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Graphical abstract 
 

 

Abstract 
 

Free surface flows in a two-dimensional channel past over a hole is studied using shallow 

water forced Korteweg-de Vries (fKdV) equation. The forcing term of fKdV equation 

represents the hole shaped bottom topography. Froude number (Fr), which represents the 

ratio of flow speed to the wave speed, will also be used in solving fKdV equation. The fKdV 

equation is solved using Homotopy Analysis Method (HAM). HAM is an approximate 

analytical technique used to obtain series of solutions for the nonlinear problems where 

HAM has an auxiliary parameter coto adjust and control the convergence region of the 

series solution. Solitary wave solutions are obtained from the series of solutions of HAM and 

wave flows are observed at particular time. The HAM solution shows the hole shaped 

bottom topography plays an important role in determining the evolution of solitary waves.  

 

Keywords: fKdV equation; homotopy analysis method; approximate analytical solution; 

holed bottom   topography 

 

Abstrak 
 

Aliran permukaan bebas dalam saluran dua dimensi melalui permukaan lubang dikaji 

menggunakan  persamaan air cetek paksaan Korteweg-de Vries (fKdV). Sebutan paksaan 

dalam persamaan fKdV mewakili topografi bahagian bawah berbentuk lubang. Nombor 

Froude (Fr) yang mewakili nisbah kelajuan aliran kepada kelajuan gelombang juga akan 

digunakan. Persamaan fKdV akan diselesaikan dengan menggunakan kaedah analisis 

homotopi (HAM). HAM adalah teknik analisis beranggaran yang digunakan untuk 

mendapatkan siri penyelesaian untuk masalah tidak linear di mana ia mempunyai 

parameter tambahan co, untuk menyelaraskan dan mengawal rantau penumpuan 

penyelesaian siri itu. Penyelesaian gelombang solitari dicerap pada sesuatu masa tertentu 

menggunakan HAM. Penyelesaian HAM menunjukkan bahagian bawah topografi yang 

berbentuk lubang memainkan peranan penting  dalam menentukan evolusi gelombang 

solitari. 

 

Kata kunci: Persamaan fKdV; kaedah analisis homotopi; penyelesaian analisis anggaran; 

topografi  bahagian bawah berlubang 
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1.0  INTRODUCTION 

 
Nonlinear phenomena such as flow of water waves 

play a vital role in the field of fluid dynamics and wave 

propagation which is a branch of applied 

mathematics and physics. In the past decades, many 

researchers have worked on water waves flow over an 

obstacle. The initial work on water waves over flat 

bottom was started by John Scott Russell. The research 

then continued by Boussinesq, Korteweg and De-Vries 

who found a canonical equation that balance the 

nonlinear and dispersive effects[1].Zabusky and Kruskal 

confirmed Russell findings on solitary wave by using 

Korteweg de-Vries (KdV) equation [2]. The invention of 

the Inverse Spectral Transform (IST) to solve KdV 

equation creates great development in the modern 

nonlinear mathematical science [3].KdV equation can 

also be solved analytically using Hirota Method [4], 

Bäcklund transformation [5], Darboux transformation 

[6], and Adomian Decomposition Method [7]. 

KdV equation with a forcing term is established by 

recent studies to describe the physics of a shallow 

layer of fluid subject to external forcing. KdV equation 

with forcing term is known as “forced KdV” (fKdV) 

equation. It is noted that KdV equation is completely 

integrable but when a forcing term is added, the fKdV 

equation is difficult to be integrated [8]. Lee et al. 

found that the forcing term in fKdV can be related to 

a physical meaning and showed that the forcing term 

represents surface pressure and bottom topography 

[9]. Moreover, Camassa & Wu studied solitary waves 

generated by a negative forcing function and 

described the features [10]. Zhang and Zhu presented 

a weakly nonlinear theory for subcritical, transcritical 

and supercritical flows over step topography [11]. 

Zhang and Chwang explored generation of solitary 

waves by bottom topographies using numerical model 

[12]. Furthermore, Grimshaw et al. found flow over a 

localised obstacle resulting in upstream and 

downstream nonlinear wavetrains with unsteady 

undular bores [13].Ee et al. worked on transcritical flow 

over a hole and investigated the effects of the width 

and amplitude of the hole [14]. 

