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^Äëíê~Åí. In this paper, we present some new results on frequency weighted model reduction 
technique based on partial fraction expansion idea in discrete-time system. The reduced order 
models of the newly proposed method obtained by direct truncation, produces lower errors when 
compared to existing techniques. The new method is guaranteed to be stable even for double 
sided weightings. A simple and easily computable a priori error bound is also derived. Numerical 
examples with comparisons to the existing techniques show the effectiveness of the proposed 
method. 
 

hÉóïçêÇëW Model order reductions; error bounds; partial fraction expansion 

 
^Äëíê~âK  Artikel in membentangkan keputusan baru bagi kaedah pengurangan model 
frekuensi tertimbang berdasarkan kaedah pengembangan fraksi separa didalam masa diskrit. 
Rangka pengurangan model bagi kaedah baru yang dicadangkan diperolehi melalui pemotongan 
langsung, menghasilkan kesalahan yang lebih rendah berbanding kaedah-kaedah lain yang sudah 
ada. Kaedah baru ini dijamin akan stabil bahkan untuk tertimbang bersisi ganda. Sebuah batas 
kesalahan a priori yang mudah dan senang dihitung juga diperoleh. Contoh berangka dengan 
perbandingan dengan teknik yang ada menunjukkan keberkesanan kaedah yang dicadangkan 

 

hÉóïçêÇëW  Rangka pengurangan model; batas kesalahan; kaedah pengembangan fraksi spara 
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The concept of approximating a linear system into a more manageable order 
without jeopardizing the properties of the original dynamical system has attracted  
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many researchers [9], [16], [1]. Moore [9] in particular has introduced the well-
known technique, balanced truncation technique. Enns [3] then presented a 
scheme for reducing a stable high order model with frequency weighting based on 
[9]. In Enns’ method, when using input or output weighting, the reduced order 
system will yield stable reduced order model. However, when both weightings are 
present, the stability of the reduced order system is not guaranteed. Lin and Chiu 
[8] has since proposed a different method to guarantee stability even when both 
weightings are present under certain assumptions i.e. using strictly proper 
functions and no occurrence of pole-zero cancellations when forming the 
augmented system. Wang et al [15] has also solved the stability problem of Enns’ 
for two-sided case by introducing fictitious input and output matrices 
  Another group of methods which is based on partial fraction expansion was 
originally proposed by [7]. Inspired by this, Al-Saggaf and Fanklin [1] proposed a 
technique for frequency weighted model reduction. In their technique, the 
numerator of the reduced order model is calculated by forcing the reduction error 
to have zeros at the poles of the weighting function. Several limitations on [1] 
restrict its application. Sreeram and Anderson [12] generalized [1] by including 
double-sided weightings but only capable in handling strictly proper weighting 
functions. Ghafoor and Sreeram [6] then proposed a parameterized method 
which combines the advantages of the un-weighted balancing technique [9] and 
Sreeram and Anderson’s [12] method. This newly proposed method can 
conveniently handle both proper and strictly proper weighting functions but it is an 
ad-hoc method. To overcome this, [10] has proposed a new improved frequency 
weighted balanced truncation technique based on partial fraction expansion  which 
offers the same advantages of [6] but with clear theoretical justification and yield 
better results when compared to Enns’ [3] and Ghafoor and Sreeram’s [6] 
method. 
  In this paper, we present the modification of [10] in discrete-time domain. The 
proposed method has the following advantages: (i) guaranteed stability of models 
in case of double-sided weightings (ii) simple, elegant and easily computable error 
bound (iii) extendable to frequency weighted optimal Hankel norm 
approximations (iv) choice of free parameters to reduce the weighted error and 
error bounds and (v) easily applicable to controller reduction problem. Numerical 
example shows that by properly choosing the variable parameters of αD and βD, a 
lower error can be obtained.  
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To have a better understanding of frequency weighted model reduction, let us first 
consider a minimal realization of  { }DDDDD DCBAzG ,,,)( =  as shown below: 
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where z is the complex Z-transform variable. The controllability and observability 
Gramians DP  and DQ  of the original system satisfy the following Lyapunov 
equations: 
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 (2)                     

The controllability and observability Gramians of the augmented system are then 
given by DP  and DQ  as following: 
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which satisfy the Lyapunov equations below: 
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Enns was the first to introduce frequency weighted model reduction. In Enns [3], 
the technique was first utilized by expanding the (2,2) block of equations (4) and 
(5) for controllability and observability Gramians respectively. This will yield the 
following pair of equations for DEP−  and DEQ− .  
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The matrices DP  and DQ  in equations (6) and (7) are then diagonalize 
simultaneously to obtain 
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where .0...21 >>>> nσσσ The original system is then transformed using the 
similarity transformation T  and partitioned as below:  
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and the dimension of rA  is equal to the dimension of ( )rdiag σσσ ,...,, 21 .  

