components of the VRPML support system consist of:

(1) Graph editor – allows the VRPML graphs to be specified.
(2) Compiler – compiles the VRPML graphs into an immediate format for

enactment.
(3) Runtime interpreter – interprets the compiled VRPML graph.
(4) Communication repository layer – allows communication between the runtime

interpreter, runtime client, and workspace manager.
(5) Resource manager – queries the databases for artifacts.
(6) Process Centered Environment (PSEE) – encapsulates three main sub-

components: the runtime client, the to-do-list manager, and the workspace
manager. The runtime client retrieves activities and resource assignments from
the communication repository layer. The to-do-list manager manages the activities
assigned to a particular software engineer whist the workspace manager manages
activity workspace in a virtual environment, manages activity transition, and
forward queries to the resource manager.

The complete description of the VRPML support system, however, is beyond the
scope of the paper. Interested readers are referred to Zamli [7].

To illustrate enactment, Figure 10 shows a sample snapshot of the to-do-list GUI
for a software engineer name Kamal where the current activity in the to-do-list queue
is Review Detailed Design whilst Figure 11 depicts the snapshot of resource allocation
activity performed by the project manager.

Figure 10 Snapshot of the engineer's to-do-list

JTDIS43D[09]new.pmd 02/15/2007, 16:26137

KAMAL ZUHAIRI ZAMLI & NOR ASHIDI MAT-ISA138

5.0 DISCUSSION

The fact that VRPML provides a sound solution to the waterfall development model
as well as its enactment gives an encouraging indication of the expressiveness of
VRPML. This can be further supported from the fact that the VRPML solution itself
can be arranged like the waterfall development model. The ability of VRPML to
support such arrangement may be useful to facilitate process understanding. In fact,
similar arrangement may not be possible in other visual PMLs such as Slang [18],
Promenade [19], and APEL [13].

Although the UML activity diagram [20] is non-enactable, it can be compared to
VRPML in terms of its graph representation. Figure 12 depicts an example of a
software process expressed using the UML activity diagram.

The UML activity diagram representation of a software process is simple and
intuitive. Nonetheless, while the UML activity diagram can be used to express activities
in a software process, it lacks features to express the individual role, resources, work
contexts, and the completion of activities. Furthermore, UML activity diagrams do
not have a well-defined executable semantics (i.e. as in VRPML). A known experience
of using UML as a PML can be seen in the design of PROMENADE [19]. Here, the
authors of PROMENADE dismiss the use of activity diagram as a PML, as
PROMENADE mainly relies on class diagrams and object constraint language for
supporting the modeling and enacting of software processes. Furthermore, in doing
so, the authors of PROMENADE extensively extend the UML meta-models, hence,
affecting the standardization of UML. For these reasons, we believe that UML is not
particularly suitable as a PML.

Referring to the VRPML solution to the waterfall development model discussed
in the previous section, multi-instance and meeting activity nodes were sufficient to
construct that process model. Thus, at a glance, removing the general purpose activity

Figure 11 Snapshot of resource allocation activity

JTDIS43D[09]new.pmd 02/15/2007, 16:26138

ENACTING THE WATERFALL SOFTWARE DEVELOPMENT MODEL USING VRPML 139

Figure 12 Example of the UML activity diagram

Project manager Review team Design engineer Test team QA engineer

Schedule and

assign tasks

Monitor

progress
Review design

Modify design

Modify code

Modify test

plan

Modify unit

test package

Test unit

node from the VRPML notation seems beneficial to reduce the language complexity.
Nevertheless, eliminating the general purpose activity node from the notation can
be disadvantageous. As far as readability of a VRPML graph is concerned, it can be
difficult to distinguish whether an activity will be solely performed by one person or
collaboratively by more than one person [3]. Therefore, it is suggested that both
general purpose activity nodes and multi-instance activity nodes are kept as part of
the notation.

Concerning enactment, the fact that VRPML can produce an enactable model is
helpful to facilitate coordination of activities involved in a particular development
cycle. In addition, the support for enactment in VRPML can also be helpful for the
following reasons:

JTDIS43D[09]new.pmd 02/15/2007, 16:26139

KAMAL ZUHAIRI ZAMLI & NOR ASHIDI MAT-ISA140

(1) It provides guidance through the steps to be taken. Such guidance is particularly
useful for junior software engineers.

(2) It can enforce strict procedures and policies. Enforcement of strict procedures
is sometimes important in cases such as developing critical systems where human
lives depend on a piece of software. An example of such a system would be a
car auto-cruise control system. In this case, the software development team in
charge of developing such a system may require its defined steps to be followed
precisely. For example, evolution of the software in such a system must be
strictly controlled. Ad hoc changes must not be permitted because such changes
may introduce bugs which may not be tested and accounted for. Such bugs
could be dangerous especially if they affect the mechanism to control the speed
of the car in auto-cruise.

(3) It permits the automation of tasks. In software engineering, there are many
tasks which can benefit from automation. For example, although tasks such as
compiling and linking source codes look simple, they can be painstakingly dull
especially if the source codes are very large and involves multiple modules.
Such mundane tasks, if automated, can relieve software engineers from tedious
routine work (and reduce potential human errors), and consequently, improve
software engineer's productivity.