Homotopy Analysis Method (HAM) was introduced 

by Liao in 1992 is an analytical method to solve 

nonlinear partial differential problems [15]. HAM has 

greater flexibility in the selection of a proper set of 

base functions for the solution and a much simpler 

way in the control of the convergence rate and region 

compared to perturbation approach [16-17]. This 

analytical technique does not have restriction of non-

perturbation methods, such as Lyapunov's artificial 

small parameter method and the δ-expansion 

method. The analytical technique also has been 

applied successfully to solve nonlinear differential 

equation for modelling in science, engineering and 

finance [18-19]. Nazari et al. used HAM to obtain the 

solitary wave solution of KdV equation and have 

shown an excellent agreement with the existing exact 

solution [20]. David et al. used HAM to solve fKdV 

model with a specific choice of forcing term [21]. 

In this article, the critical flow over a hole will be 

examined using nonlinear shallow water fKdV model. 

The series solution of HAM demonstrates the flow of 

waves over a hole using fKdV model. This investigation 

aims (a) to describe two types of hole using forcing 

term in the fKdV model and relate it with sea bed 

topography (b) to find an analytic approximate 

solution for fKdV model using HAM (c) to describe the 

physical flow over a hole, and (d) to explain new 

findings. HAM solution is found to be capable to 

demonstrate critical flows of water over a particular 

hole. The changes in the slope of seabed geometry 

are found to generate multi solitary waves. 

 

 

2.0  FORCED KDV AND HAM 
 

2.1  The Shallow Water Forced KdV 

 

The fKdV equation given by Wu [22] is: 
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where ( , )x t refers to the free water surface elevation 

measured from undisturbed water level , ( )f x is the 

external forcing term given by surface air 

pressure, ( )ap x

g
 and topography of rigid bottom, ( )b x . 

The Froude number Fr is the ratio of flow speed U with 

linear long wave speed c. It is also known as critical 

parameter where the value of Fr determines the type 

of critical flows over localised obstacle. When the 

value of Fr is more than 1, then the flow is considered 

supercritical whereby the flow assumed to be 

subcritical when the value of Fr is less than 1. The flow is 

considered transcritical when Fr =1. In this work, the 

forcing term of equation (2.3) is simplified by 

eliminating surface air pressure. Bottom topography is 

modeled in our work here as a hole in the seabed 

geometry by using equation (2.4) which is  

( ) 0.1exp[ ] 1
4

nx
b x    

            
(2.4) 

Where n is constant. Two different types of hole 

analysed where the first one is set at 2n   using 

equation (2.4) where the hole is likely an inverse of bell-

shaped. The second case study of hole is set at 8n   

so that the hole is wider and more flattened at the 

bottom. Figure 1 shows a sea bed topography with a 

hole based on equation 2.4 using different values of n . 

Figure 1(a) and (b) will be discussed respectively in the 

section 3.0. 
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a) 

 
b) 

 
Figure 1 Sea bed geometry with a hole modelled 

using equation (2.4). (a) 2n  (b) 8n   

 

2.2 Approximate Analytical Solution For fKdV Using 

HAM 

 

Rewrite equation 2.3, 

3
2

3

1 ( , ) 3 ( , ) ( , )
[( 1) ]

2

1 ( , ) 1 ( )
0

6 2

x t x t x t
Fr

c t h x

x t b x
h

xx

  



 
  

 

 
  



(2.5) 

 

Consider the constant mean water depth of sea 

is 1h  andwave speed, 9.81c gh  . 

From HAM,  
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as the initial guess and 
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as the auxiliary linear operator satisfying  

1 0[ ]c  (2.9) 

where 1c is constant. 

Considering 

 , 1x t H ,                          (2.10) 
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and the mth-order deformation problem  
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with 

( ,0) 0m x  for 1m                                                   (2.13) 

 

 

3.0  RESULTS AND DISCUSSION 
 

For both case 1 (n=2) and case 2 (n=8), the Froude 

number is fixed at 1 as the main focus of this work is on 

transcritical flow. MATHEMATICA Version 10 was used 

to solve the nonlinear equations. 

