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DATA-DRIVEN INDIRECT ADAPTIVE MODEL PREDICTIVE
CONTROL

NORHALIZA WAHAB", MOHAMED REZA KATEBI’, MOHD FUA’AD
RAHMAT® & SALINDA BUNYAMIN*

Abstract. This paper explores the design of Adaptive Model Predictive Control (AMPC) using
Subspace State-space Model Identification (SMI) techniques for an activated sludge process. The
implementation of SMI techniques in the adaptive sliding window control methods are discussed
where the online subspace identification using Numerical State-space Subspace System
Identification (N4SID) algorithm is proposed along with Model Predictive Control (MPC) design
method. The online N4SID algorithm developed in this study makes use of the QR-updating
where the combination of update and down date techniques enables sliding window adaptation.
Here, at each time step, for the new experimental data added into R factor, the oldest data are
removed. Also, the Singular Value Decomposition (SVD-based) strategy is proposed into Indirect
AMPC (IAMPC) for the control increment input constrained nonlinear system. Several
simulation studies for different control parameters in control/identification algorithm are
performed. For the IAMPC control design, the computational times involved using an SVD
approach shows less burdensome compared to Quadratic Programming (QP) method and such
an interesting result is considered as one of the main contribution in this paper.

Keywords:  Adaptive control; activated sludge process; model predictive control; subspace
identification

Abstrak. Kertas kerja ini membincangkan tentang reka bentuk Pengawal Ramalan Model Suai
menggunakan kaedah Pengenalpastian Model Keadaan Ruang Sub-ruang bagi proses enapcemar
teraktif. Penggunaan teknik Pengenalpastian Model Keadaan Ruang Sub-ruang di dalam kaedah
kawalan tingkat gelangsar suai dibincangkan di mana pengenalpastian sub-ruang dalam talian
menggunakan algoritma N4SID di perkenalkan bersama dengan rekabentuk Pengawal ramalan
model. Pembangunan N4SID dalam talian di dalam kertas kerja in1 menggunakan pengemaskini
QR di mana gabungan di antara teknik kemaskini dan kemasbawah membolehkan pengadaptasi

tingkap gelangsar. D1 sini, untuk setiap langkah masa, bagi setiap data baru akan dimasukkan ke
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faktor R manakala data yang lama dibuang. Begitu juga, strategi bagl uraian nilai tunggal
diperkenalkan ke dalam Pengawal Ramalan Model Suai tak langsung untuk masukan tambahan
kawalan bagi sistem terkekang tak lelurus. Beberapa kajian simulasi bagli parameter kawalan
berlainan di dalam pengawal/pengenalpastian algoritma dilaksanakan. Bagi reka bentuk Pengawal
Ramalan Model Suai tak langsung, pengiraan masa yang terlibat dengan menggunakan
pendekatan uraian nilai tunggal kurang berbanding dengan kaedah perancangan kuadratik dan
keputusan yang memberangsangkan ini adalah sumbangan utama di dalam kertas kerja ini.

Kata kunci: Pengawal suai; proses enapcemar teraktif pengawal ramalan model;
pengenalpastian sub-ruang

1.0 INTRODUCTION

Often, polynomial transfer function 1s employed in the derivation of adaptive
control method [1]. This paper studies the use of subspace model identification
techniques to develop a state-space based adaptive control technique for model
predictive control design. Using these techniques, state-space matrices can be
constructed and used to obtain prediction of the process outputs. These
predictions can subsequently serve as a basis for Model Predictive Control (MPC)
controller design. By continuously updating these models, an adaptive model
predictive control method can be obtained.

MPC also referred to as sliding (receding) horizon control has become
standard approach i advanced process control. The main idea of MPC is to
choose the control action by repeatedly solving online an optimal control
problem. This aims at minimising a performance criterion over a future horizon,
where the future behavior i1s computed according to a model of the plant.
Moreover, the ability of MPC algorithm to deal with constrained multivariable
system directly 1s well known. There are probably some issues arise from MPC
algorithm such as closed loop stability, model uncertainty and online
computations. Since all the computation in adaptive control MPC has to be
carried out at every sampling ime, more computation 1s required and this 1s even
higher when the constraints are included. The adaptive MPC optimisation 1s to be
solved online either by using Quadratic Programming (QP), Linear Programming
(LP) or Nonlnear Programming (NLP). For a finite horizon optimal control
problem, the quadratic cost can be cast into a numerically efficient QP algorithm
(2, 3, 4].

