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Graphical abstract 
 

 

Abstract 
 

In this paper, the exact solutions for unsteady free convection flow of rotating second 

grade fluid over an isothermal oscillating vertical plate are investigated. This phenomenon 

is modeled in the form of partial differential equations with initial and boundary conditions. 

Some suitable non dimensional variables are introduced. The corresponding non-

dimensional equations with conditions are solved using Laplace transform technique. 

Exact solutions for velocity and energy profiles are obtained. They are expressed in simple 

forms in terms of exponential and complementary error functions of Gauss. It is found that 

they satisfy governing equations and conditions imposed. Computations are carried out 

and the results are analyzed for various emerging parameters.  
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Abstrak 
 

Dalam kertas kerja ini, penyelesaian tepat bagi aliran olakan bebas tak mantap bagi 

bendalir gred kedua yang berputar di atas sesuhu plat menegak yang dikaji. Model untuk 

fenomena ini dibina dalam bentuk persamaan terbitan separa beserta syarat awal dan 

syarat sempadan. Beberapa pembolehubah tak bermatra yang bersesuaian 

diperkenalkan. Persamaan tak bermatra beserta syarat yang berkaitan diselesaikan 

dengan menggunakan kaedah penjelmaan Laplace. Penyelesaian tepat bagi profil 

halaju dan tenaga telah diperoleh dan diungkapkan secara mudah dalam bentuk 

sebutan eksponen dan fungsi ralat pelengkap Gauss. Didapati bahawa penyelesaian 

yang diperoleh ini memenuhi persamaan menakluk dan semua syarat yang dikenakan.  

Pengiraan telah dijalankan dan semua keputusan dianalisis untuk pelbagai parameter 

yang terlibat. 

   

Kata kunci: Bendalir gred kedua; berputar; aliran olakan bebas; berayun; penjelmaan 

Laplace 
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1.0  INTRODUCTION 
 

The study of fluid flow on rotating plate has drawn the 

interest of researchers in fluid studies such as Manna et 

al [1]. They studied an exact solution for the unsteady 

rotating flow of a viscous fluid. Laplace and inverse 

Laplace transforms have been used to obtain an exact 

solution of the problem. In 2008, Hayat et al [2] 

investigated the rotating flow of a second grade fluid. 

The effect of magnetohydrodynamics (MHD) flow over 
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a porous half space was also considered in this problem. 

But, they used a different analytical method to solve the 

governing equation that is using Fourier Sine transform. 

The derivation of the governing equation for the rotating 

MHD second grade fluid over a porous half space was 

discussed in this study. The existing solution for Newtonian 

fluid has been also deduced as the limiting cases. 

Meanwhile, Tiwari and Ravi [3] studied on rotating 

incompressible second grade fluid over a porous 

medium without considering the effect of MHD flow. The 

analytical solution was obtained using Laplace 

transform technique for the two main cases, which were 

sudden started and constant acceleration flow. Hayat 

et al [4] also worked on the analytical solution for 

shrinking flow of second grade fluid in a rotating frame 

by using Homotopy Analysis Method (HAM). In this 

problem, they considered the fluid to be bounded 

between two porous walls. Comparison between 

viscous fluid and second grade fluid was also discussed 

as the limiting cases. Khan et al [5] investigated the 

exact solution of a rotating second grade fluid over an 

accelerated plate, while considering the effect of MHD 

flow in a porous medium. Laplace transform method has 

been used to solve the governing equation for the cases 

of constant and variable accelerations. 

The study of free convection flow has been discussed 

by several authors in their research. Lahurikar [6] studied 

the free convection flow of rotating viscous fluid over an 

infinite vertical isothermal plate. The exact solution was 

obtained using the Laplace transform method. 

Vijayalakshmi [7] continued the study made by Lahurikar 

[6] but in the presence of thermal radiation effect. 

Laplace transform method has also been used to obtain 

an exact solution as well as skin friction. It was found that, 

the skin friction profiles increased with decreasing 

radiation parameter. In 2014, Samiulhaq et al [8] 

discussed the free convection flow of second grade 

fluid with the effect of ramped wall temperature. The 

dimensionless governing equation has been solved 

analytically by using Laplace transform method. They 

also made the comparison between isothermal and 

ramped wall temperatures where the velocity of fluid is 

greater in the case of isothermal temperature 

compared to ramped wall temperature. In the same 

year, Samiulhaq et al [9] extended the same problem by 

considering the effect of MHD flow in a porous medium.  