 

3.1  Case 1 : n =2 

 

HAM solution of equation (2.1) is obtained at 5th-order 

approximation. The auxiliary parameter oc  in HM 

solution must be determined by plotting the derivatives 

of   for a fixed point of x and time, t. The sketching of 

derivatives of   over fixed point of x is important in 

order to obtain a reliable and applicable solution to 

the configuration of problem. Figure 2 shows the 

sketch of oc - curves at 5th order approximation. 

Liao [15], pointed out that the valid region of oc lies 

on the horizontal line segment (refer Figure 2).Based on 

Figure 2, the admissible convergence interval of HAM 

solution is 4 2oc    . After a detailed computation 

using MATHEMATICA Version 10, oc is determined at -3. 

Each points of oc in the interval of admissible 

convergence will be applied in MATHEMATICA to 

identify whether the chosen oc  could describe the 

flow of water wave over an obstacle or not. The final 

chosen oc is assumed to describe the water wave 

phenomenon. HAM solution when 3,oc   is found at 

5th order approximation is shown in equation (3.2). 

       0 1 5....., , , ..... . ,.x t x t x t x t       (3.1) 

 
Figure 2 The oc - curves according to the 5th order 

approximation. Dashed Point: (0.01,0.01) , Solid Line: 

(0.01,0.01)


 and Dashed Line: (0.01,0.01)


 

 

oc

, ,  
 
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(3.2) 

The following Figure 3 and 4 shows the 2D and 3D plot 

obtained through HAM solution using equation (3.2) 

with an auxiliary parameter 3,oc    respectively. 

 

 
 

Figure 3 2D Plot of HAM solution for equation (2.1) and 

2n  at t = 4. Bottom dotted line: Hole, ( )b x and Upper 

line: water elevation ( ,4)x  

 

 
Figure 4 3D Plot of HAM solution for equation (2.1) 

and 2n  for 3.5 4t  . 

 

Figure 3 shows the flow of waves over a hole at t=4 

and geometry of sea bed shown in the bottom line. 

The bottom topography in Figure 1(a), clearly shows 

that the sea bed topography has a shaped of inverse 

bell. The deepest part of the hole is centric at x=0 

which is 0.1. From the left side (x<0), it is found that the 

depth of hole increasing in a slow manner and once it 

reach centric points (x=0), the depth of hole 

decreasing again over x>0. Figure 3 shows that fKdV 

with a hole sea bed geometry and rises of multi soliton 

solitary waves. It is observed that three solitary waves 

exhibits over the centric hole. The peak each of 

solitary waves exists at the x-coordinate of x=-1.5, x=-

0.25 and x=0.9. Particularly the middle wave reached 

the highest amplitude in the region of deepest hole. 

Figure 4 shows flow of waves over non-flatten 

topography for 3.5 4t  . The flow seems very stable 

and it reaches maximum elevation at the center of 

hole. Wu [22] described the features of negative 

forcing by suggesting that negative forcing results in 

two or more harmonics and local wave excited to a 

relatively quite large amplitude within the negative 

region then settles to a smaller height. Wu’s description 

of negative forcing perfectly agreed with HAM results 

in Figure 3 and 4 as three solutions solitary waves rises 

while the middle waves reach maximum height at the 

bottom of hole and finally the waves settle at the 

edge of the hole geometry. The solution of fKdV 

equation incorporated with the hole topography 

found to be interesting as it exhibits multi solitary wave 

over the hole and the maximum elevation of waves 

occurs at the deepest hole of the seabed. 

 

3.2   Case 2 : n =8 

 

HAM solution of fKdV equation (2.1) is obtained at 4th-

order approximation for 8n  . Figure 5 shows the 

sketch of oc - curves at 4th order approximation.   

 
Figure 5 The oc - curves according to the 5th order 

approximation. Dashed Point: (0.01,0.01) , Solid Line: 

(0.01,0.01)


 and Dashed Line: (0.01,0.01)


 

 

Based on Figure 5, the admissible convergence 

interval of HAM solution is 3 0oc   .Using 

MATHEMATICA Version 10, oc is determined at -0.4. 