However, large scale problems with a large number of variables and/or those
with long horizons, LLPs and QPs require a high computational load. Often, NLP
1s solved by sequential quadratic programming (SQP) which is computationally
very expensive. This type of optimization also gives no guarantee of convergence
to a global minimum. Many efforts have recently been devoted to reduce the
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online computational burden regarding to QP solver. A finitely parameterized
method that gives explicit solution to QP problems can be found in [5] and [6].
The offline computation for the explicit QP solution 1s of great advantage i this
method. However, as the prediction horizon increases, the more complex the state
partition to be handled becomes. Another approach to reduce the online
computation 1s to mmplement the suboptimal solution of QP problem [7, 8].
Another way to increase the efficiency and reliability of the solution 1s to exploit
the structure of the problem, re. the performance index. The exploitation of a
highly structured Hessian and the constraint matrices of the QPs has been shown
to speed up the computation by an order of the magnitude [9]. Another
suboptimal approach is to implement receding horizon control strategy, based on
a Singular Value Decomposition (SVD) of the Hessian of the quadratic
performance index generally used in MPC [10].

The main purpose of this paper 1s to study the use of SMI technique to find
state-space representation of a model to mmplement indirect adaptive MPC
controllers for a biological wastewater treatment system. Other works on adaptive
control for activated sludge process are [11, 12, 13]. In a previous work of
Dochain [11], a set of reduced order model of the plant is obtained by singular
pertubation of the state space model of the activated sludge process. The 1dea
presented here 1s to use data-driven control models to develop IAMPC control.
Conventional MPC uses QP algorithm to minimise a certain cost function over NV
linearly constrained control mputs. In this paper, an improved performance can
then be expected by exploiting the singular value decomposition structure in the
constrained multivariable IAMPC.

The paper 1s organized as follows. Section 2 describes the subspace model
identification in an adaptive framework. Here, the N4SID algorithm 1s
mmplemented and the updated data Hankel matrix 1s presented. A brief overview
of the formulation and solution of the IAMPC control 1s presented in Section 3.
In this section, the sliding window adaptive method 1s presented and applied to the
constrained multivariable system. The proposed SVD-based strategy of the
optimization problem 1s also given in this section. In Section 4, the activated
sludge process 1s described. Section 5 presents the simulation results where the
effects of different design parameters are studied. Finally, conclusions are drawn in
Section 6.

2.0 SUBSPACE IDENTIFICATION IMPLEMENTED IN
ADAPTIVE CONTROL

Consider a linear discrete time invariant state-space system in the form:
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x(k +1) = Ax(k) + BAu(k) + Kv(K) (1)
y(k) = Cx(k) + DAU(K) +v(K) @)

where u(k), y(k) and x(k) are the inputs, outputs and states respectively and v(k) 1s
a white noise sequence with zero-mean and variance E[epeqT]z S6,- A, B, C, D,
and K are system matrices with appropriate dimensions. We assume that {A B}
is controllable and {A C} is observable. The following matrix input-output

equations [14] play an important role in the problem treated in linear subspace
identification and it can be obtained by recursive substitution of Eqs. (3)-(4):

Y, =I'X¢ +HU; 3)
Yp:rixp+HiUp (4)

where the data block Hankel matrices for u(k) represented as U, and U, and
defined as:

U Y Uiy
u U, - u.

Uml s ©)
U, U Ui j—
U i+l Ui,

u, - Ui:+1 ui‘+2 uijrj (6)
Uyiy Uy Usisjoz

where the subscripts p and f represent ‘past’ and ‘future’ time. The same way, the
outputs block Hankel matrices Yp and Yf can be defined. 7 1s the prediction (i=H p)
and j 1s receding window size, n respectively. The extended observability matrix, 7;
and the lower block triangular Toeplitz matrix, H, are defined as:
C CB 0 -+ 0
r - C:A H= C,?\B C:B 0 7)

CA! CAB CA™B ... CB
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The basic 1dea of subspace identificaion method 1s that, from the previously
defined matrix mput-output equations in Eqs. (3)-(4), it can be observed that the
block data Hankel matrix containing the future outputs Y, which is linearly related
to the future state sequences X, and the future inputs U, . Therefore, the main
framework of subspace model identification is to recover the T';X; term, whereby

from the knowledge of either T'; or X , the state space model can be retrieved in a
least square sense [15].

