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NEW RESULTS ON PARTIAL FRACTION BASED FREQUENCY
WEIGHTED BALANCED TRUNCATION TECHNIQUE FOR
DISCRETE-TIME SYSTEM

SHAFISHUHAZA SAHLAN" & VICTOR SREERAM*

Abstract. In this paper, we present some new results on frequency weighted model reduction
technique based on partial fraction expansion idea in discrete-time system. The reduced order
models of the newly proposed method obtained by direct truncation, produces lower errors when
compared to existing techniques. The new method is guaranteed to be stable even for double
sided weightings. A simple and easily computable a priori error bound is also derived. Numerical
examples with comparisons to the existing techniques show the effectiveness of the proposed
method.
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Abstrak. Artikel in membentangkan keputusan baru bagi kaedah pengurangan model
frekuensi tertimbang berdasarkan kaedah pengembangan fraksi separa didalam masa diskrit.
Rangka pengurangan model bagi kaedah baru yang dicadangkan diperolehi melalur pemotongan
langsung, menghasilkan kesalahan yang lebih rendah berbanding kaedah-kaedah lain yang sudah
ada. Kaedah baru ini djamin akan stabil bahkan untuk tertimbang bersisi ganda. Sebuah batas
kesalahan a priori yang mudah dan senang dihitung juga diperoleh. Contoh berangka dengan
perbandingan dengan teknik yang ada menunjukkan keberkesanan kaedah yang dicadangkan

Keywords:  Rangka pengurangan model; batas kesalahan; kaedah pengembangan fraksi spara

1.0 INTRODUCTION

The concept of approximating a linear system into a more manageable order
without jeopardizing the properties of the original dynamical system has attracted
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many researchers [9], [16], [1]. Moore [9] in particular has introduced the well-
known technique, balanced truncation technique. Enns [3] then presented a
scheme for reducing a stable high order model with frequency weighting based on
[9]. In Enns’ method, when using input or output weighting, the reduced order
system will yield stable reduced order model. However, when both weightings are
present, the stability of the reduced order system 1s not guaranteed. Lin and Chiu
[8] has since proposed a different method to guarantee stability even when both
weightings are present under certain assumptions le. using strictly proper
functions and no occurrence of pole-zero cancellations when forming the
augmented system. Wang et al [15] has also solved the stability problem of Enns’
for two-sided case by introducing fictitious mput and output matrices

Another group of methods which 1s based on partial fraction expansion was
originally proposed by [7]. Inspired by this, Al-Saggaf and Fanklin [1] proposed a
technique for frequency weighted model reduction. In their technique, the
numerator of the reduced order model is calculated by forcing the reduction error
to have zeros at the poles of the weighting function. Several limitations on [1]
restrict its application. Sreeram and Anderson [12] generalized [1] by including
double-sided weightings but only capable in handling strictly proper weighting
functions. Ghafoor and Sreeram [6] then proposed a parameterized method
which combines the advantages of the un-weighted balancing technique [9] and
Sreeram and Anderson’s [12] method. This newly proposed method can
conveniently handle both proper and strictly proper weighting functions but it 1s an
ad-hoc method. To overcome this, [10] has proposed a new improved frequency
weighted balanced truncation technique based on partial fraction expansion which
offers the same advantages of [6] but with clear theoretical justification and yield
better results when compared to Enns’ [3] and Ghafoor and Sreeram’s [6]
method.

In this paper, we present the modification of [10] in discrete-ime domain. The
proposed method has the following advantages: (1) guaranteed stability of models
i case of double-sided weightings (11) simple, elegant and easily computable error
bound (1) extendable to frequency weighted optimal Hankel norm
approximations (iv) choice of free parameters to reduce the weighted error and
error bounds and (v) easily applicable to controller reduction problem. Numerical
example shows that by properly choosing the variable parameters of a» and f», a
lower error can be obtained.
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2.0 FREQUENCY WEIGHTED MODEL REDUCTION IN
DISCRETE-TIME

To have a better understanding of frequency weighted model reduction, let us first
consider a minimal realization of G, (z) = {A 0 Bp.Cp,D D} as shown below:

6,()-| 2| 22|

Cp | Dy

where z1s the complex Ztransform variable. The controllability and observability
Gramians P, and @, of the original system satisfy the following Lyapunov
equations:

A,P,A} — P, +B,B] =0

T r ()
ApOp A, —0p + DD, =0

. . . . _ Ayp | Byp
Given the transfer functions of the input weight V', (Z) =l and the
VD VD