Besides that, the study on oscillating plate has attracted 

many researchers such as Khan et al [10] and Mohamad 

et al [11] in presenting their new exact solutions. Khan et 

al [12] studied the exact solution of unsteady 

hydromagnetic flow of viscous fluid in a rotating frame. 

The porous medium was also considered in this problem. 

Two methods, namely Laplace transform and Fourier 

Sine transform have been used to solve the 

dimensionless governing equation of motion. The 

velocity profiles are plotted in real and imaginary parts. 

Recently, Farhad et al [13] produced a new result on 

closed form solution for unsteady free convection flow 

of a second grade fluid over an oscillating vertical plate. 

The governing equation for cases of cosine and sine 

oscillations were solved by using Laplace transform 

method. The comparison between present problem 

solutions with published solution was also presented 

graphically by considering the case of zero Grashof 

number.   

To the best of author’s knowledge, no study has 

been conducted in analyzing the unsteady free 

convection flow of rotating second grade fluids over an 

oscillating plate so far. Therefore, this present 

investigation is attempting to study on the said topic. In 

this problem, the exact solutions are obtained by using 

Laplace transform technique. The exact solutions 

obtained for the velocity and temperature profiles 

satisfy the governing equations and all the imposed 

boundary conditions. The obtained results are plotted to 

see the effects of indispensable flow parameters. 

 

 
 

Figure 1  Physical problem of the study 
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2.0  MATHEMATICAL FORMULATION 
 

Consider the unsteady free convection flows of a 

rotating second grade fluid passing through an 

isothermal vertical plate. The z-axis is taken normal to 

the plate. Initially, both the plate and fluid are at rest 

with constant temperature T∞. At time t = 0+, the plate 

starts motion in its plane with oscillating velocity and 

the fluid starts solid body rotation with constant angular 

velocity   parallel to z-axis. The appropriate 

governing equations are given as 

 
2 3

1
2 2

2 ,
F F F

i F gB T T
t z z t







  
     

     
2

2
,

p

T k T

t c z

 


 
 

 

in which F = u + iv is the complex velocity where u and 

v are its real and imaginary parts, ρ designates the 

density of the fluid, υ is the kinematic viscosity, 1  is the 

second grade parameter, g is the acceleration due to 

gravity, B is the volumetric coefficient of thermal 

expansion, T is the temperature of the fluid, k is the 

thermal conductivity and cp is the specific heat 

capacity of the fluid at constant pressure. The 

appropriate initial and boundary conditions are 

         1 10, cos  or 0, sin ,F t UH t t F t U t  

  , 0 as  ;  0,F z t z t  
 

 ,0 0 ;  0,F z z 
 

and 

 0, ,wT t T
 

 ,  as  ;  0,T z t T z t    

 ,0  ;  0.T z T z 
 

 

Introducing the following dimensionless variables 

* F
F

U
 ,  * U

z z


 ,  
2

* U t
t


 ,    

* 1
1 2U


  ,    *

w

T T
T

T T








. 

 
By using equations in (8), the dimensional equations 

(1)-(7) reduce to dimensionless equations (  notations 

are dropped for the sake of simplicity) 
2 3

2 2
2 ,

F F F
ibF GrT

t z z t


  
   

     
2

2

1
,

Pr

T T

t z

 


   
subjected to the initial and boundary conditions 

         1 10, cos  or 0, sin ,F t H t t F t t  

 
 , 0 as  ;  0,F z t z t  

 
 ,0 0 ;  0,F z z 

 
and 

 0, 1,T t 
  

 , 0 as  ;  0,T z t z t  
 

 ,0 0 ;  0,T z z 
 

where 

2
,b

U




  

2
1

2
,

U





  

 
3

,
wgB T T

Gr
U

 


  

Pr .
pc

k




 
 

where b is rotation parameter,   is second grade 

parameter, Gr is Grashof number, Pr is Prandtl number 

and 1 is frequency of oscillation. The Laplace 

transform method has been used to solve the 

dimensionless governing equations (9) and (10) in q-

domain. Subjected to the initial conditions (13) and 

(15), we have 

 
2

2

2
,

1 1

d F q ib GrT
F

q qdz  

 
   

  
 

   
2 2 2 2

0,   or   0, ,
q

F q F q
q q



 
 

    

 , 0,F q 
 

and 
2

2
Pr 0,

d T
qT

dz
 

 
 

1
0, ,T q

q


 
 , 0,T q 

 
 

where q is the Laplace transform parameter. Here, 

equation (16) is a non-homogenous differential 

equation, which has the solution 

 