  Applying Enn’s method, the reduced order model rG  is then given by 
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zG )( .Essentially, Enns’ method is based on diagonalizing 

simultaneously the solutions of Lyapunov equations as given in equations (4) and 
(5). However, Enns’ method cannot guarantee the stability of reduced order 
models as DEP  and EDQ  may be indefinite. 
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A subsequent technique following Enns’ is Lin and Chiu’s [8] and the commonly 
referred technique, its generalization in [13]. The generalized Lin and Chiu’s 
technique [13] differs from Enns’ technique as it simultaneously diagonalizes the 
Gramians LCDP  and LCDQ  instead of diagonalizing DP  and DQ  as given below: 
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The new Gramians now satisfy the following pair of Lyapunov equations  
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where LCDB  and LCDC  are given as  
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Assuming that there are no pole-zero cancellations between the weights and the 
original system, the realization is minimal and Lin and Chiu’s technique yields 
stable models for two-sided frequency weighting system. 
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Another commonly referred method following Enns’ is proposed by Wang et al 
[15]. In this technique, the stability of the reduced order model is guaranteed by 
making the matrices DEP  and DEQ  positive (semi) definite. [9] proposes that the 
new controllability )( DWP  and observability )( DWQ  Gramians are diagonalized, as 
obtained from the solution of the following pair of Lyapunov equations: 
 

0  

0

=+−

=+−

DWE
T
DWEDWDDW

T
D

T
DWEDWEDW

T
DDWD

CCQAQA

BBPAPA
                                                            (9) 

 

The matrices DWEB  and DWEC  in the above Lyapunov equations are fictitious 

input and output matrices which are determined from 
2/1

WEDWE SUB =  and 
T

WEDWE VRC 2/1=  where WEWE RSU ,,  and TV  are obtained from the singular 

value decomposition of matrices, T
WEDW UUSP = and T

WEDW VVRQ = . Since 
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and { }DWEDWED CBA ,,  is minimal, stability of the reduced order model in case of 
two-sided frequency weighting is guaranteed. 
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In the partial fraction expansion technique of Sreeram and Anderson’s [12], 
instead of diagonalizing the controllability Gramians DP  and the observability 

Gramian DQ , they diagonalized PFDP  and PFDQ  as shown below: 
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The matrices PFX  and PFY  satisfy the following equations 
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and the Gramians PFP  and PFQ  satisfy the following Lyapunov equations 
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where PFDB  and PFDC  are given as shown below 
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Since the realization { }PFDPFDD CBA ,,  is minimal and the Gramians diagonalized 
satisfy the Lyapunov equations, the partial fraction technique yields stable model 
in the case of double-sided weightings. 
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Ghafoor and Sreeram [6] then proposed a new frequency weighted balanced 
reduction technique which is based on parameterized combination of the un-
weighted technique [9] and the partial fraction expansion technique [12]. In this 
method, instead of simultaneously diagonalizing PFP and PFQ , XDP  and YDQ  are 
simultaneously diagonalized 
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where α  and β  are real constants. The Gramians PFP  and PFQ  satisfy equation 

(15) respectively while Gramians XDP  and YDQ  satisfy the following equations: 
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where XDB  and YDC  are fictitious input and output matrices and are given as 
below: 
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0>α  and 0>β . 
Although the results yield better than Enn’s technique, it is an ad-hoc method 
without a proper theoretical explanation on how the new system },,{ YDXDD CBA  is 
obtained. 
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This section explores the new proposed frequency weighted balanced truncation 
technique which is based on the un-weighted balanced truncation technique [9] 
and the partial fraction expansion technique [6]. In [10], a frequency weighted 
model  
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Let us assume the system described in equations (2), (3) and (4). Let DT  be the 

transformation matrix as defined below: 
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Let DX  and DY  be defined from the following equation 
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Transforming the augmented realization of the system )(zGD  using the 

transformation matrix DT ,  will yield the following: 
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Note that the system matrix is block diagonalized by the similarity 

transformation DT . 