6.0 CONCLUSION

In conclusion, this paper has demonstrated the use of the VRPML for modeling and
enacting of software processes. VRPML can be used to model a more realistic software
process problem such as the spiral and the extreme programming model.

REFERENCES
[1] Zamli, K. Z., and N. A. Mat Isa. 2004. A Survey and Analysis of Process Modelling Languages. Malaysia

Journal of Computer Science. 17(2): 68-89.
[2] Jaccheri, M. J., R. Conradi, and B. H. Drynes. 2000. Software Process Technology and Software

Organisations. Proceedings of the 7th European Workshop on Software Process (EWSPT 2000). Kaprun,
Austria. 96-108.

[3] Zamli, K. Z., and P. A. Lee. 2003. Modelling and Enacting Software Processes Using VRPML. Proceedings
of the 10th IEEE Asia-Pacific Conference on Software Engineering. Chiang Mai, Thailand. IEEE CS
Press. 243-252.

[4] Zamli, K. Z., and P. A. Lee. 2001. Taxonomy of Process Modelling Languages. Proceedings of the ACS/
IEEE International Conference on Computer Systems and Applications. Beirut, Lebanon. IEEE 435-437.

[5] Zamli, K. Z. 2001. Process Modelling Languages: A Literature Review. Malaysia Journal of Computer
Science. 14(2): 26-37.

[6] Zamli, K. Z., and P. A. Lee. 2002. Exploiting a Virtual Environment in a Visual PML. Proceedings of the
4th International Conference on Product Focused Software Process Improvements (PROFES02). In M.
Oivo and S. Komi-Sirvio (Eds.). Lecture Notes in Computer Science Volume 2559. Rovaniemi, Finland.
49-62.

[7] Zamli, K. Z. 2003. Supporting Software Processes for Distributed Software Engineering Teams. PhD.
Thesis. School of Computing Science, University of Newcastle upon Tyne, United Kingdom.

JTDIS43D[09]new.pmd 02/15/2007, 16:26140

ENACTING THE WATERFALL SOFTWARE DEVELOPMENT MODEL USING VRPML 141

[8] Zamli, K. Z., and N. A. Mat Isa. 2005. The Computational Model for a Flow-based PML. Proceedings of
the AIDIS International Conference on Applied Computing. Algarve, Portugal. 217-224.

[9] Kellner, M. I., P. H. Feiler, A. Finkelstein, T. Katayama, L. J. Osterweil, M. H. Penedo, and H. D.
Rombach. 1990. Software Process Modelling Example Problem. Proceedings of the 6th International.
Software Process Workshop, Hakodate, Japan.

[10] Sutton, S. Jr., and L. J. Osterweil. 1997. The Design of a Next-Generation Process Language. Proceedings
of the Joint 6th European Software Engineering Conference and the 5th ACM SIGSOFT Symposium on
the Foundation of Software Engineering, Lecture Notes in Computer Science Volume 1301. 142-158.

[11] Wise., A. 1998. Little JIL 1.0 Language Report - Technical Report 98-24, Department of Computer
Science, University of Massachusetts at Amherst, USA.

[12] Belkhatir, N., J. Estublier, and W. Melo. 1994. ADELE-TEMPO: An Environment to Support Process
Modelling and Enaction. In A. Finkelstein, J. Kramer and B. Nuseibeh. (Eds.). Software Process Modelling
and Technology. Taunton, England: Research Studies Press. 187-122.

[13] Dami, S., J. Estublier, and M. Amiour. 1998. APEL: A Graphical Yet Executable Formalism for Process
Modelling. Automated Software Engineering. 5(1):61-96.

[14] Junkermann, G., B. Peuschel, W. Schafer, and S. Wolf. 1994. MERLIN: Supporting Cooperation in
Software Development Through a Knowledge-Based Environment. In Finkelstein, A., Kramer, J. and
Nuseibeh, B. (Eds.). Software Process Modelling and Technology. Taunton, England: Research Studies
Press. 103-129.

[15] Royce, W. W. 1970. Managing the Development of Large Software Systems. Proceedings of IEEE
WESCON. 1-9.

[16] DeBellis, M., and C. Haapala. 1995. User-Centric Software Engineering. IEEE Expert. February 1995: 34-
41.

[17] Sommerville, I. 2001. Software Engineering (Sixth Edition). Addison Wesley.
[18] Bandinelli, S., A. Fuggetta, C. Ghezzi, and L. Lavazza. 1994. SPADE: An Environment for Software

Process Analysis, Design and Enactment. In A. Finkelstein, J. Kramer and B. Nuseibeh. (Eds.). Software
Process Modelling and Technology. Taunton, England: Research Studies Press. 223-247.

[19] Ribo, J. M., and X. Franch. 2000. PROMENADE: A PML Intended to Enhance Standarization,
Expressiveness and Modularity in Software Process Modelling. Research Report LSI-34-R., Llenguatges
I Sistemes Informatics, Politechnical of Catalonia, Spain.

[20] Rumbaugh, J., I. Jacobson, and G. Booch. 1999. The UML Reference Manual. Addison Wesley.

JTDIS43D[09]new.pmd 02/15/2007, 16:26141

