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^Äëíê~Åí. This paper explores the design of Adaptive Model Predictive Control (AMPC) using 
Subspace State-space Model Identification (SMI) techniques for an activated sludge process. The 
implementation of SMI techniques in the adaptive sliding window control methods are discussed 
where the online subspace identification using Numerical State-space Subspace System 
Identification (N4SID) algorithm is proposed along with Model Predictive Control (MPC) design 
method. The online N4SID algorithm developed in this study makes use of the QR-updating 
where the combination of update and down date techniques enables sliding window adaptation. 
Here, at each time step, for the new experimental data added into o factor, the oldest data are 
removed. Also, the Singular Value Decomposition (SVD-based) strategy is proposed into Indirect 
AMPC (IAMPC) for the control increment input constrained nonlinear system. Several 
simulation studies for different control parameters in control/identification algorithm are 
performed. For the IAMPC control design, the computational times involved using an SVD 
approach shows less burdensome compared to Quadratic Programming (QP) method and such 
an interesting result is considered as one of the main contribution in this paper. 

 

hÉóïçêÇëW Adaptive control; activated sludge process; model predictive control; subspace 
identification 

 

^Äëíê~âK Kertas kerja ini membincangkan tentang reka bentuk Pengawal Ramalan Model Suai 
menggunakan kaedah Pengenalpastian Model Keadaan Ruang  Sub-ruang bagi proses enapcemar 
teraktif. Penggunaan teknik Pengenalpastian Model Keadaan Ruang Sub-ruang di dalam kaedah 
kawalan tingkat gelangsar suai dibincangkan di mana pengenalpastian sub-ruang dalam talian 
menggunakan algoritma N4SID di perkenalkan bersama dengan rekabentuk Pengawal ramalan 
model. Pembangunan N4SID dalam talian di dalam kertas kerja ini menggunakan pengemaskini 
QR di mana gabungan di antara teknik kemaskini dan kemasbawah membolehkan pengadaptasi  
tingkap gelangsar. Di sini, untuk setiap langkah masa, bagi setiap data baru akan dimasukkan ke  
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faktor o manakala data yang lama dibuang. Begitu juga, strategi bagi uraian nilai tunggal 
diperkenalkan ke dalam Pengawal Ramalan Model Suai tak langsung untuk masukan tambahan 
kawalan bagi sistem terkekang tak lelurus. Beberapa kajian simulasi bagi parameter kawalan 
berlainan di dalam pengawal/pengenalpastian algoritma dilaksanakan. Bagi reka bentuk Pengawal 
Ramalan Model Suai tak langsung, pengiraan masa yang terlibat dengan menggunakan 
pendekatan uraian nilai tunggal kurang berbanding dengan kaedah perancangan kuadratik dan 
keputusan yang memberangsangkan ini adalah sumbangan utama di dalam kertas kerja ini. 

 

h~í~= âìåÅáW Pengawal suai; proses enapcemar teraktif;  pengawal ramalan model; 
pengenalpastian sub-ruang  
 

 

