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Graphical abstract 
 

 

 

Abstract 
 

In this paper, the uncontrolled environmental factors are perturbed into the intrinsic growth 

rate factor of deterministic equations of the growth process. The growth process under two 

different laws which are Verhults and Gompertz’s law are considered, thus leading to 

stochastic delay differential equations (SDDEs) of logistic and Gompertzian, respectively. 

Gompertzian deterministic model has been proved to fit well the clinical data of 

cancerous growth, however the performance of stochastic model towards clinical data is 

yet to be confirmed. The prediction quality of logistic and Gompertzian SDDEs are 

evaluating by comparing the simulated results with the clinical data of cervical cancer 

growth. The parameter estimation of stochastic models is computed by using simulated 

maximum likelihood method. We adopt 4-stage stochastic Runge-Kutta to simulate the 

solution of stochastic models.  

 

Keywords: Verhults law; Gompertz law; deterministic model; stochastic delay differential 

equations 

 

Abstrak 
 

Dalam kertas kerja ini, faktor-faktor persekitaran yang tidak terkawal diganggu ke atas 

faktor pertumbuhan kadar intrinsik untuk persamaan berketentuan bagi proses 

pertumbuhan. Proses pertumbuhan di bawah dua hukum yang berbeza iaitu Verhults dan 

Gompertz dipertimbangkan, seterusnya membawa kepada persamaan pembezaan 

stokastik dengan masa lengahan (SDDEs) logistik dan Gompertzian, masing-masing. Model 

Gompertzian berketentuan telah terbukti sesuai untuk data klinikal pertumbuhan kanser, 

bagaimanapun keberkesanan model stokastik terhadap data klinikal masih belum 

disahkan. Kualiti ramalan SDDEs logistik dan Gompertzian dinilai dengan membandingkan 

keputusan simulasi dengan data klinikal pertumbuhan kanser pangkal rahim. Anggaran 

parameter model stokastik dihitung dengan menggunakan kaedah simulasi 

kebolehjadian maksimum. stokastik Runge-Kutta peringkat 4 digunakan untuk 

mensimulasikan penyelesaian model stokastik.    

 

Kata kunci: Hukum Verhults; hukum Gompertz; model berketentuan; persamaan 

pembezaan stokastik dengan masa lengahan 
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1.0  INTRODUCTION 
 

According to the World Health Organization (WHO), 

cervical cancer is the second most common cancer 

afflicting women around the world, with an estimate 

530,000 new cases in each year [1]. The National 

Cancer Society Malaysia (NCSM) reported that there 

were an average of 1500 is diagnosed with cervical 

cancer per year and most of the cases are in a stage 

four of the disease. The death rate due to cervical 

cancer is about 6% among women in Malaysia [2].  

One of the factor to the increased of cancer death is 

the lack of understanding of the biological complexities 

of growth law of cancer cells. Recently, much attention 

has been directed towards growth law of cancer cells 

in order to improve both cancer screening and 

treatment. In fact, a mathematical model has been 

used as an effective tool in understanding the dynamic 

behavior of cancer progression and metastasis 

formation [3].  

Many studies have been performed to determine 

which deterministic model is the best fitting the data for 

cancerous growth [4−8]. In deterministic model, there 

are two mathematical models of cancerous growth 

have been considered. Probably, for most deterministic 

model that can be found in the literature and shown to 

have a good agreement with the cancerous growth 

data is Gompertz model. It has been used in numerous 

studies involving animals [8−12] and human data [11, 

13−15]. In addition, there is another form of deterministic 

model that often used in the description of cancerous 

growth, which is the logistic model [16−19].  

In nature, the real biological system will always 

operate in a highly uncertain environment as a result of 

the noisy behavior of human body such as hormonal 

oscillations, blood pressure variations, respiration, 

variable neural control of muscle activity, enzymatic 

processes, energy requirements, cellular metabolism 

and sympathetic nerve activity that may lead in the 

presence of stochastic effects. The individual 

characterics like body mass index, genes, smoking and 

stress impact may also affect the cancerous growth 

behavior [20]. All these fluctuations can be regulated 

by factors that influence to control cancer cells 

proliferation and differentiation.  

From the previous research, it is well known that delay 

feedback also can play a crucial role in the modeling 

of cancerous growth. According to [21], the delay 

occurs during the time taken from cancerous cells 

undergo mitosis and the change in the proliferation rate 

to stimulate compensatory change in the apoptotic 

cell loss. It is also obvious that the dynamical behavior 

of cancer cell growth rate depends not only on its 

structure at the present time, but also on its structure at 

some previous time [21]. Therefore, mathematical 

model of biological system should include uncontrolled 

factors and time delay that stimulus the cancerous 

growth. This can be modeled by using stochastic delay 

differential equation (SDDE).  