2.1 Online N4SID Implementation

If subspace model identification algorithms are to be implemented with adaptive
control, model parameters are required to be updated online, it is then necessary
to develop an efficient technique m order to update the matrix estimates.
Therefore, 1t involves updating an mput-output Hankel matrices for a given new
sample. To allow for a rapid additional or removal of new input-output data, a
combination of updating and downdating the QR decomposition 1s performed
making use of the rank-one modification [16]. The QR decomposition is given as
follows:

U ) (Ry 0 0)(Q]

Wp =|Ry R, 0 QzT 8)

Yf RSl R32 R33 QST

Assume that, at time k + I, new set of input-output data vectors are acquired and
hence, each of the block Hankel matrices 1s modified by addition of a column
vector mput, u:

.
up(k+1):(uj ui+j—1) 9)

! 10

uf(k+1):(ui+j U2i+j71) (10)

A similar notation can be defined for the addition of a column vector output, y. By

using rank-one update to QR factorization, the elements of a new column vector
are added, i.e.:
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U, o (k+D) (Ra(k) 0 0 u (ke %
W, w(kil)|=|Ru(k) Rn(k) O w(k+1)| 2
R R

p (11)
2(K) Ro(k) i (k)|

T

Y, oy (k+1)

O O O

A series of rotations can be used to zero out the appropriate elements of the
factorization. The elements of a new column vector are zeroed by first applying it

tou, (k+ 1)

Ru(k+1) 0 0 0
Ru(k+1) R,(k+l) 0 0 (12)
R (k+1) Ry(k+1) Ry(k) & (k+1)

The updating procedure for R(k + 1) in Egs. (10) and (11) 1s:
R(k+1)=R(k)+&, (k+1)z, (k+1) - &, (k+1), (k+1)’ (13)
Basically, the calculation of an SVD is given as:

> 0\ V'
o3 3]
2

where U is the left singular vector, =i has singular values and is diagonal and V' is
the right singular vector. The extraction of T", and X, can be carried out in a very

simple way by means of a SVD of the matrix éuuf {Yf ‘Wp} .

The estimation of the system matrices can be obtained by solving the linear
equations:

. =)
A B [[x(k+D)x )] YTx )X
.~ A= (16)
C D Y (k) JLU(k) ] [V (k)Y (K)
Using the rank-one modification, a combination of update and downdate
techniques enables sliding window adaptation, whereby at each time step, the new
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data are added to matrix R and the oldest data are removed. The system matrices
are therefore computed from R using the SVD. As seen in the above derivation,
the basic concept of subspace model identification 1s similar, differs only in this
case by the algorithm is to be implemented online. The following is a summary of
the algorithm.

Algorithm 2.1 Online subspace model identification

Step 1: Construct data block Hankel matrix, 1.e. U/. s UP, Yp’ Y/ from a given mput-
output data.
Step 2: Compute Ié”Uf {Yf ‘Wp} and the QR decomposition of Eq. (8).

Step 3: Calculate the SVD of the matrix éuuf {Yf ‘Wp}

Step 4: Compute the matrices A, B, C, D by solving the least square problem in
Eq. (16).

Step 5: Update the Hankel matrix through adding the mput-output data and
removing the oldest ones. Go to step 2 and repeat.

3.0 INDIRECT ADAPTIVE MPC

The indirect adaptive control implemented 1n this work uses data-driven approach
where the controller parameters are identified using mput-output data. The inputs
of the open loop identification data are white and zero-mean and often used as
mputs for system identification. The classical two-step of controller design 1s
performed. First is the estimation of state sequences and/or extended observability
matrix. In the open-loop subspace state-space identification, the extended
observability matrix, I'; and the state sequence of Kalman filter, X, can be

obtained using the singular value decomposition of the matrix, Y, / u, W,

Later, the state space matrices A, B, C, D can be estimated by using either the
extended observability matrix, T'; or/and the Kalman filter estimate, Xf (such as
NA4SID). The system matrix estimated provided by the N4SID algorithm is then
used to set up the prediction matrices. A possible structure of an adaptive control

using the online N4SID algorithm along with MPC control design 1s shown in
Fig.1.
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Figure 1 Indirect adaptive control using MPC