NKM= fkqolar`qflk=
=
Often, polynomial transfer function is employed in the derivation of adaptive 
control method [1]. This paper studies the use of subspace model identification 
techniques to develop a state-space based adaptive control technique for model 
predictive control design. Using these techniques, state-space matrices can be 
constructed and used to obtain prediction of the process outputs. These 
predictions can subsequently serve as a basis for Model Predictive Control (MPC) 
controller design. By continuously updating these models, an adaptive model 
predictive control method can be obtained. 
  MPC also referred to as sliding (receding) horizon control has become 
standard approach in advanced process control. The main idea of MPC is to 
choose the control action by repeatedly solving online an optimal control 
problem. This aims at minimising a performance criterion over a future horizon, 
where the future behavior is computed according to a model of the plant. 
Moreover, the ability of MPC algorithm to deal with constrained multivariable 
system directly is well known. There are probably some issues arise from MPC 
algorithm such as closed loop stability, model uncertainty and online 
computations. Since all the computation in adaptive control MPC has to be 
carried out at every sampling time, more computation is required and this is even 
higher when the constraints are included. The adaptive MPC optimisation is to be 
solved online either by using Quadratic Programming (QP), Linear Programming 
(LP) or Nonlinear Programming (NLP). For a finite horizon optimal control 
problem, the quadratic cost can be cast into a numerically efficient QP algorithm 
[2, 3, 4].  
  However, large scale problems with a large number of variables and/or those 
with long horizons, LPs and QPs require a high computational load. Often, NLP 
is solved by sequential quadratic programming (SQP) which is computationally 
very expensive. This type of optimization also gives no guarantee of convergence 
to a global minimum. Many efforts have recently been devoted to reduce the 
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online computational burden regarding to QP solver. A finitely parameterized 
method that gives explicit solution to QP problems can be found in [5] and [6]. 
The offline computation for the explicit QP solution is of great advantage in this 
method. However, as the prediction horizon increases, the more complex the state 
partition to be handled becomes. Another approach to reduce the online 
computation is to implement the suboptimal solution of QP problem [7, 8]. 
Another way to increase the efficiency and reliability of the solution is to exploit 
the structure of the problem, i.e. the performance index. The exploitation of a 
highly structured Hessian and the constraint matrices of the QPs has been shown 
to speed up the computation by an order of the magnitude [9]. Another 
suboptimal approach is to implement receding horizon control strategy, based on 
a Singular Value Decomposition (SVD) of the Hessian of the quadratic 
performance index generally used in MPC [10]. 
  The main purpose of this paper is to study the use of SMI technique to find 
state-space representation of a model to implement indirect adaptive MPC 
controllers for a biological wastewater treatment system. Other works on adaptive 
control for activated sludge process are [11, 12, 13]. In a previous work of 
Dochain [11], a set of reduced order model of the plant is obtained by singular 
pertubation of the state space model of the activated sludge process. The idea 
presented here is to use data-driven control models to develop IAMPC control. 
Conventional MPC uses QP algorithm to minimise a certain cost function over N 
linearly constrained control inputs. In this paper, an improved performance can 
then be expected by exploiting the singular value decomposition structure in the 
constrained multivariable IAMPC. 
  The paper is organized as follows. Section 2 describes the subspace model 
identification in an adaptive framework. Here, the N4SID algorithm is 
implemented and the updated data Hankel matrix is presented. A brief overview 
of the formulation and solution of the IAMPC control is presented in Section 3. 
In this section, the sliding window adaptive method is presented and applied to the 
constrained multivariable system. The proposed SVD-based strategy of the 
optimization problem is also given in this section. In Section 4, the activated 
sludge process is described. Section 5 presents the simulation results where the 
effects of different design parameters are studied. Finally, conclusions are drawn in 
Section 6. 
 
 
OKM= pr_pm^`b= fabkqfcf`^qflk= fjmibjbkqba= fk=
^a^mqfsb=`lkqoli=
=
Consider a linear discrete time invariant state-space system in the form: 
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( 1) ( ) ( ) ( )x k Ax k B u k Kv k+ = + ∆ +            (1) 
( ) ( ) ( ) ( )y k Cx k D u k v k= + ∆ +                           (2) 

 
where ìEâFI=óEâF and ñEâF are the inputs, outputs and states respectively and îEâF is 
a white noise sequence with zero-mean and variance pq

T
qp SeeE δ=][ . ^I=_I=`I=a, 

and h are system matrices with appropriate dimensions. We assume that { }A B
is controllable and { }A C  is observable. The following matrix input-output 
equations [14] play an important role in the problem treated in linear subspace 
identification and it can be obtained by recursive substitution of Eqs. (3)-(4): 
 

                                                                                             (3)
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where the subscripts é=and Ñ represent ‘past’ and ‘future’ time. The same way, the 
outputs block Hankel matrices vé=and vÑ=can be defined. á is the prediction (áZeé) 
and à is receding window size, å=respectively. The extended observability matrix, Γá 
and the lower block triangular Toeplitz matrix, eá=are defined as:
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The basic idea of subspace identification method is that, from the previously 
defined matrix input-output equations in Eqs. (3)-(4), it can be observed that the 
block data Hankel matrix containing the future outputs vÑ=which is linearly related 
to the future state sequences uÑ  and the future inputs rÑ . Therefore, the main 
framework of subspace model identification is to recover the i fXΓ  term, whereby 

from the knowledge of either iΓ  or uÑ , the state space model can be retrieved in a 
least square sense [15].  
 