To date, it is believed in the deterministic case, the 

Gompertz and logistic models are frequent used for 

describing cancerous growth. However if the stochastic 

effect and time delay are taken into account it is the 

same case happen for SDDE. Therefore, by extending 

the deterministic model to a stochastic model with time 

delay, the model that adequately explained the 

cancerous growth need to be identified. Thus, it is the 

aimed of this research to compare the performance of 

stochastic Gompertz and logistic models with delay 

feedback in describing the behavior of cancerous 

growth. 

This paper is organised as follows; Section 2 presents 

stochastic models with time delay for cervical cancer 

growth. In Section 3, numerical solution and parameter 

estimation of stochastic models with delay effects are 

performed. Then, the simulated results of the 

mathematical models and clinical data of cancerous 

growth are plotted and also the root mean-square error 

is measured in Section 4. Finally, Section 5 offers a brief 

discussion and some concluding remarks. 

 

 

2.0  MATHEMATICAL MODELS 
 

2.1   Gompertzian Model 

 

The Gompertzian deterministic model was introduced 

by [22] and a thorough analysis of it can be found in [9]. 

The Gompertzian deterministic can be represented by 

mathematical formula 
 

(1) 

 

where ( )A t denotes the area of the cancer cell at time 

t , a  is the intrinsic growth rate of cancer cell which is a 

parameter of the initial mitosis rate and b describes the 

growth rate deceleration factor that relates to the 

antiangiogenesis process. Studies have shown that 

many mathematical models of cancerous growth are 

developed based on the assumption of the growth 

deceleration factors do not change [15, 23, 24] since 

the cancer cells usually have the ability to proliferate 

indefinitely [25].  Equation (1) should include stochastic 

effects or noise since the random fluctuations occur in 

cancerous growths which are not completely 

understood or not feasible to model deterministically. 

The stochastic differential equation is developed, by 

assuming that the intrinsic growth rate parameter varies 

according to 

 

  (2) 

 

where   0  is a diffusion coefficient and the process  

of dW for  0t is a Gaussion white noise process with 

mean zero and variance, t . Hence, yield  

 

                                                     (3) 

 

In such a case, time delay is considered for 

cancerous cell to up regulate rate of production of a 

particular growth factor, then growth factor modify rate 

of cell loss due to apoptosis [21]. Time delay, r  is 
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introduced into the initial mitosis rate and 

antiangiogenesis process. Equation (3) is modified 

which evolves according to the stochastic 

Gompertzian model with delay effects 

 

 (4) 
 

2.2   Logistic Model 

 

The deterministic logistic model has been proposed by 

[26]. It has the form 

 

    (5) 

 

where  A t  represents the area of the tumor at time  t

, a  is the intrinsic growth rate of the tumor which is a 

parameter of initial mitosis rate and b  describes the 

growth rate deceleration factor that relates to the 

antiangiogenic process. In the biological process, the 

mathematical model should include stochastic since 

there are many factors that cannot be controlled in 

human body. Hence, the intrinsic growth factor is 

allowed into equation (5) such that the initial mitosis rate 

parameter 

 

 (6) 

 

where 0   is the diffusion coefficient and the process 

of dW for 0t   is a Gaussion white noise process with 

mean zero and variance, t . Thus, logistic SDE is given 

by 

 

(7) 

 

The stochastic model of cancer growth only depends 

on the structure at the present time. The dynamical 

behavior of cancerous growth not only relies on the 

structure of its growth at some present time but also 

depend on the structure at some previous time [21]. By 

introducing time delay, r  in connection with initial 

mitosis rate and antiangiogenesis process, equation (7) 

has the form 

 

  (8) 

 

Equation (8) is known as stochastic logistic model with 

delay effects. In this work, the performance of models 

(4) and (8) in describing the growth of cervical cancer 

are investigated. Moreover, the clinical data are used 

to determine the model that provides the best fit for 

cancerous growth.  

 

 

3.0  NUMERICAL METHOD 

 
The analytical solution of stochastic models with delay 

effects (4) and (8) are difficult to be solved, thus 

numerical method is used to approximate the strong 

solution of SDDEs. In this paper, we adopt a 4-stage 

stochastic Runge-Kutta (SRK4) to simulate solution of 

Gompertzian (4) and logistic (8) stochastic model with 

time delay. SRK is known as derivative-free method. 

According to [27], the formulation of SRK method for 

SDDE is 
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where 1N  and 2N  are standard normal distribution. 