3.1 Sliding Window

In this IAMPC control design, the measured data is collected over a sliding
window. The procedure of using a sliding window for identification 1s illustrated in
Fig. 2. It can be noted that the data window used to identify state space matrices

. . . T
can be expressed in term of future input u, = (uifl ... Uy_,) and measurement

(past) inputs, u, =(up ... uifl)T and outputs, y, =(Yy ... yifl)T. Here, two
prediction problems given at current time instant ¢ and +1 are shown Fig. 2. The
first prediction problem (¢ = ?) represents the case for obtaining the optimal
prediction of i future outputs §, =(§; ... §,,) using the information given in

the previously stated data window u,, y, and u,. "The second prediction problem
shows that the time mstant slides (.e. t = ¢to t =7 + 1), this differs from the data
window (u ,» Y, and u) which 1s now slides from left to right. At every time step, for
the new avallable mput—output data, the state space parameters are updated online
and the new control action 1s computed. The main advantage of this approach 1s
that the controller parameters are updated at each sample, which usually means a
quicker response to process changes via a combination of updating and
downdating steps. The main drawback of this method 1s that an QR
decomposition needs to be computed at each sample instance, which increases the
computational load.
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3.2 CONSTRAINED IAMPC CONTROL

The mmplemented MPC control design allows the solution of control problem
with constraints on Au. In the constraint case, the computational burden is an
important issue to be considered. In this study, the constrained optimal solution to
the minimisation of quadratic performance index has been solved online using a
standard quadratic programming which requires heavy computational load. This
becomes increasingly more difficult as the prediction horizon increases and hence
large receding window size 1s used. The online computational burden 1s linearly
proportional to the size of the window. To reduce the online computational load
associated with the solution of QP, an SVD-based strategy 1s proposed here. In
this case, the structure of the performance index 1s analysed based on SVD
approach in a context of subspace adaptive frameworks.
By iterating the model in Eq. (1) - (2), the prediction output 1s defined as:

¥, =Tx+HAu (17)
The quadratic performance index can be expressed as follows:
J=e"Qe—2Au"H Qe+ Au'OAu (18)

where U=H'QH +ReR™™ "% and e=r, ~Tx. The IAMPC control law can

be found by making the gradient of J zero, therefore:
AuU=0U"H"Qe (19)
By using SVD-based strategy, the performance index, / can now be rewritten as:
J=e"Qe—2A0"V'H Qe+ AlG" AU (20)
Thus, the unconstrained optimal Auis:

Al, =2V"H'Qe 21)
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Figure 2 Sliding window for /=4
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The increment input vectors for the constrained case can be constructed by
considering the modification of the unconstrained solution, Ad, i Lq. (21). Let

us first define the performance index, J as:
2

HN,
minJ =J, + zl: o, (AG - A, ) (22)

where Ad,, is the i" entry of vector AG, . From Eq. (22), it can be observed

that whenever AU, =AG,,;, we obtain J=J,, which 1s the unconstrained value.

uc,i ? uc ?

Note that the entries of Au in Eq. (22) are arranged in decreasing order of
magnitude, since o, >, >...2 0y, >0, which starting from the one that influences

the performance mdex the most and ending with the one that influences the
performance index the least.

Therefore, to find a feasible solution to the constramned optimisation problem
J, we need to consider the components in the entries of vector Ad, with highest
contribution in reducing the magnitude of /, 1.e. use those elements of Ad, with

the biggest singular values. Al for the unconstrained solution 1s:
HENU

Au, =VAG, = Y VAQ,, (23)

uc

5N

The vector Al in Eq. (21) will be ordered from the highest to the smallest
singular values and progressively discarding smaller components, until the
constraints are satisfied, 1.e.:

Au,, =V (A, ... Al,, O .. 0) (24)

where mel,  2{1 ... HN,}. This does not necessarily gives the best control

performance, hence the following control increment vector 1s defined:

Ausvd = iViAai,uc + (Vm+1aAUm+l,uc) (25)
i=1

where 0<a <1 and mel,, 2{1 ... HN,}. To obtain the best solution «

should be as large as possible while the constraints are satisfied. For m=H_N_,

a=0and the solution 1s unconstrained. The IAMPC algorithm 1s summarised
here.
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Algorithm 3.2: IAMPC Control Method

Step 1: Construct data block Hankel matrix, 1.e. U/, U

P
output data.
Step 2: Compute the matrices A, B, C, D by solving the least square problem.