Ay | Byp
Cop | Dyp
G, (z) =W, (2)G, (2)V,(z) is then given as following:

output weight W, (Z) = { } , the augmented system of

@)
AWD BWDCD BWDDDCVD BWDDDDVD
0 AD BDCVD BDDVD
0 0 A, B,,
CVWD DWDCD DWDDDCVD DWDDDDVD

The controllability and observability Gramians of the augmented system are then

given by ISD and @D as following:
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By Pa P or 0 0
PD = P1]2- PD P23 ) QD = Q1T2 QD Q23 (3)
By Py P O, 0 O

which satisfy the Lyapunov equations below:

ZDFD g_PD+§D DT:O (4)
ZgQDZD _QD +(_jggp =0 (5)

2.1 ENNS’ TECHNIQUE

Enns was the first to introduce frequency weighted model reduction. In Enns [3],
the technique was first utilized by expanding the (2,9 block of equations (4) and
(5) for controllability and observability Gramians respectively. This will yield the
following pair of equations for — P,, and — Q.

ADPDADT - PD = _BDCVDPDTIZAg - APDlZCIZDBg
_BDCVDPVDCIZDBDT - BDDVDDIZDBg (b)
=-P

DE

ADTQDAD - QD = _C[T)B;/DQ:L];AD - AngzBWDCD
_CgBVYI;DQIZ _CgDnT/DDWDCD (7)
=—0p

The matrices P, and @, in equations (6) and (7) are then diagonalize
simultaneously to obtain

TP, 7" =T"Q,T =diag(c,,0,,..,0,,0,.,,..0,)
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where o, >0, >...> 0, >0.The original system is then transformed using the

similarity transformation 7 and partitioned as below:

T74,T |T7B, |
CDT | DD B

and the dimension of 4, 1s equal to the dimension of diag(al,cr2 oo O, )

Applying Enn’s method, the reduced order model G, is then given by

4, | B : . : iy
G, (2)=]= " |.Essentially, Enns’ method is based on diagonalizing
C, | D,
simultaneously the solutions of Lyapunov equations as given in equations (4) and
(). However, Enns’ method cannot guarantee the stability of reduced order

models as P,, and Q,, may be indefinite.

2.2 LIN & CHIU’S TECHNIQUE [8]

A subsequent technique following Enns’ 1s Lin and Chiu’s [8] and the commonly
referred technique, its generalization in [13]. The generalized Lin and Chiu’s
technique [13] differs from Enns’ technique as it simultaneously diagonalizes the
Gramians P,., and Q,, instead of diagonalizing P, and Q,, as given below:

PLCD =PD _Pzapr;lng
QLCD = QD - Q1T2QV;IQ12

The new Gramians now satisfy the following pair of Lyapunov equations

ADPLCDAE - PLCD + BLCDBLTCD =0
A;QLCDAD - QLCD + CLTCDCLCD =0

where B, ., and C,, are given as
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B,p = (ADP12PV_l+BDCVD _})121PV_1AVD)PV1/2:|
L BDDVD _PlZPV_ BVD

Coep = I:’LV/Z(QV;}QIZAD + BWDCD; Ay, V;/lQlZ )}
L DWDCD - CWD v le

Assuming that there are no pole-zero cancellations between the weights and the
original system, the realization 1s minimal and Lin and Chiu’s technique yields
stable models for two-sided frequency weighting system.

2.3 WANGET AL’S TECHNIQUE [8]

Another commonly referred method following Enns’ 1s proposed by Wang et al
[15]. In this technique, the stability of the reduced order model is guaranteed by

making the matrices P, and Q,, positive (semi) definite. [9] proposes that the
new controllability (2, ) and observability (Q,,,) Gramians are diagonalized, as

obtained from the solution of the following pair of Lyapunov equations:

ADPDWAg — Py + BDWEBgWE =0
A;QDWAD - QDW + CgWECDWE =0

The matrices B, and C,,, i the above Lyapunov equations are fictitious

1/2
| and

mput and output matrices which are determined from B,,, =U |SWE
CDWE = |RWE

value decomposition of matrices, P, =US,,U" and Q,, =VR,,.V" . Since

|l/2VT where U,S,,,R,; and V" are obtained from the singular

PDW < BDWEBgWE > 01 QDW < CgWECDWE 2 O

and {4,), Bz, Cpyi } is minimal, stability of the reduced order model in case of

two-sided frequency weighting 1s guaranteed.
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2.4 PARTIAL FRACTION EXPANSION TECHNIQUE

In the partial fraction expansion technique of Sreeram and Anderson’s [12],
mstead of diagonalizing the controllability Gramians P, and the observability

Gramian Q,, they diagonalized P, and Oy, as shown below:
-1 T _ T Ny
Tor PoppTpp = TppQpppTpp =X = diag(o,,0,,...,0,)
where o, >0, >...> 0, and