 
OKN låäáåÉ=kQpfa=fãéäÉãÉåí~íáçå=
=
If subspace model identification algorithms are to be implemented with adaptive 
control, model parameters are required to be updated online, it is then necessary 
to develop an efficient technique in order to update the matrix estimates. 
Therefore, it involves updating an input-output Hankel matrices for a given new 
sample. To allow for a rapid additional or removal of new input-output data, a 
combination of updating and downdating the QR decomposition is performed 
making use of the rank-one modification [16]. The QR decomposition is given as 
follows: 

 
   

                            (8) 
 

 
Assume that, at time â=H=NI new set of input-output data vectors are acquired and 
hence, each of the block Hankel matrices is modified by addition of a column 
vector input, ìW 
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A similar notation can be defined for the addition of a column vector output, ó. By 
using rank-one update to QR factorization, the elements of a new column vector  
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A series of rotations can be used to zero out the appropriate elements of the 
factorization. The elements of a new column vector are zeroed by first applying it 
to ìÑ=Eâ=H=N): 

 
The updating procedure for oEâ=H=NF in Eqs. (10) and (11) is: 

 
     Basically, the calculation of an SVD is given as: 
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where r is the left singular vector, Σ1 has singular values and is diagonal and sq is 
the right singular vector. The extraction of Γá and uÑ can be carried out in a very 

simple way by means of a SVD of the matrix { }ˆ
fU f pE Y W& . 

 
The estimation of the system matrices can be obtained by solving the linear 
equations: 
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Using the rank-one modification, a combination of update and downdate 
techniques enables sliding window adaptation, whereby at each time step, the new 
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data are added to matrix o and the oldest data are removed. The system matrices 
are therefore computed from o=using the SVD. As seen in the above derivation, 
the basic concept of subspace model identification is similar, differs only in this 
case by the algorithm is to be implemented online. The following is a summary of 
the algorithm. 
 
Algorithm 2.1 Online subspace model identification 
 
Step 1: Construct data block Hankel matrix, i.e. rÑ=I=réI=véI=vÑ from a given input-
output data. 

Step 2: Compute { }ˆ
fU f pE Y W& and the QR decomposition of Eq. (8). 

Step 3: Calculate the SVD of the matrix { }ˆ
fU f pE Y W&   

Step 4: Compute the matrices ^I=_I=`I=a by solving the least square problem in 
Eq. (16). 
Step 5: Update the Hankel matrix through adding the input-output data and 
removing the oldest ones. Go to step 2 and repeat. 
 

PKM= fkafob`q=^a^mqfsb=jm`=
 
The indirect adaptive control implemented in this work uses data-driven approach 
where the controller parameters are identified using input-output data. The inputs 
of the open loop identification data are white and zero-mean and often used as 
inputs for system identification. The classical two-step of controller design is 
performed. First is the estimation of state sequences and/or extended observability 
matrix. In the open-loop subspace state-space identification, the extended 
observability matrix, iΓ   and the state sequence of Kalman filter, uÑ can be 
obtained using the singular value decomposition of the matrix, 

ff U pY W .  

  Later, the state space matrices ^I=_I=`I=a can be estimated by using either the 
extended observability matrix, iΓ  or/and the Kalman filter estimate, uÑ (such as 
N4SID). The system matrix estimated provided by the N4SID algorithm is then 
used to set up the prediction matrices. A possible structure of an adaptive control 
using the online N4SID algorithm along with MPC control design is shown in 
Fig.1. 
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cáÖìêÉ=N  Indirect adaptive control using MPC 
 
 
PKN= päáÇáåÖ=táåÇçï=
 
In this IAMPC control design, the measured data is collected over a sliding 
window. The procedure of using a sliding window for identification is illustrated in 
Fig. 2. It can be noted that the data window used to identify state space matrices 
can be expressed in term of future input ( )1 2 2