Step 3: Compute the optimal unconstrained solution AG,, ==V H'Qe
Step 4: Find the “largest” §=m+a, where 0<a <1 such that the vector:

Y, Y, from a given input-

AUy, =VAU, =V (Aly,, ... Al,, Al 0 .. 0)
lies on the boundary of the constraint set in R™™ and Au,, € AR. The parameters

m and « are tuned for the best performance whilst the constraints are satisfied
Step 5: At time 4, only Au_, (1) 1s implemented and the calculation 1s repeated at

each time mstant, 1.e. u(k) 1s implemented as: u(k) = u(k —1) + Au(k)

svd

Step 6: Update the Hankel matrix using the newest data and go to step 2 and
repeat.

4.0 ACTIVATED SLUDGE PROCESS

The activated sludge process in wastewater treatment plant 1s comprised of an
aerator and a settler as shown in Fig.3.

Sin; Xinv Q

SX% N / S Xe,
Aerator Settler R
J a+Q, Q-Q,

S X0 Q

S, Xy

v

QW

Figure 3  Activated sludge process

The bioreactor includes a secondary clarifier that serves to retain the biomass
mn the system while producing a high quality effluent. Part of the settled biomass 1s
recycled to allow the right concentration of micro-organisms in the aerated tank. A
component mass balance that yields the following set of nonlinear differential
equations was previously derived in [17].
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X (t) = p(®) X (t) - DE)L+r) X (t) + rD(E) X, (t) (26)
S(t) = —@ X (t) - D(t)(L+r)S(t) + D(1)S,, (27)
C(t) = w— D(t)(1+r)C(t)+ K, (C, ~C(t) + D(t)C,,) (28)
X, (t) = D(t).(L+r).X (t) - D(t).(B+1)X, (t) (29)

where the state variables, X(t), S(), C() and X(t) represent the
concentrations of biomass, substrate, dissolved oxygen (DO) and recycled biomass
respectively. D(t) 1s the dilution rate, while S, and C, correspond to the substrate
and DO concentrations of influent stream. The parameters r and 8 represents the
ratio of recycled and waste flow to the influent flow rate, respectively. The kinetics
of the cell mass production is defined n terms of the specific growth rate # and the
yield of cell mass Y. The term K 1s a constant. C. and K, denote the maximum
dissolved oxygen concentration and the oxygen mass transfer coefhcient,
respectively. The Monod equation gives the growth rate related to the maximum
growth rate, to the substrate concentration, and to DO concentration:

S(t) C(t) (30)
K, +S(t) K, +C(t)

() =ty

where 4. 1s the maximum specific growth rate, K 1s the aflinity constant and
K. 1s the saturation constant. In this simulation, two controlled outputs substrate
(S) and DO and two manipulated inputs dilution rate (D) and airflow rate (W) are
considered.

5.0 EVALUATION AND SIMULATION RESULTS

Simulations were carried out for the IAMPC control design method based on the
singular value of the optimisation problem applied to the activated sludge
wastewater treatment process. The aim of the control 1s to keep the pollutant
substrate concentration and the dissolved oxygen concentration level to a given
setpoints as the disturbances pertubes the system. In this control design method,
the design parameters are chosen both for identification and control stages. In the
identification stage, the identification window size, n and sampling interval, T, were
selected. In addition to that, various parameters needed to be chosen i the
control design parameters such as sampling interval, T, prediction horizon, H .
control horizon, H, the mput and output weighting matrices R and Q as well as
the constraint limit on control mput increments, Au. Some parameters considered
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here are varied to demonstrate its effect on the performance as well as the
computational time mvolved. The performance of SVD-based IAMPC 1s
compared to QP-based IAMPC with respect to computational complexity.

The following sections present several model analyses and demonstrate the
effect of parameters changes, such as H, and n due to the excitation of input
disturbance n the system at ¢ = 1285. The simulation 1s run from a steady state
operating point at outputs S= 41.23 mg/l, DO= 6.11 mg/l and mputs D= 0.08 1/h
and W= 90m’/hr. The sampling interval is chosen as Ts = 1. The output weighting,
Q and mput weighting, R are respectively given as Q = diag(l; 10) and R =
diag(10% 107).

5.1 Model Analysis

The behaviour of the singular values of the Hessian, O for different prediction
horizons, H, 1s studied and is shown in Fig. 4. Fig. 4 shows that the longer
prediction horizon H ) leads to a common issue of ill-conditioning of matrix, 0.
Clearly, large singular values can be observed when H , 1s increased, which
mdicates large gain between the corresponding control basis vector and the cost
function.