Equation (3.4) represents HAM solution at 5th order 

approximation with 0.4.oc    
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The following Figure 6 and 7 shows the 2D and 3D plots 

obtained through HAM solution using equation (3.4) 

with an auxiliary parameter 0.4oc   respectively. 

oc
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 
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Figure 6 2D Plot of HAM solution for equation (2.1) and 

8n  at t = 4. Bottom dotted line: Hole, ( )b x and Upper 

line: water elevation ( ,4)x  

 

 
 

Figure 7 3D Plot of HAM solution for equation (2.1) 

and 8n  for 3.5 4t  . 

 

Figure 6 shows the flow of waves over a hole at t=4. 

The bottom line in Figure 6 represents sea bed 

geometry. Bottom topography is clearly shown in 

Figure 1(b) which the sea floor has deep cut at the 

edge of hole. Furthermore, the base of hole is 

flattened and wider with approximately width 2 units. 

The HAM solution in Figure 6 highlighted that solitary 

waves rises at the both side edge of hole. At the initial 

stage from left hand side, there is a sudden rise of a 

solitary wave when the water nearing edge of hole. 

Then there is a sudden wake of huge waves 

continuously with approximately height of 1 unit. 

Finally, a third solitary wave rise with medium height. It 

is found that the flows of water across the 

region 1 1x   does not show any rise of waves. Then 

again, there is a rise of wave in the medium height in 

the region of1 2x  . Subsequently this situation is 

followed by a huge wave, and finally with a wake of a 

small amplitude solitary wave. The existence of three 

solitary waves that rises in the slopping region of both 

edges of bottom hole looks symmetric. It can be 

observed that the waves exhibits particularly at region 

of 2 1x     are seems reflected at the line of x=0 and 

producing similar waves at right hand side region 

of1 2x  . Figure 7 shows that solutions created at the 

edge of seabed hole and the waves are entirely 

flattened at the base of the hole and over the centric 

point at x=0.  Based on observation of Figures 6 and 7, 

it can be concluded the wave rises when there is a 

change in the slope of the bottom topography. This 

suggests that the waves exhibit in a solitary manner 

when the sea bottom topography has changed over 

slope in the sediment. Ee et al. [14] found that trapped 

waves are only formed over the hole if the hole is very 

wide and wave-trains observed if there is positive or 

negative step. The result of HAM produces good 

agreement with Ee et al. [14] observation as multi 

solitary waves formed over the step down and step up 

of the hole and no trapped waves found as the width 

of the hole is small. 
 

 

4.0  CONCLUSION 
 

In this work, the free surface critical flow over a hole 

has been observed using shallow water forced 

Korteweg-de Vries (fKdV) model. The fKdV equation 

has a physical relation to sea bed geometry. Two 

different types of hole are observed using the forcing 

term of fKdV. The first observed case contains a hole in 

the shape of inverse bell and the second case; 

consider a hole which has flattened base with a sharp 

edge on both sides. The shallow water fKdV equation 

is solved using HAM and approximated solution 

obtained shows a good agreement with flow over a 

hole physically. The results of HAM shows the existence 

of multi solitary waves when the waves flow over the 

hole. HAM solution shows that the waves rise in 

periodical form when there is a change in slope of 

seabed geometry. It is observed that the wave shows 

no action on a flattened base of seabed geometry. 

This emphasis demonstrates that the slope of the 

bottom topography plays a significant role in 

exhibiting the water wave profile. 

 
 

Acknowledgement 
 

The first author is thankful to the Ministry of Education 

(MOE) and Universiti Teknologi MARA, Malaysia (UiTM 

Malaysia) for the educational scholarship. This 

research is partially been funded by the Fundamental 

Research Grant Scheme FRGS R.J1300007809.4F354, 

Universiti Teknologi Malaysia and Ministry of Education, 

Malaysia. . 

 

 

References 
 
[1] Hereman, W. 2011. Shallow Water Waves And Solitary 

Waves. In Mathematics of Complexity and Dynamical 

Systems. Springer New York. 1520-1532. 

[2] Zabusky, N. J., & Kruskal, M. D. 1965. Interaction Of Solitons 

In A Collisionless Plasma And The Recurrence Of Initial 

States. Physical Review Letters. 15(6):240-243. 

[3] Gardner, C. S., Greene, J. M., Kruskal, M. D., & Miura, R. M. 

1967. Method For Solving The Korteweg-Devries Equation. 

Physical Review Letters. 19(19): 1095. 