     , , , ,h pF z q F z q F z q   

 
and by using characteristics equation, the solution of 

energy equation (10) subjected to the boundary 

conditions (14) is obtained as  

 

   1
, exp Pr .T z q z q

q
 

 

The functions of ( , )hF z q and  ,pF z q  are defined as 

 

  1 1
1 2, exp exph

q a q az z
F z q c c

q q   

    
     
       

 
 

and 

 

 
 

2
1

( , ) exp Pr .
Pr Pr 1

p

Gr
F z q z q

q q q a
  

   
 

 

 

Therefore equation (21) can be written as 

 

    (2) 

    (1) 

(8) 

(9) 

(10) 

(11) 

(13) 

(14) 

(15) 

(16) 

(17) 

(19) 

(20) 

(21) 

(22) 

(3) 

(4) 

(6) 

(7) 

(5) 

(12) 

(18) 

(23) 

(24) 
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 

 
 

1 1
1 2

2
1

, exp exp

exp Pr
Pr Pr 1

q a q az z
F z q c c

q q

Gr
z q

q q q a

   



    
     
       

 
   
 

 

 

where 
1

2a iband 



1

.  In order to find the 

constants c1 and c2, boundary conditions (11) and (12) 

are applied into equation (25), hence we have  

 

 

 

 

1
2 2

2
1

1

, exp

Pr Pr 1

1
exp exp Pr

c

q aq z
F z q

qq

Gr

q q a

q az
z q

q q

 



 

 
   
   


   
 

  
     

    

 

 

and 

 

 

 

 

1
2 2

2
1

1

, exp

Pr Pr 1

1
exp exp Pr .

s

q az
F z q

qq

Gr

q q a

q az
z q

q q



 



 

 
   
   


   
 

  
     

    

 

Note that, the subscripts c and s in equations (26) and 

(27) referred to cosine and sine oscillations of the plate 

and equations (26) and (27) can be expressed as 

 

     1 2, , ,cF z q F z q F z q   

 

and 

 

     3 2, , , .sF z q F z q F z q   

 

Here, we have 

 

  1
1 2 2

, exp ,
q aq z

F z q
qq  

 
  
   

 

 

  1
3 2 2

, exp
q az

F z q
qq



 

 
  
   

 

 

and 

 

 
 

 

2 2
1

1

,
Pr Pr 1

1
exp exp Pr .

Gr
F z q

q q a

q az
z q

q q



 

 
   
 

  
     

    

 

 

Hence, the inverse Laplace transform of equations (28) 

and (29) are obtained as 

 

     1 2, , ,cF z t F z t F z t   

 

and 

 

     3 2, , , .sF z t F z t F z t   

 

In order to find the inverse Laplace transform of 

function F1(z,t) and F3(z,t)  in equations (33) and (34), 

we need to use a convolution theorem that can be 

defined as 

     1 11 12

0

, ,

t

F z t F t s F z s ds   

and 

     3 31 12

0

, ,

t

F z t F t s F z s ds   

where 

 

     11 1cosF t H t t  

and 

 

   31 1sin .F t t  

 

The inverse Laplace transform of F12(z,t) can be 

obtained by using formula of compound function5. 

Therefore, we get 

 

 
 

 
 

2

12

0

2
2

1 2

0

exp
4

,
2

exp 1
              exp 2 .

42

z
u

ut z
F z t du

u u

z a t z
u I a ut du

u ut













 
  
 
  

 
  
 
 





 

 

Then, the inverse Laplace transform of F2(z,t) in 

equations (33) and (34) is  

     2 21 22

0

, ,

t

F z t F t p F z p dp   

where 

     21 2 1
2

sinh exp ,
Pr

Gr
F t m t mt

m
   

and 

 

 (25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 
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 

 

2

22

0

2

2

0 0
1 2

1
, exp

42

1
exp

4

2
2

1 Pr
.

2

t

z z
F z t u du

uu u

z
s uz a uu s

I a us duds

erfc z
t












 
    
 
 

 
    
 

 

 
 
 
 



   

Hence, the solutions for equations (33) and (34) can be 

obtained by substituting equations (37), (38) and (39) 

into equations (35), (36) and (40), therefore we have 

     

 

 

 
  

  

  

 

 

 

1

1 1

22

0 0

1 2

2

2 10

2

2

2 1

2

1 2

, cos exp

1
cos

exp
2 4

2

sinh
exp

Pr exp

1
sinh

exp
4

2 Pr

exp

2

c

t

t

z
F z t H t t

t s
u s

zH t a
z

s u
u

I a us dsdu

m t pGr z

m m t p dp

m t p
u s

zzGr a m t p
u

m

s u

I a us




 