Indax Indax

x aCt Hp=20 x 30" Hp=35

o M & O 0w 0 W A 0@
— T T T T T T
N

[ Index

Figure 4 Singular value of Hessian matrix for different H ,
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5.2 Effect Of n

Three different sizes of the 1dentification window, n are demonstrated (n = 200; n
= 400; n = 900). The prediction horizon is set to H, = 20 for all given n.
Therefore, for a constant prediction horizon, each test case uses a slightly different
number of input-output data. The control horizon is set to H, = 5. Figures (5-6)
show that the closed loop performance behaves differently for different n when
the system 1s excited with mput pertubation at ¢t = 1285. The controller converges
quickly at n = 200, though more oscillations are present in response to
disturbance. As the data window size 1s increased, 1.e. n = 900 which leads to more
data available for control design, less oscillaions are present. However, the
controller takes longer to converge. The trade-off between the selection of the
identification window size, n and diturbance rejection performance is therefore
considered when applied to a nonlinear activated sludge process.
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Figure 6 Performance comparison for different n-input response
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5.3 EFFECT OF Hp

In this section, different prediction horizons are given and its effect on the control
performance are studied. The choice of H, is primarily a trade-off between the
order of the controller and the control performance. Fig. 7 and Fig. 8 show the
output and mput responses, respectively with varying H, with the 1dentfication
window fixed at n = 400.

As seen 1n Figures (7-8), for a given input disturbance at ¢ = 1285, the responses
react differently as the prediction horizon decreases. Four different prediction
horizons are tested given as H, = 35, 20, 15, and 10. Improved performance 1s
demonstrated starting from H )~ 20 as shown m Fig. 7. This can be observed
clearly that 1s, the responses stabilise well and able to track back to setpoint faster.
The controller converges quickly at H, = 20 (at around ¢=1700). As prediction
horizon 1s increased, 1.e. Hp = 35 1t shows some oscillatory response due to
disturbance acting on the system. For H, = 35, the output responses (both for DO
and Substrate) exhibit worst tracking properties and takes longer to settle. The
general trend 1s, as the prediction horizon, H ) 1s Increases, n should be increased,
so that (§ >> 1). Note that, for n = 400, each of the test cases (where different H ) 18
applied), j = n 2H, + 1 gives a slightly different ; prediction problem. In general,
longer prediction horizon leads to better closed loop performance. In this case,
the use of larger n1s therefore needed for H, = 35, for better setpont tracking as
well as good disturbance rejection performance.
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Figure 7 Performance comparison for different H ,-output response
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5.4 Computation Time

Tables 1-2 summarise the computation times (in sec) per sampling instant for two
different methods. The computational time 1s recorded for different n and the
prediction horizon 1s constant at H, = 20 as shown in Table 1. As indicated in
Table 1, the difference in computation times between SVD-based strategy and
QP-based strategy 1s more than 90 percent for n = 200. Both methods requires
more time as the 1dentification window 1s increased. The difference 1s significant
when the identification window 1s set to n = 900. For different prediction horizons
where n 1s fixed at 400, the computational time has been recorded as shown in
Table 2. Comparing both design methods, the computational burden associated to
the QP problem 1s much higher. In particular for H= 35, IAMPC-QP requires 10
times the computational effort demanded by IAMPC-SVD.

Table 1 CPU average times per sampling instant for different 2

n TAMPC TIAMPC
(SVD) (QP)
200 0.006 0.075
400 0.012 0.08
900 0.087 0.12

Table 2 CPU average times per sampling instant for different /,

H, IAMBPC IAMBPC
(SVD) (QP)
35 0.018 0.111
20 0.012 0.102
15 0.009 0.096
10 0.006 0.090

6.0 CONCLUSION

This paper presents the use of data-driven control models in an adaptive
framework applied to an activated sludge wastewater treatment process. The
control design uses an online subspace model identificaion technique,
mmplemented m an adaptive control context along with the MPC controller.
Several design parameters have been selected i the IAMPC control design. The
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control design parameters have been tested for several different values to
mvestigate the stability and performance of the IAMPC when applied to a
nonlinear system. The proposed IAMPC control technique can be applied to
constrained multivariable systems.
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