
   tfobibpp=jriqfjbaf^=pbkplo=kbqtloh=mi^qcloj=             OPN=

 
gìêå~ä=qÉâåçäçÖá, 54 (Sains & Kej.) Keluaran Khas, Jan. 2011: 231–254 
© Universiti Teknologi Malaysia 

 

tfobibpp=jriqfjbaf^=pbkplo=kbqtloh=mi^qcloj=clo=
ilt=o^qb=fj^dbLsfabl=pqob^jfkd=

 

olwbe^=^K=o^pefaNGI=klopebfi^=cfp^iO=C=^_ari==
e^af=^_ari=e^jfaP=

=

^Äëíê~ÅíK= Conventional Wireless Sensor Network (WSN) application mainly deals with scalar 
data such as temperature, humidity, pressure and light, which are very suitable for low rate and 
low power networking technology such as IEEE 802.15.4 standard. The availability of 
commercially off the shelf (COTS) complementary metal-oxide semiconductor (CMOS) camera 
has made a single chip solution possible and consequently fostered researchers to push WSN a 
step further.  Multimedia data delivery unique properties posed new challenges for resource-
constrained sensor networks.  Transferring raw data is very expensive while sensor nodes 
processing power put a serious limitation on it for any sophisticated multimedia processing.  This 
project proposed a new platform for wireless multimedia sensor network (WMSN) namely TelG 
mote and WiseOS operating system to support the mote operation.  The mote design for 
WMSN consists of ATmega644PV microcontroller from Atmel Co. as its processing unit, XBee 
module as its communication unit and C328R CMOS camera as its sensing unit.  To hide low-
level details of TelG motes such as processor management, memory management, device 
management, scheduling policies and multitasking, the developed WiseOS provides a clear 
application programming interface (API) to the application developer.  WiseOS is designed to be 
monolithic, event-driven and using first-in first-out (FIFO) scheduler policy.  The low rate 
video/image streaming application that was developed shows that multi-hop communication for 
multimedia content in WMSN using TelG mote supported by WiseOS proved to be practical.   
 

hÉóïçêÇëW Wireless sensor network; wireless multimedia sensor network; CMOS camera; 
embedded operating system; IEEE 802.15.4 
=

^Äëíê~âK Aplikasi táêÉäÉëë= pÉåëçê= kÉíïçêâ (WSN) konvensional secara umumnya 
mengendalikan data yang bersifat skala seperti suhu, kelembapan, tekanan dan cahaya yang mana 
ianya sesuai untuk teknologi perhubungan rangkaian yang mempunyai kadar data dan 
penggunaan kuasa yang rendah seperti piawaian IEEE 802.15.4.  Kebolehsediaan kamera 
complementary metal-oxide semiconductor (CMOS) di pasaran yang memungkinkan selesaian 
serpih tunggal telah menarik minat pengkaji untuk memajukan WSN. Keunikan penghantaran 

 

1–4 Telematics Research Group, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 
81310 UTM Johor Bahru, Johor Darul Ta’azim, Malaysia 

* Corresponding author: Email: rozeha@fke.utm.my 



OPO       olwbe^=^K=o^pefaI=klopebfi^=cfp^i=C=^_ari=e^af=^_ari=e^jfa=

data multimedia mewujudkan suatu cabaran baru kepada nod penderia yang mempunyai 
kekangan sumber.  Proses penghantaran data secara mentah adalah sangat mahal manakala 
keupayaan pemprosesan nod penderia meletakkan had yang serius untuk sebarang pemprosesan 
data multimedia yang sofistikated.  Projek ini mencadangkan suatu platform baru untuk aplikasi 
táêÉäÉëë=jìäíáãÉÇá~=pÉåëçê=kÉíïçêâ (WMSN) yang dinamakan nod penderia TelG dan sistem 
pengendalian WiseOS untuk menyokong operasi nod penderia tersebut.  Reka bentuk nod 
penderia untuk aplikasi WMSN terdiri daripada mikro pengawal model ATmega644PV dari 
Atmel Co. sebagai unit pemproses, modul XBee sebagai unit komunikasi dan kamera CMOS 
C328R sebagai unit penderia.  Untuk menyembunyikan selok-belok aras rendah nod penderia 
TelG seperti pengurusan pemproses, ingatan, peranti, polisi penjadualan dan tugas berbilang, 
WiseOS yang dibangunkan menyediakan ~ééäáÅ~íáçå= éêçÖê~ããáåÖ= áåíÉêÑ~ÅÉ (API) yang jelas 
kepada pengembang aplikasi.  WiseOS direka bentuk dengan seni bina monolit, terpacu 
peristiwa dan menggunakan polisi penjadualan first-in first-out (FIFO).  Aplikasi kadar data 
rendah penjurusan video/imej yang dibangunkan menunjukkan bahawa komunikasi berbilang 
hop untuk kandungan multimedia didalam WMSN menggunakan nod penderia TelG yang 
disokong oleh WiseOS praktikal untuk digunakan.  
 

