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Graphical abstract 
 

 

Abstract 
 

Effects of Newtonian heating and mass diffusion on magnetohydrodynamic free 

convection flow over a vertical plate that applies arbitrary shear stress to the fluid is 

studied. The fluid is considered electrically conducting and passing through a porous 

medium. The influence of thermal radiation in the energy equations is also considered. 

General solutions of the problem are obtained in closed form using the Laplace transform 

technique. They satisfy the governing equations, initial and boundary conditions and can 

set up a huge number of exact solutions correlatives to various fluid motions. The effects 

of various parameters on velocity profiles are shown graphically and discussed in details. 

 

Keywords: Free convection; mass diffusion; Newtonian heating; MHD; shear stress; laplace 

transform 

 

Abstrak 
 

Kesan pemanasan Newtonan dan resapan jisim pada aliran olakan bebas hidrodinamik 

magnet ke atas plat menegak di dalam bendalir yang dikenakan tegasan ricih 

sembarangan dikaji. Bendalir ini dipertimbangkan sebagai pengalir elektrik dan melintasi 

suatu bahantara berliang. Pengaruh sinaran haba di dalam persamaan tenaga juga 

dipertimbangkan. Penyelesaian am dalam bentuk tertutup bagi masalah ini diperoleh 

dengan menggunakan kaedah penjelmaan Laplace. Penyelesaian ini telah memenuhi 

persamaan tertakluk, syarat awal dan syarat sempadan dan boleh menyediakan 

sebilangan besar penyelesaian bagi pelbagai gerakan bendalir yang berkaitan. Kesan 

dari pelbagai parameter ke atas profil halaju dipaparkan secara graf dan dibincangkan 

dengan terperinci. 

 

Kata kunci: Olakan bebas; resapan jisim; pemanasan Newtonan; hidrodinamik magnet; 

tegasan ricih; penjelmaan laplace 
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1.0  INTRODUCTION 

 
Generally, the heat and mass transfer together with free 

convection flows are gradually becoming the main 

focus of attention not only in the field of fluid dynamics 

but also in several other disciplines. Perhaps, it is due to 

their several important applications in various branches 

of engineering and industrial activities such as food 

processing and polymer production, fiber and granular 

insulation, geothermal systems etc [1-3]. 
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However, recently the attention has been diverted 

mostly towards the conjugate boundary condition also 

knows as the Newtonian heating condition [4] Soon 

after the pioneering work of Merkin the Newtonian 

heating condition has been used by several researchers 

including Pop et al. [5], Lesnic et al. [6] 

On the other hand, it is important to bear in mind that 

the no slip boundary condition may not be necessarily 

applicable to flows of polymeric fluids that can slip or 

slide on the boundary. Having in mind such motivation, 

Fetecau et al. [7], for the first time investigated free 

convection flow near a vertical plate that applies 

arbitrary shear stress to the fluid when the thermal 

radiation and porosity effects are taken into 

consideration. 

However, so far no study has been reported in the 

literature which focuses on the free convection flow 

with Newtonian heating past a vertical plate that 

applies arbitrary shear stress to the fluid. Even such 

studies are not available for viscous fluids. Therefore, in 

the present investigation, we study this problem for 

viscous fluid. However, for future research this problem 

can be also extended to other non-Newtonian fluids. 

In fact the main purpose of this paper is to investigate 

the effects of Newtonian heating and mass diffusion on 

MHD free convection flow over a vertical plate that 

applies arbitrary shear stress to the fluid passing through 

a porous medium. General solutions of the problem are 

obtained using the Laplace transform technique. Some 

special cases are extracted from the general solutions. 

The results for velocity profiles are plotted graphically 

and discussed for the embedded flow parameters.  

2.0  FORMULATION OF THE PROBLEM 
Let us consider the unsteady MHD free convection 

flow of an incompressible viscous fluid over an infinite 

vertical plate. The    axis is taken along the vertical plate 

and the x axis is taken normal to the plate. Initially, 

both the plate and fluid are at stationary condition with 

the constant temperatureT
. After time 0t   , the 

plate applies a time dependent shear stress ( )f t to the 

fluid along the x axis. Meanwhile, the temperature of 

the plate is raised to  
wT  . The radiation term is 

considered in the energy equation. However, the 

radiative heat flux is considered to be negligible in the 

x direction in comparison to the y direction. We 

assume that the flow is laminar and the fluid is grey 

absorbing-emitting radiation but no scattering medium. 

Under the usual Boussinesq's approximation and 

neglecting the viscous dissipation, the unsteady free 

convection flow is governed by the following equations 

of momentum, energy and concentration: 
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where 𝑢, 𝑇, 𝐶, 𝜈, 𝜌, 𝑔, 𝛽𝑇 , 𝛽𝐶 , 𝐾, 𝜎, 𝐵0, 𝐶𝑝, 𝑘, 𝑞𝑟 and D are 

velocity of the fluid in  x direction, its temperature and 

concentration, the kinematic viscosity, the constant 

density, the gravitational acceleration, the heat transfer 

coefficient, the mass transfer coefficient, the 

permeability of the porous medium, the electric 

conductivity of the fluid, the applied magnetic field, the 

heat capacity at the constant pressure, the thermal 

conductivity, the radiative heat flux and the mass 

diffusivity. 