T
f i iu u u− −= …  and measurement 

(past) inputs, ( )0 1
T

p iu u u −= …  and outputs, ( )0 1
T

p iy y y −= … . Here, two 

prediction problems given at current time instant á and áHN are shown Fig. 2. The 
first prediction problem Eí= Z= áF represents the case for obtaining the optimal 
prediction of= á future outputs ( )2 1ˆ ˆ ˆ T

f i iy y y −= … using the information given in 

the previously stated data window ìéI=óé=~åÇ=ìÑK The second prediction problem 
shows that the time instant slides (i.e. í=Z=á to í=Z=á=H=N), this differs from the data 
window (ìéI=óé and ìÑ) which is now slides from left to right. At every time step, for 
the new available input-output data, the state space parameters are updated online 
and the new control action is computed. The main advantage of this approach is 
that the controller parameters are updated at each sample, which usually means a 
quicker response to process changes via a combination of updating and 
downdating steps. The main drawback of this method is that an QR 
decomposition needs to be computed at each sample instance, which increases the 
computational load. 
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PKO= `lkpqo^fkba=f^jm`=`lkqoli=
=
The implemented MPC control design allows the solution of control problem 
with constraints on ∆u. In the constraint case, the computational burden is an 
important issue to be considered. In this study, the constrained optimal solution to 
the minimisation of quadratic performance index has been solved online using a 
standard quadratic programming which requires heavy computational load. This 
becomes increasingly more difficult as the prediction horizon increases and hence 
large receding window size is used. The online computational burden is linearly 
proportional to the size of the window. To reduce the online computational load 
associated with the solution of QP, an SVD-based strategy is proposed here. In 
this case, the structure of the performance index is analysed based on SVD 
approach in a context of subspace adaptive frameworks. 
  By iterating the model in Eq. (1) - (2), the prediction output is defined as: 
 

                              (17) 
 

  The quadratic performance index can be expressed as follows:    
 

       (18) 
 
  where  and  . The IAMPC control law can 
be found by making the gradient of  zero, therefore: 
 
         (19) 
 
  By using SVD-based strategy, the performance index, J can now be rewritten as: 
 

   (20) 
 

  Thus, the unconstrained optimal is: 
 

      (21) 
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cáÖìêÉ=O  Sliding window for i=4 
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  The increment input vectors for the constrained case can be constructed by 
considering the modification of the unconstrained solution,  in Eq. (21). Let 
us first define the performance index, J as: 

     (22) 

 
  where  is the  entry of vector . From Eq. (22), it can be observed 
that whenever , we obtain , which is the unconstrained value. 
Note that the entries of  in Eq. (22) are arranged in decreasing order of 
magnitude, since , which starting from the one that influences 
the performance index the most and ending with the one that influences the 
performance index the least. 
  Therefore, to find a feasible solution to the constrained optimisation problem 
J, we need to consider the components in the entries of vector with highest 
contribution in reducing the magnitude of J, i.e. use those elements of  with 
the biggest singular values. for the unconstrained solution is: 

     (23) 

 
  The vector in Eq. (21) will be ordered from the highest to the smallest 
singular values and progressively discarding smaller components, until the 
constraints are satisfied, i.e.: 

    (24) 

 
  where .  This does not necessarily gives the best control 

performance, hence the following control increment vector is defined: 

     (25) 

 
  where  and . To obtain the best solution  
should be as large as possible while the constraints are satisfied. For , 

and the solution is unconstrained. The IAMPC algorithm is summarised 
here. 
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Algorithm 3.2: IAMPC Control Method 
 
Step 1: Construct data block Hankel matrix, i.e. rÑI=réI=véI=vÑ  from a given input-
output data. 
Step 2: Compute the matrices ^I=_I=`I=a by solving the least square problem. 
Step 3: Compute the optimal unconstrained solution  
Step 4: Find the “largest” , where  such that the vector:  

 
 

 
lies on the boundary of the constraint set in  and  . The parameters 

 and  are tuned for the best performance whilst the constraints are satisfied 
Step 5: At time k, only  is implemented and the calculation is repeated at 
each time instant, i.e.  is implemented as:  
Step 6: Update the Hankel matrix using the newest data and go to step 2 and 
repeat. 
 
 
QKM= ^`qfs^qba=piradb=mol`bpp=
 
The activated sludge process in wastewater treatment plant is comprised of an 
aerator and a settler as shown in Fig.3.  
 