[4] Hirota, R. 2004. The Direct Method In Soliton Theory. 

Cambridge University Press. 



112        Vincent Daniel, Zainal Abdul Aziz & Faisal Salah / Jurnal Teknologi (Sciences & Engineering) 78: 3–2 (2016) 107–112 

 

 

[5] Wahlquist, H. D., & Estabrook, F. B. 1973. Bäcklund 

Transformation For Solutions Of The Korteweg-De Vries 

Equation. Physical Review Letters. 31(23):1386. 

[6] Matveev, V. B., & Salle, M. A. 1991. Darboux Transformations 

And Solitons. Berlin: Springer-Verlag. 

[7] Wazwaz, A. M. 2001. Construction Of Solitary Wave Solutions 

And Rational Solutions For The Kdv Equation By Adomian 

Decomposition Method. Chaos, Solitons & Fractals. 

12(12):2283-2293. 

[8] Jun-Xiao, Z., & Bo-Ling, G. 2009. Analytic Solutions To Forced 

Kdv Equation. Communications in Theoretical Physics. 52(2): 

279. 

[9] Lee, S. J., Yates, G. T., & Wu, T. Y. 1989. Experiments And 

Analyses Of Upstream-Advancing Solitary Waves 

Generated By Moving Disturbances. Journal of Fluid 

Mechanics. 199: 69-593. 

[10] Camassa, R., & Wu, T. Y. T. 1991. Stability Of Forced Steady 

Solitary Waves. Philosophical Transactions of the Royal 

Society of London. Series A: Physical and Engineering 

Sciences. 337(1648): 429-466. 

[11] Zhang, Y., & Zhu, S. 1997. Subcritical, transcritical and 

supercritical flows over a step. Journal of Fluid 

Mechanics.333:257-271. 

[12] Zhang, D. H., & Chwang, A. T. 2001. Generation Of Solitary 

Waves By Forward-And Backward-Step Bottom Forcing. 

Journal of Fluid Mechanics. 432:341-350. 

[13] Grimshaw, R. H. J., Zhang, D. H., & Chow, K. W. 2009. 

Transcritical flow over a hole. Studies in Applied 

Mathematics. 122(3): 235-248. 

[14] Ee, B. K., Grimshaw, R. H. J., Zhang, D. H., & Chow, K. W. 

2010. Steady Transcritical Flow Over A Hole: Parametric Map 

Of Solutions Of The Forced Korteweg–De Vries Equation. 

Physics of Fluids (1994-present). 22(5): 056602. 

[15] Liao, S. J. 2003. Beyond Perturbation: Introduction To The 

Homotopy Analysis Method. CRC press. 

[16] Liao, S. J. 1992. The Proposed Homotopy Analysis Technique 

For The Solution Of Nonlinear Problems (Doctoral 

dissertation, Ph. D. Thesis, Shanghai Jiao Tong University). 

[17] Liao, S. J. 2009. Notes On The Homotopy Analysis Method: 

Some Definitions And Theorems. Communications In 

Nonlinear Science And Numerical Simulation. 14(4): 983-997. 

[18] Abbasbandy, S. 2007. The Application Of Homotopy 

Analysis Method To Solve A Generalized Hirota–Satsuma 

Coupled Kdv Equation. Physics Letters A. 361(6):478-483. 

[19] Liao, S. J., & Cheung, K. F. 2003. Homotopy Analysis Of 

Nonlinear Progressive Waves In Deep Water. Journal of 

Engineering Mathematics. 45(2):105-116. 

[20] Nazari, M., Salah, F., Aziz, Z. A., & Nilashi, M. 2012. 

Approximate Analytic Solution For The Kdv And Burger 

Equations With The Homotopy Analysis Method. Journal of 

Applied Mathematics. Article ID 878349, 13 pages. 

[21] David, V. D., Nazari, M., Barati, V., Salah, F., & Aziz, Z. A. 

2013. Approximate Analytical Solution for the Forced 

Korteweg-de Vries Equation. Journal of Applied 

Mathematics. Article ID 795818, 9 pages. 

[22] Wu, T. 1987. Generation Of Upstream Advancing Solitons By 

Moving Disturbances. Journal Of Fluid Mechanics. 184: 75-99

 

 

 
 
 
 
 
 
 
 