h~í~= âìåÅáW= Rangkaian penderia tanpa wayar; rangkaian penderia multimedia tanpa wayar; 
kamera CMOS; sistem pengendalian operasi terbenam; IEEE 802.15.4 

 
 

NKM= fkqolar`qflk=
=
Communication technologies available today are so sophisticated and pervasive 
ranging from wired to wireless technologies.  WSN is perceived as a new 
technology that would change the notion of “personal computing” into “pervasive 
and embedded computing” [1] [2].  With the advances of technologies in 
electronics, low cost small devices consuming low power capable of ubiquitously 
capturing multimedia content such as video, still images, audio and scalar data 
from the environment has influenced the development of WMSN [3].  By 
incorporating multimedia data into networks of wirelessly interconnected devices, 
not only will enhance the existing WSN applications such as tracking, home 
automation and environmental monitoring, but would forge the way for new 
applications as well.   
  Multimedia content plays a major role in various fields such as fine arts, 
entertainment, commercial, industrial process control, engineering, education and 
military.  Society today, demanded that multimedia content to be accessed 
anywhere and anytime.  As categorized in [4], the application can be classified into 
five fields, which are surveillance, traffic monitoring and enforcement, personal 
and health care, gaming, environmental and industrial.   
  WMSN has several unique characteristics that must be considered in designing 
WMSN applications and test beds.  Communication, signal processing and 
embedded computing are the main fields of disciplines related to WMSN.  Cross-



   tfobibpp=jriqfjbaf^=pbkplo=kbqtloh=mi^qcloj=             OPP=

disciplinary research on these fields is very important to enable wirelessly 
interconnected embedded devices to interact with the environment, sense and 
control the physical environment.  These research fields lay out the fundamental 
key factors in designing WMSN such as application specific requirements, high 
bandwidth demand, source coding technique, multimedia in-network processing, 
power consumption and integration with other wireless technologies. 
  In this paper, a new hardware platform for WMSN is presented complete with 
its operating system.  The rest of this paper is organized as follows; Section 2 
discusses the existing hardware platform used for WMSN.  Section 3 discusses the 
proposed hardware platform. The proposed operating system is presented in 
section 4 while section 5 and 6 concludes this paper and the suggestion for future 
works respectively. 
 
 
OKM= tjpk=jlqb=^ka=lmbo^qfkd=pvpqbj  
 
WMSN mote in general is the same as any WSN motes, which consists of sensing 
unit, processing unit and communication unit as shown in Figure 1. 

 

cáÖìêÉ=N Basic building blocks of WMSN mote 

  As shown in Figure 1, the three important building blocks are discussed in this 
section by emphasizing on the imaging devices 
 
 
OKN= fã~ÖáåÖ=~åÇ=pÉåëáåÖ=aÉîáÅÉ=
=
CMOS camera low power profile, small form factor and highly integrated single 
chip solution in general is targeted to be interfaced with computationally powerful 
host devices such as personal digital assistant (PDA) and cell phones.  In order to 



OPQ       olwbe^=^K=o^pefaI=klopebfi^=cfp^i=C=^_ari=e^af=^_ari=e^jfa=

interface CMOS camera to low-end host devices such as an 8-bit microcontroller, 
a hardware interface is required. Cyclops modules are an example of such design 
[5]. Figure 2 shows the picture of Cyclops module. 
 

 

cáÖìêÉ=O Cyclops module attached to Mica2 mote 
 
  Cyclops module consists of CMOS camera, programmable logic and external 
memory for high-speed data communication. The CMOS camera used by the 
Cyclops is Agilent ADCM-1700 CIF camera attached on the board together with 
ATMEL ATmega128L 8-bit microcontroller (MCU) to controls the camera i.e. 
configuring its parameters and performing local image processing.  Complex 
programmable logic device (CPLD) is used to enable high speed data transfer 
since the MCU speed is limited to 4MHz which is lower than the camera address 
generation for capturing images.  Cyclops uses nesC language [6] to write its 
firmware based on TinyOS libraries.  The firmware hides the complexity of the 
module operations and provides a high-level interface to present the image data to 
the host. 
  Another approach of enabling CMOS camera sensor to be used in WMSN 
platforms is by Carnegie Mellon University researchers which is a complete 
embedded computer vision platform namely CMUcam3 [7].  Figure 3 shows the 
picture CMUcam3. 
 