Pop = Py, _P23X;F _XPFP2€ +XPFPVDX1€F
O e O YPTFQsz +YPTFQWDYPF

The matrices X ,. and Y, satsty the following equations

ADXPF _XPFAVD +BDCVD =0
YPFAD _AWDYPF +BWDCD =0

and the Gramians P, and Q,, satisfy the following Lyapunov equations

ADPPFAg _PPF +BPFDBIZ;FD =0
Ag QPF AD - QPF + CgFD CPFD =0

where B, and Cpp, are given as shown below

Bprp = BpDyp — X pe By,
CPFD = DWDCD - CWDY PF

Since the realization {AD,B pip C PFD} 1s minimal and the Gramians diagonalized
satisfy the Lyapunov equations, the partial fraction technique yields stable model
mn the case of double-sided weightings.
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2.5 GHAFOOR AND SREERAM’S PARAMETERIZED PARTIAL
FRACTION EXPANSION METHOD

Ghafoor and Sreeram [6] then proposed a new frequency weighted balanced
reduction technique which 1s based on parameterized combination of the un-
weighted technique [9] and the partial fraction expansion technique [12]. In this
method, instead of simultaneously diagonalizing P,. and Q,., P, and Oy, are
simultaneously diagonalized

P, =P, +a’P,,

QYD = QD + ﬂZQPF

where o and g are real constants. The Gramians P,, and Q,, satisly equation

(15) respectively while Gramians P,,, and Q,,, satsfy the following equations:

ADPXDAg - PXD + BXDB)T(D =0
ALT)QYDAD - PYD + CYTDCYD =0

where B, and C,, are fictiious input and output matrices and are given as

below:
BXD = [aBD (BDDVD _XPFBVD)]
. _{ ACov }
w =
(DWDCD _CWDYPF)
a>0and £>0.

Although the results yield better than Enn’s technique, it 1s an ad-hoc method
without a proper theoretical explanation on how the new system {4,,, B,,,,C,,} 1s

obtained.

3.0 RESULTS AND DISCUSSIONS

This section explores the new proposed frequency weighted balanced truncation
technique which is based on the un-weighted balanced truncation technique [9]
and the partial fraction expansion technique [6]. In [10], a frequency weighted
model
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Let us assume the system described in equations (2), (3) and (4). Let TD be the

I -Y, O
transformation matrix as defined below: T, ={0 I X,
0 0 1

Let X, and Y, be defined from the following equation

AD)?D _)?DAVD +BDCVD =0
YDAD _AWDYD + BWDCD =0

Transforming the augmented realization of the system (_;D (z) wusing the

transformation matrix T, - will yield the following:

. TD_lZD _D | _[;lED Aprp | Bpep
GPFD (Z) = ‘ =
B CpTp D, Comp | Dppp
Ayp Xpo Xpis X (12)
_ 0 Ay Xpy X by
0 0 Ay, By,
_CWD Y, Yy, | DypDpDyyp

where the system matrix yield

XD12 = AD)_(D _)?DAVD +BDCVD
XD13 = YDAD _AWDYD + BWDCD
XD23 = BWDCDXD _YDADXD + BWDDDCVD + YDBDCVD _YDXDAVD

and from the mput and output matrix, yield

Xy = BypDpDyy +Y,B, Dy, +Y, X By,
Xp, =Bp Dy _)?DBVD

Yir = DypCp = Cyp Y

Yy, = DWDCD)?D + Dy D Cyp
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Note that the system matrix 1s block diagonalized by the similarity
transformation 15

Consider the discrete original signal G, (z) and the discrete input and output
weights 7, (z) and W,(z), the augmented system is then given by G,(z) as
shown m equation (2). In the proposed method, the matrices

X121 X p13s X pagi Y1 Ypps Xy and X, of equation (12) are referred. The

matrices X p and I7D from the transformation matrix 7_11) above are obtained by

solving the following equations:

XDlZ = YDAD _AWDYD +BWDCD =0
XD23 = ADXD _XDAVD +BDCVD =0

By factorizing the matrices X ,,,,Y,,, X ,,; and X, as shown below,

CD
XDlZZ[BWD AWD 1] —Ip
YDAD

= EWDCD

the new fictitious input and output matrices of the new original system B, p and

C, respectively, as well as the new fictiious matrices for the new weights,

C,,,D,, and B, ,D,,,, are defined.
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Algorithm The algorithm for the proposed method is as given below:

1.

3.