 
 
 
 
 
 

=

=

cáÖìêÉ=P Activated sludge process 

 
  The bioreactor includes a secondary clarifier that serves to retain the biomass 
in the system while producing a high quality effluent. Part of the settled biomass is 
recycled to allow the right concentration of micro-organisms in the aerated tank. A 
component mass balance that yields the following set of nonlinear differential 
equations was previously derived in [17].  
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c uH N\ svdu∆ ∈∆\
m α

(1)svdu∆
( )u k ( ) ( 1) ( )u k u k u k= − + ∆
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                                                            (26)                    

                                                                (27)                    

                                       (28)                    

                                         (29)         

  where the state variables, uEíF, pEíFI= `EíF and uêEíF represent the 
concentrations of biomass, substrate, dissolved oxygen (DO) and recycled biomass 
respectively. aEíF is the dilution rate, while=páå and `áå correspond to the substrate 
and DO concentrations of influent stream. The parameters ê and β represents the 
ratio of recycled and waste flow to the influent flow rate, respectively. The kinetics 
of the cell mass production is defined in terms of the specific growth rate µ and the 
yield of cell mass v. The term hç is a constant. `ë=and hi~ denote the maximum 
dissolved oxygen concentration and the oxygen mass transfer coefficient, 
respectively. The Monod equation gives the growth rate related to the maximum 
growth rate, to the substrate concentration, and to DO concentration: 

 
          

max
( ) ( )( )

( ) ( )s c

S t C tt
K S t K C t

µ µ=
+ +

                      (30) 

  where µmax is the maximum specific growth rate,=hë is the affinity constant and 
hÅ is the saturation constant. In this simulation, two controlled outputs substrate 
(S) and DO and two manipulated inputs dilution rate (D) and airflow rate (W) are 
considered.  
 
 
5.0 bs^ir^qflk=^ka=pfjri^qflk=obpriqp=
 
Simulations were carried out for the IAMPC control design method based on the 
singular value of the optimisation problem applied to the activated sludge 
wastewater treatment process. The aim of the control is to keep the pollutant 
substrate concentration and the dissolved oxygen concentration level to a given 
setpoints as the disturbances pertubes the system. In this control design method, 
the design parameters are chosen both for identification and control stages. In the 
identification stage, the identification window size, å and sampling interval, që=were 
selected. In addition to that, various parameters needed to be chosen in the 
control design parameters such as sampling interval, që, prediction horizon, eé, 
control horizon, eÅ, the input and output weighting matrices o and n as well as 
the constraint limit on control input increments, ∆ì. Some parameters considered 

( ) ( ) ( ) ( )(1 ) ( ) ( ) ( )rX t t X t D t r X t rD t X tµ= − + +�

( )( ) ( ) ( )(1 ) ( ) ( ) in
tS t X t D t r S t D t S

Y
µ

= − − + +�

( ) ( )
( ) ( )(1 ) ( ) ( ( ) ( ) )o

La s in
K t X t

C t D t r C t K C C t D t C
Y

µ
= − + + − +

( ) ( ).(1 ). ( ) ( ).( ) ( )r rX t D t r X t D t r X tβ= + − +�
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here are varied to demonstrate its effect on the performance as well as the 
computational time involved. The performance of SVD-based IAMPC is 
compared to QP-based IAMPC with respect to computational complexity. 
= = The following sections present several model analyses and demonstrate the 
effect of parameters changes, such as eé and= å due to the excitation of input 
disturbance in the system at í== 1285. The simulation is run from a steady state 
operating point at outputs p= 41.23 mg/l, DO= 6.11 mg/l and inputs=a= 0.08 1/h 
and t= 90m3/hr. The sampling interval is chosen as Ts = 1. The output weighting, 
Q and input weighting, R are respectively given as Q = diag(1; 10) and R = 
diag(104; 10-4). 
 
 
5.1 jçÇÉä=^å~äóëáë 
 
The behaviour of the singular values of the Hessian,   for different prediction 
horizons, eé is studied and is shown in Fig. 4. Fig. 4 shows that the longer 
prediction horizon eé leads to a common issue of ill-conditioning of matrix, . 
Clearly, large singular values can be observed when eé= is increased, which 
indicates large gain between the corresponding control basis vector and the cost 
function. 
 