 
 

cáÖìêÉ=P CMUcam3 embedded computer vision platform 



   tfobibpp=jriqfjbaf^=pbkplo=kbqtloh=mi^qcloj=             OPR=

CMUcam3 is developed on low cost components consisting ARM7TDMI MCU, 
Averlogic AL4V8M440 FIFO frame buffer and Omnivision CMOS sensor.  The 
ARM MCU used is chosen because of its capabilities to execute a broad set of 
algorithm while the frame buffer makes it possible for the camera to operate at full 
speed of 26 frames per seconds.  CMUcam3 comes with open source software for 
JPEG compression and basic images libraries.  It claims to be able to perform 
several vision tasks as in [8], [9], [10], [11] and [12].  The platform also provides a 
set of communication interface such as I2C, serial peripheral interface (SPI), and 
RS232 which enabling it to be interfaced with other motes such as TeloB. 
  A medium-resolution imaging motes has been built by Intel that can be used 
for WMSN development.  Stargate platform [13] is designed by Intel and 
manufactured by Crossbow.  Figure 4 shows a photograph of Stargate board. 
 

=

cáÖìêÉ=Q Stargate board from Crossbow 
=
  Stargate board is designed for various applications such as signal processing, 
control, robotics and sensor networking applications.  The processor is based on 
Intel PXA255 XScale 400MHz RISC processor.  The processor has 32Mbyte of 
Flash memory, 64 Mbyte of SDRAM and on board interface connector for 
TelosB, MicaZ, personal computer memory card international association 
(PCMCIA) Bluetooth and IEEE 802.11 cards.  As reported in [14], Stargate 
platform, consumes considerably high power.   
 
 
OKO= léÉê~íáåÖ=póëíÉã=Ñçê=tpk=
 
Low-level details for a sensor node such as processor management, memory 
management, device management, multitasking and scheduling policies are the 
core functions of an operating system (OS).  OS handles these low-level details in 
such a way that it is hidden from the application developers by providing a clear 
API to access the underlying hardware.  This section discusses the existing OS for 
sensor node in terms of its design challenges, execution model and scheduling. 



OPS       olwbe^=^K=o^pefaI=klopebfi^=cfp^i=C=^_ari=e^af=^_ari=e^jfa=

OKOKN =léÉê~íáåÖ=póëíÉã=aÉëáÖå=`Ü~ääÉåÖÉë=
=
A typical sensor node as evaluated in [15] is constrained by its resources such as 
limited power, processing capabilities, memory and bandwidth.  As opposed to 
conventional sensor node in WSN, which consumed more power in 
communication activity [16], WMSN consumed more power in processing activity 
[17].  As a result, power optimization in WMSN is even more important than 
WSN.  To conserve energy, OS is responsible to strategize a mechanism for it 
such as periodic sleep as in [18] where the OS provides a clean and concise API 
for its power management. 
  A long running task can starve other task from processing time and miss its 
deadline. In real-time applications such as WSN, deadline is very important.  Task 
with priority should properly be scheduled [19] [20] [21] by the operating system 
effectively. TinyOS for example, employs run to completion and two-level 
scheduler model [16]. 
=
=
OKOKO léÉê~íáåÖ=póëíÉã=`ä~ëëáÑáÅ~íáçåë==
=
In terms of architecture, OS can be classified into three categories which are 
monolithic such as TinyOS [16] and MagnetOS [22], modular such as MantisOS 
[18], Contiki [23], Sensor Operating System (SOS) [24], Bertha [25] and 
CORMOS [26] and virtual machine such as Mate [27].  The tradeoff between 
which architecture to be used is based on the OS flexibility and its performance.   
  Execution model of an OS directly influence its performance.  The most two 
popular model used in WSN motes are event-based [28] such as TinyOS [18] and 
EYES/PEEROS [29] and thread based such as MantisOS [18].  Table 1 shows the 
comparison between these two models.   
=

q~ÄäÉ=N Events vs. Thread [30] 
=

bîÉåíë qÜêÉ~Çë
Computation is handled by event handlers Computation is divided between thread 
Mostly run to completion event handlers Can be preempted 
No stack overhead as there can be only one 
event handler running at one time 

Context switch overhead 

Used when applications requires efficiency  Used when applications require flexibility 
Allows high concurrency Not for concurrency intensive operations 

 
 
 
 



   tfobibpp=jriqfjbaf^=pbkplo=kbqtloh=mi^qcloj=             OPT=

PKM= qbid=jlqb=absbilmjbkq=
=
A typical WSN platform limits its data acquisition mechanism to low bandwidth 
data types such as humidity, temperature, light and pressure.  For a higher 
bandwidth requirements i.e. data types such as audio and visual, a more robust 
sensing mechanism, processing capability and communication mechanism must be 
considered in designing the platform.  In this section, a new platform for WMSN 
namely TelG mote is proposed.  
 