AD BD:|

Given a stable, original minimal realization G, (z) =
CD DD

- o : - ~ o - : 3 N 3 3 — AVD BVD -
and minimal realizations of the weights V', (z) = and
CVD DVD

A B
WD (Z) — |: WD wD
Cup | Dyp
)7DAD - AWDYD +B,,Cp, =0
AD)?D - )?DAVD +B,Cye =0
Compute the fictiious mput and output matrices

}, compute X, and Y,

B, and C,
Cp
ED:[BD -X, AD)?D]and(_sz -Y,
?DAD

Solve the Lyapunov equations for Fm and QDl
ADFMA; - FDl + EDELZ; =0
AngAD - QDl + (TDT(TD =0
Calculate the transformation matrix 7, which balanced
{4, ED Cp}
TD_lPDlTD_T = TDTQDlTD
=diag(c,,0,,...0,)
i=12,...,n-1.
Compute the frequency weighted balanced realization and the
Apyy | By
Cn | D|

where o, 20,,,

reduced order model is given as G, (z) = {

Remark Since the realizaton G, (z)= {A 0By, Cp, D} 1s mimmal, then the
reduced order model G, (z) = {A p11 Bp1r Cogs D} 15 stable for both single-sided
and double-sided weightings.

Theorem Let G,(z) be a proper, stable transfer function of order n and

W,(z) and V,(z) be the proper weighting functions. If G,,(z) is a proper,
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stable reduced-order model obtained using the proposed technique, then the
following error bound holds:

o (NG (2) = G W ()], <70 D0,

i=r+l

where y, = 2||VD (Z)”w”WD (Z)”w

Proof The proof is similar to [10] hence omitted.

3.0 LIMITATIONS

Even though the frequency weighted errors obtained using the new methods are
generally lower than Enns’ and Ghafoor and Sreeram’s method, the technique 1s
realization dependant. For different realization of input and output weights,
different reduced order models and weighted approximation errors are obtained.
Hence, to obtain the optimum weighted errors, simple transformation a»/ for the
mput and 8,/ for the output weight are utilized. By varying the scalars a» and 8»
and, one can easily reduce the weighted approximation errors

4.0 EXAMPLE

In this section, an example of a stable 5" order system extracted from [5] is

utilized. In [5], it was shown that Ghafoor and Sreeram’s method [6] compares
well to Enns’ technique [3]. Here the author compares the newly proposed
method to [6] as well as [3].
Consider the stable system

[0.0010 -0.6334 0.0015 -0.0557 0.0001] 1

1 0 0 0 0 0

4,=| 0 1 0 0 0 |B,=|0
0 0 1 0 0 0

0 0 0 1 0 | 0]

C, =[4.951 9.1676 9.7045 4.7473 0.951] D, =[]

with stable imnput and output weights as given below:
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-1.1619 -0.6959 -0.1378 |1
1 0 0 0
0 1 0 0
1.8081 2.2444 0.8325 |1

Vip(2) =Wy (2) =

Table 1 Error and error bounds of the proposed technique compared to [3] and [6]

Ghafoor and Sreeram’s

Method Proposed Method
Order Enns
a| 8 Lrror Lrror Bound | a» 8, Lrror ot
Bound

6| 6 | 118.8405 244.2878 200 | 200 | 117.0057 | 219.4063

1 119.01751 9 | 9 | 117.9744 230.5783 100 | 200 | 117.0082 | 219.4876

1|10 | 121.7365 461.6540

Cr

100 | 118.0022 | 234.3603

4| 4 | 41.7730 83.2099 3.2 | 3.2 | 39.8043 125.5738

2 43.8173 | 6 | 6 | 41.4428 74.4676 36.8 | 3.2 | 40.4129 92.0167

31| 3 42.9521 94.5191 19.5 | 19.5 | 41.4418 68.6829

3] 3] 57510 15.0555 17 | 31 | 5.8833 15.0387
3 67194 | 4| 4 | 57352 132190 | 16.9] 3.2 | 5.8894 14.8213
2| 3 | 59047 17.2472 1 26.9 ] 269 | 5.9400 10.7979
1] 2 [ 03411 1.7425 1.2 [ 189 0.3193 1.8770
1 03706 |21 2| 03348 1.2368 88 | 1.3 | 0.3201 1.7557
50 1] 03219 13938 | 389 | 1.1 | 0.3210 2.0027

From Table 1, by varying the free parameters a» and 8., it 1s possible to obtain
consistently lower weighted errors for the proposed method compared to Enns’s
technique [3], while it compares well to Ghafoor and Sreeram’s technique [6].
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5.0 CONCLUSION

An 1mproved frequency weighted balanced truncation based on partial fraction
expansion in discrete-time domain 1s presented. The method has the following
advantages: (1) Guaranteed stability in case of double-sided weightings (11) two sets
of easily computable a priori error bounds. The only disadvantage of the
technique 1s it 1s dependant on the realization of the weights. However, this
property can be manipulated to obtain the lowest error of the reduced order
model. This 1s done by varying the realization of the weights. The proposed
method can be easily extended to optimal Hankel norm approximations.
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