 

cáÖìêÉ=Q Singular value of Hessian matrix for different eé 
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5.2 bÑÑÉÅí=lÑ=å 
 

Three different sizes of the identification window, å are demonstrated (å = 200; å 
= 400; å = 900). The prediction horizon is set to eé = 20 for all given å. 
Therefore, for a constant prediction horizon, each test case uses a slightly different 
number of input-output data. The control horizon is set to eÅ = 5. Figures (5-6) 
show that the closed loop performance behaves differently for different å when 
the system is excited with input pertubation at í== 1285. The controller converges 
quickly at å = 200, though more oscillations are present in response to 
disturbance. As the data window size is increased, i.e. å== 900 which leads to more 
data available for control design, less oscillations are present. However, the 
controller takes longer to converge. The trade-off between the selection of the 
identification window size, n and diturbance rejection performance is therefore 
considered when applied to a nonlinear activated sludge process. 
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cáÖìêÉ=R  Performance comparison for different å- output response 
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cáÖìêÉ=S  Performance comparison for different å- input response 
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5.3 bccb`q=lc=eé=
 
In this section, different prediction horizons are given and its effect on the control 
performance are studied.  The choice of eé is primarily a trade-off between the 
order of the controller and the control performance. Fig. 7 and Fig. 8 show the 
output and input responses, respectively with varying eé with the identification 
window fixed at=å = 400.  
  As seen in Figures (7-8), for a given input disturbance at=í = 1285, the responses 
react differently as the prediction horizon decreases. Four different prediction 
horizons are tested given as eé== 35, 20, 15, and 10. Improved performance is 
demonstrated starting from eé= = 20 as shown in Fig. 7. This can be observed 
clearly that is, the responses stabilise well and able to track back to setpoint faster. 
The controller converges quickly at eé = 20 (at around t = 1700). As prediction 
horizon is increased, i.e. eé = 35 it shows some oscillatory response due to 
disturbance acting on the system. For eé = 35, the output responses (both for DO 
and Substrate) exhibit worst tracking properties and takes longer to settle. The 
general trend is, as the prediction horizon, eé is increases, å=should be increased, 
so that (j >> i). Note that, for å = 400, each of the test cases (where different eé is 
applied), à=Z=å� 2eé + 1 gives a slightly different j prediction problem. In general, 
longer prediction horizon leads to better closed loop performance. In this case, 
the use of larger n is therefore needed for eé = 35, for better setpoint tracking as 
well as good disturbance rejection performance. 
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cáÖìêÉ=T  Performance comparison for different eé- output response 
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cáÖìêÉ=U  Performance comparison for different eé- input response 
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5.4 `çãéìí~íáçå=qáãÉ=
 
Tables 1-2 summarise the computation times (in sec) per sampling instant for two 
different methods. The computational time is recorded for different n and the 
prediction horizon is constant at eé= = 20 as shown in Table 1. As indicated in 
Table 1, the difference in computation times between SVD-based strategy and 
QP-based strategy is more than 90 percent for å== 200. Both methods requires 
more time as the identification window is increased. The difference is significant 
when the identification window is set to å== 900. For different prediction horizons 
where å is fixed at 400, the computational time has been recorded as shown in 
Table 2. Comparing both design methods, the computational burden associated to 
the QP problem is much higher. In particular for e= 35, IAMPC-QP requires 10 
times the computational effort demanded by IAMPC-SVD. 
 

q~ÄäÉ=N  CPU average times per sampling instant for different n  

å= f^jm`
EpsaF=

f^jm`
EnmF=

200 0.006 0.075
400 0.012 0.08
900 0.087 0.12

 

q~ÄäÉ=O  CPU average times per sampling instant for different Hp 

eé= f^j_m`
EpsaF=

f^j_m`
EnmF=

35 0.018 0.111
20 0.012 0.102

15 0.009 0.096
10 0.006 0.090

 
 
SKM `lk`irpflk=
=
This paper presents the use of data-driven control models in an adaptive 
framework applied to an activated sludge wastewater treatment process. The 
control design uses an online subspace model identification technique, 
implemented in an adaptive control context along with the MPC controller. 
Several design parameters have been selected in the IAMPC control design. The 
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control design parameters have been tested for several different values to 
investigate the stability and performance of the IAMPC when applied to a 
nonlinear system. The proposed IAMPC control technique can be applied to 
constrained multivariable systems. 
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