  Consider the discrete original signal )(zGD  and the discrete input and output 

weights )(zVD  and )(zWD , the augmented system is then given by )(zGD  as 
shown in equation (2). In the proposed method, the matrices 

121231312 ,,,,, DDDDDD XYYXXX  and 2DX  of equation (12) are referred. The 

matrices DX  and DY  from the transformation matrix DT  above are obtained by 
solving the following equations: 
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By factorizing the matrices 23112 ,, DDD XYX  and 2DX  as shown below, 

[ ] DWD

DD

D

D

WDWDD CB
AY
Y
C

IABX =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=  12  

[ ] DWD

DD

D

D

WDWDD CD
AY
Y
C

CDY       0          1 =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=  

[ ] VDDVD

VD

DDDDD CB
I
A
C

XAXBX =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=  23  

[ ] VDDVD

VD

DDDDD DBB
D

XAXBX =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

0
 2  

the new fictitious input and output matrices of the new original system DB  and 

DC  respectively, as well as the new fictitious matrices for the new weights, 

VDVD DC ,  and ,, WDWD DB  are defined. 
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^äÖçêáíÜã The algorithm for the proposed method is as given below: 
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oÉã~êâ Since the realization { }DCBAzG DDDD ,,,)( =  is minimal, then the 
reduced order model { }DCBAzG DDDRD ,,,)( 1111=   is stable for both single-sided 
and double-sided weightings. 
 
qÜÉçêÉã Let )(zGD  be a proper, stable transfer function of order n and 

)(zWD  and )(zVD  be the proper weighting functions. If )(zGRD  is a proper, 
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stable reduced-order model obtained using the proposed technique, then the 
following error bound holds: 
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mêççÑ The proof is similar to [10] hence omitted. 
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Even though the frequency weighted errors obtained using the new methods are 
generally lower than Enns’ and Ghafoor and Sreeram’s method, the technique is 
realization dependant. For different realization of input and output weights, 
different reduced order models and weighted approximation errors are obtained. 
Hence, to obtain the optimum weighted errors, simple transformation αDI for the 
input and βDI for the output weight are utilized. By varying the scalars αD and βD 
and, one can easily reduce the weighted approximation errors 
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In this section, an example of a stable 5th order system extracted from [5] is 
utilized. In [5], it was shown that Ghafoor and Sreeram’s method [6] compares 
well to Enns’ technique [3]. Here the author compares the newly proposed 
method to [6] as well as [3]. 
Consider the stable system  
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with stable input and output weights as given below: 
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q~ÄäÉ=N Error and error bounds of the proposed technique compared to [3] and [6] 
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α β Error Error Bound αD βD Error  
Error 

Bound 

1 119.0175 

6 6 118.8405 244.2878 200 200 117.0057 219.4063 

9 9 117.9744 230.5783 100 200 117.0082 219.4876 

1 10 121.7365 461.6540 5 100 118.0022 234.3603 

2 43.8173 

4 4 41.7730 83.2099 3.2 3.2 39.8043 125.5738 

6 6 41.4428 74.4676 36.8 3.2 40.4129 92.0167 

3 3 42.9521 94.5191 19.5 19.5 41.4418 68.6829 

3 6.7124 

3 3 5.7510 15.0555 17 3.1 5.8853 15.0387 

4 4 5.7352 13.2190 16.9 3.2 5.8894 14.8213 

2 3 5.9047 17.2472 26.9 26.9 5.9400 10.7979 

4 0.3706 

1 2 0.3411 1.7425 1.2 18.9 0.3193 1.8770 

2 2 0.3348 1.2368 8.8 1.3 0.3201 1.7557 

5 1 0.3219 1.3938 38.9 1.1 0.3210 2.0027 

 
From Table 1, by varying the free parameters αD and βD, it is possible to obtain 
consistently lower weighted errors for the proposed method compared to Enns’s 
technique [3], while it compares well to Ghafoor and Sreeram’s technique [6].  
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RKM= `lk`irpflk=
=
An improved frequency weighted balanced truncation based on partial fraction 
expansion in discrete-time domain is presented. The method has the following 
advantages: (i) Guaranteed stability in case of double-sided weightings (ii) two sets 
of easily computable a priori error bounds. The only disadvantage of the 
technique is it is dependant on the realization of the weights. However, this 
property can be manipulated to obtain the lowest error of the reduced order 
model. This is done by varying the realization of the weights. The proposed 
method can be easily extended to optimal Hankel norm approximations. 
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