 

 


 





 
   

 

 

 
    

 
 

  
  

  

 

 
    
 
 

  

 



     

0 0 0

2 1

2
0

sinh exp

1 PrPr
2

pt

t

dudsdp

m t p m t p
Gr

dp
m erfc z

t






   

 
 
 
 

  


 

and 

   

 

 

  

  

  

 

 

 




 






 


 





 
   

 

 


 
   
 
 

  
  

  

 

 
    
 
 

  

 



1

1 1

2
2

0 0 1 2

2

2 10

2

2

2 1

2

1 2

, sin exp

1
sin

2
exp 2

4

sinh
exp

Pr exp

1
sinh

exp
4

2 Pr

exp

2

s

t

t

z
F z t t

t s
u sz a

z
s u I a us dsdu

u

m t pGr z

m m t p dp

m t p
u s

zzGr a m t p
u

m

s u

I a us dudsd

     







   

 
 
 
 

  



0 0 0

2 1

2
0

sinh exp

1 PrPr
2

pt

t

p

m t p m t p
Gr

dp
m erfc z

t

 

where  

 


 


   


 

1
2 1 3 4

2

3 3 4
1 2

Pr 1
,  ,  ,  

Pr Pr
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The Laplace inverse of energy equation (22) can be 

written as
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3.0  RESULTS AND DISCUSSION 
 

In this section, the solution of equation (44) is discussed 

numerically in order to investigate the effects of 

parameters such as α, b, Pr and Gr. In this problem, the 

velocity profiles are presented graphically by using 

Mathcad in real part of Fs in Figures 2-5 whereas the 

temperature profiles of equation (45) are shown in 

Figures 6-7 for values of Pr and time parameters t.  

(42) 

(43) 

(44) 

(45) 
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Figure 2  Real velocity profiles for different values of α with Pr 

= 0.71, ω1 = 0.2, Gr = 5.0, b = 0.1, ω1t = π and t = 1.0. 

 

 

 
Figure 3  Real velocity profiles for different values of b with Pr 

= 0.71, ω1 = 0.2, Gr = 5.0, α = 0.2, ω1t = π and t = 1.0. 

 

 
Figure 4  Real velocity profiles for different values of Pr with b 

= 0.1, ω1 = 0.2, Gr = 5.0, α = 0.2, ω1t = π and t = 1.0. 

 

 

 

 
Figure 5  Real velocity profiles for different values of Gr with b 

= 0.1, ω1 = 0.2, Pr = 0.71, α = 0.2, ω1t = π and t = 1.0. 

 
 
 

 
Figure 6  Temperature profiles for different values of Pr with t 

= 1.0.  

 

 

 
Figure 7  Temperature profiles for different values of t with Pr 

= 0.71.  

 

 

Figure 2 shows the effect of second grade parameter 

α on the real part of velocity. It is found that, the 

velocity decreases before increasing when the value 

of α increases. The behavior of rotation parameter b 

can be observed in Figure 3. It is shown that, when b is 

increasing, the velocity will be decreasing. Figure 4 

discusses the behavior of velocity profiles with the 

effect of Pr. When the values of Pr increase, the 
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velocity will decrease. In Figure 5, it is noted that an 

increase in values of Gr will increase the velocity 

profiles. Physically, this scenario is important due to the 

fact that, an increase in Gr will increase the buoyancy 

effect which results in more induced flow. The 

behavior of Prandtl number, Pr, on the temperature 

profile is showed in Figure 6. It is found that the 

temperature decreases with increasing values of Pr. It 

is possible because with the increase in Pr the thermal 

boundary layer thickness will decrease, and hence 

the heat transfers slowly. Lastly, Figure 7 shows the 

variation of temperature for different values of t which 

reveals that the temperature is increasing when t 

increases.  

 

 

4.0  CONCLUSION 
 

In this paper, a mathematical model is presented to 

investigate the free convection flow of rotating 

second grade fluid over an oscillating vertical plate. 

The momentum and energy equations are reduced to 

become dimensionless equations by using non 

dimensional variables. After that, the Laplace 

transform method is used to obtain the exact solutions 

for the problem.  The graphical results are prepared to 

observe the effects of various parameters such as 
second grade parameter α, rotation parameter b, 

Prandtl number parameter Pr, Grashof number 

parameter Gr and time parameter t. From the 

graphical results shown in Figures 2 to 7, it can be 

concluded that, the velocity will increase when the 

values of parameters b and Gr increase, while the 

velocity will decrease with the increase in parameter 

Pr.   
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