The corresponding initial and boundary 

conditions are 
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where  , hs are the coefficient of viscosity, the heat 

transfer parameter for Newtonian heating and the 

function ( )f t satisfies the condition (0) 0.f  The 

radiation heat flux under Rosseland approximation8 is 

given by 
44

,
3
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q
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where   
 and  

Rk   are the Stefan-Boltzmann constant 

and the mean spectral absorption coefficient, 

respectively. Here we limit our analysis to optically thick 

fluids while using Rosseland approximation. It is 

supposed that the temperature difference within the 

flow are sufficiently small, then Equation (5) can be 

linearized by expanding  
4T   into Taylor series about  

,T
 and neglecting higher order terms, we find that 

4 3 44 3 .T T T T       (6) 
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Introducing Equation (6) into Equation (5) and putting 

the obtained result in Equation (2), we get 
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where Pr,  and Nr   are defined by 
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In order to reduce Equations (1), (3) and (7) into their 

non-dimensional forms, we introduce the following 

dimensionless variables 
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By using (9) into Equations (1) and (7) and (3) and 

dropping out the " 


 " notation, it yields 
2

2
,p

u u
GrT GmC K u Mu

t y

 
    

 
 

   (10) 

2

2

Pr ,eff

T T

t y

 


 
    (11) 

2

2

1
,

C C

t Sc y

 


 
    (12) 

where  Pr
1

Pr eff Nr
   is the effective Prandtl number[8] 

and 
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are the Grashof number, modified Grashof number, 

magnetic parameter, Schmidt number and the inverse 

permeability parameter for the porous medium 

respectively. 

The corresponding dimensionless initial and boundary 

conditions are 
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where  
U

hs    is the Newtonian heating parameter. 

 

 

3.0  SOLUTION OF THE PROBLEM 

 
Applying Laplace transform to Equations (10), (11) and 

(12) and using the initial and boundary conditions from 

Equations (14) and then by taking inverse Laplace 

transform the equations for  temperature, concentration 

and velocity are obtained as 
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Here erf(.) and erf (.)c  denote the error function and 

complementary error function of Gauss [7]  
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correspond to the convective and mechanical parts of 

velocity. 

 

 

4.0  SPECIAL CASE 

 
The solutions of velocity obtained in Section 3, are more 

general. Hence, in this section we intend to discuss some 

special cases of the present solutions together with some 

limiting solutions in order to gain more about the physical 

insight of the problem. So, we discuss the following 

important special cases whose technical relevance is 

well-known in the literature. 

In this first case we take the arbitrary function

( ) ( ),f t fH t  where f is a dimensionless constant 

and ( )H   denotes the unit step function. After time  

0,t   the infinite vertical plate applies a constant 

shear stress to the fluid. The convective part of the 

velocity remains unchanged while the mechanical part 

takes the following form 
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for  0, 0pK M  . Moreover, if we take 0M   , 

Equations (19),  reduces to 
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5.0  RESULTS AND DISCUSSION 

 
In this paper exact analysis of heat and mass transfer 

past an infinite vertical plate that applies arbitrary shear 

stress to the fluid with Newtonian heating is investigated. 

More general solutions of the problem are obtained 

using the Laplace transform technique. The graphical 

results of velocity profiles for various flow parameters 

such as magnetic parameter M, wall shear stress f and 

Newtonian heating parameter γ are analyzed. The non-

dimensional velocity profiles for different values of 

magnetic parameter M are shown in Figure 1. 

 
Figure 1  Velocity profiles for different values of M 

 

It is found that the velocity is decreasing with increasing 

values of M. Physically, it is true as increasing values of M 

increase the resistance force. As a result fluid flow tends 

to resist and reducing its velocity. This result agrees well 

with that resulting from [7, Figure. 33]. The influence of 

the wall shear stress f induced by the bounding plate on 

the non- dimensional velocity profiles is shown in Figure 

2. 
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Figure 2 Velocity profiles for for different values of .f  

 

As expected the velocity of fluid decreases with 

increasing .f  Newtonian heating parameter on 

velocity is studied in Figure 3. It is observed that an 

increase in the Newtonian heating parameter increase 

the fluid velocity. 

 

 

6.0  CONCLUSIONS 

 
The effects of Newtonian heating an unsteady MHD free 

convection flow past a vertical plate that applies 

arbitrary shear stress to the fluid through a porous 

medium is presented. The Laplace transform method is 

used to obtain the exact solutions. The effects of various 

parameters on velocity are graphically studied.  

 

The fluid velocity is presented as a sum of mechanical 

and convection parts. One of the special case is 

obtained from general solutions. We concluded that 

fluid velocity is decreasing function with respect to the 

magnetic parameter M and wall shear stress f while 

increasing function with respect to the Newtonian 

heating parameter . 
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