Thus, s stage SRK is represented as 
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It was [27] who proposed a SRK4 scheme for SDDEs with 

strong order 1.5. The numerical scheme of SRK4 is 

presented in the following tableu form 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The numerical scheme describes above was 

translated into C program and the strong solution of 

SDDE (4) and (8) for cancerous growth is simulated. 

Numerical algorithm is listed below.

 

1. Define the fixed step-size,  , 1n
T

t n
N

     , for 

1,...,n N   . 

2. Define an integer number rN such that the delay 

can be expressed in terms of the step size rr N  . 

3. Define the step, such as the step is step 
T

r
  . 

4. Evaluate initial function phi([step][n-1]) at the initial 

interval ,0t r    . 

5. Print the solution phi([step][n-1]) for ,0t r    . 

6. Evaluate drift function, f . 

7. If 1step  , the drift function isf(y[step][n-

1],phi[step][n-1]) else the drift function is computed 

as f(y[step][n-1],y[step][(n-1)-N_r]). 

 

8. Evaluate diffusion function, g(y[step][n-1]) 

9. Generate a random number generator, randn . 

10. Perform an explicit SRK4 of order 1.5. 

 

 

4.0  PARAMETER ESTIMATION 

 
Natural approach of parameter estimation methods for 

SDDEs was developed for SDDEs with additive noise and 

no delay in diffusion. Parameter estimation of SDDEs 

with multiplicative noise and small delay was 

developed by [28]. In cervical cancerous growth, time 

delay is considerably small [29], hence we adopt a 

method proposed by [28] to estimate the parameter of 

SDDE (4) and (8). The drift and diffusion functions in (4) 

and (8) are expanded using Taylor series around  A t

and only terms up to first order in dt  are kept. SDDE (4) 

and (8) can be reduced to the SDE 
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 By substituting (13) 

to drift and diffusion functions in (12) yields 

 

for Gompertzian model  

 

(14) 

 

 

and for logistic model we have
    

 

 

(15)  

 

 

 

 

The non-parametric simulated maximum likelihood 

approach is used to estimate the unknown parameters 

for stochastic models (14) and (15). 

 

 

5.0  RESULT AND DISCUSSION 

 

This section presents the simulated results of the 

Gompertzian and logistic stochastic model with delay 

effects to the cervical cancer growth. To validate the 

effectiveness of (4) and (8) in describing the 

cancerous growth, the simulated results are compared 

with the clinical data.  

The clinical data was collected from Hospital 

Sultanah Nur Zahirah (HSNZ) Kuala Terengganu. A 48 
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8.921190 001e 2.886771 001e  4.502213 001e

4.022810 002e 3.111000 002e  3.381226 002e

year-old woman diagnosed with cervical cancer and 

without having any treatment from HSNZ was identified. 

The approval letter was obtained from research 

committee of Jabatan Kesihatan Negeri Terengganu 

[reference number: JKNT.TR:600-12Jld 4(25)]. The 

measured variables were time (in months) and area of 

cervical cancer cell (in 2cm ). Initial condition is

  2
0 23 ,A t cm  the area of cervical cancer at time that 

it was first detected. The estimated kinetic parameter 

values of , ,a b  and r  are listed in Table 1.

 

Table 1  The estimated parameters for , ,a b  and r . 

 

 
 

 

 

 

 

 

Figure 1  Simulation results of clinical data, Gompertzian and logistic stochastic model with delay effects 

 

 

Figure 1 shows the results of the clinical data, 

Gompertzian and logistic stochastic model with delay 

effects counterpart for cervical cancer growth. Based 

on Figure 1, it can be seen that the numerical results 

obtained via Gompertzian stochastic model with delay 

effects is more consistent with the actual data 

compared to logistic stochastic model with delay 

effects, hence the cervical cancer growth is 

adequately describe by Gompterzian stochastic model 

with delay effects. From Table 2, Gompertzian model 

with the incorporating of uncontrolled factors  and 

delay effects produce low values of MSE, hence 

indicate good fits. 

 

 

 

 

6.0  CONCLUSION 
 

The numerical solution of Gompertzian stochastic 

model with delay effects for cervical cancer growth 

shows the experimental data with more adequacy as 

indicated by low values of MSE. This study found that the 

cervical cancer growth can be better presented and 

understood via Gompertzian stochastic model with 

delay effects compared to logistic stochastic model 

with delay effects. 
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1  
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1 

Mathematical model MSE 

Gompertzian stochastic model with delay effects 0.0627 

Logistic stochastic  model with delay effects 1.5724 

Table 2   MSE of Gompertzian and logistic stochastic model with delay effects 
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