 
PKN póëíÉã=^êÅÜáíÉÅíìêÉ=
=
The proposed WMSN platform composes of several basic components such as 
sensing unit, processing unit, communication unit and power unit as shown in 
Figure 5.   
 

 
 

cáÖìêÉ=R TelG mote system architecture 
 



OPU       olwbe^=^K=o^pefaI=klopebfi^=cfp^i=C=^_ari=e^af=^_ari=e^jfa=

TelG mote has been built with goals to minimize power consumption, ensure 
flexibility and provides software and hardware robustness.  In addition to that, it 
allows applications to be easily developed and employs standard communication 
interface.   
 
 
PKO pÉåëáåÖ=råáí=
 
CoMedia C328R camera is a mobile imaging devices that has a lens, built in 
RAM, and JPEG compression engine integrated in a single chip.  The dimension 
of the camera is 20x28mm.  This small form factor is desirable for miniaturization 
of mote.  Figure 6 shows the photograph of the camera. 

 

 
 

cáÖìêÉ=S C328R CMOS camera from CoMedia 
 
  C328R can capture VGA image and down sample it to quarter video graphic 
array (QVGA) format or common intermediate format (CIF).  C328R offers a 
range of resolution to choose.  The smallest resolution is 80x86 pixels and the 
largest resolution is up to 640x480 pixels.  The embedded joint photographic 
experts group (JPEG) codec enabled the host to select the color conversion such 
as JPEG and grayscale.  By having hardware implementation of image 
compression instead of software implementation, significant power consumption is 
reduced. C328R uses serial universal asynchronous receive transmit (UART) 
interface to communicate or issue command to send or receive the image data.   
  The camera module operates at 3.3V with low power consumption at 60mA in 
active state.  To issue a command to the camera, the camera provides a built in 
serial type program as its application programming interface (API) with a set of 
user-friendly command for interfacing with the external host.  Figure 7 shows the 
functional block diagram of C328R camera.   



   tfobibpp=jriqfjbaf^=pbkplo=kbqtloh=mi^qcloj=             OPV=

 
cáÖìêÉ=T C328R System block diagram 

 
  The electrically erasable programmable read only memory (EEPROM) is used 
to store the camera API to interact with the host.  The host must issue a set of 
command in order to setup the camera such as synchronization, image resolution 
setting, and color setting before capturing images from the camera.  The user-
friendly command to communicate with the camera provides the host a certain 
degree of flexibility in capturing images from the environment.  Multimedia data is 
well known to be huge and when deployed in a network with multiple sources of 
such data, can easily congest the network.  This flexibility allows the host to adjust 
the images generated by the camera according to the network condition. 
 
 
PKP mêçÅÉëëáåÖ=råáí=
 
There is a wide variety of microcontroller available in the market.  New 
microcontroller keeps offering new features such as low power consumption, 
various on-chip peripherals and a range of random access memory (RAM) and 
flash sizes.  Current 8-bit microcontroller is capable of executing a few million 
instructions per seconds (MIPS). 
  ATmega644PV microcontroller from Atmel Corporation has been chosen to 
be used in TelG mote.  The power consumption of TelG mote is kept at minimal 
value without compromising its processing capability.  It is chosen after evaluating 
existing microcontroller from various manufacturers such as Microchip, Motorola 
and Atmel. 
  ATmega644PV has a very low power consumption in active, power-down and 
power save mode.  Table 2 shows the power consumption of ATmega644PV.   
 
 
 
 



OQM       olwbe^=^K=o^pefaI=klopebfi^=cfp^i=C=^_ari=e^af=^_ari=e^jfa=

q~ÄäÉ=O ATmega644PV power profile 
 

jçÇÉ= ^ÅíáîÉ mçïÉê=açïå mçïÉê=p~îÉ=
mçïÉê=`çåëìãéíáçå 0.4 mA 0.1 µA 0.6 µA 

 
  Table 2 values are given under the condition that the microcontroller operates 
at 1 MHz clock, 1.8V voltage supply, and 25 °C environment temperature.  TelG 
mote is typically designed to operate at 3.3 V with 7.3728 MHz external clock at 
ambient temperature of 25°C.  These settings yield approximately 4.9 mA active 
current, 1.8 mA idle current, 0.25 µA power-down current and 0.62 µA power-
save current consumption [33]. 
  RAM and flash sizes are the most common features of microcontrollers that 
need to be considered.  Microcontrollers RAM are important in developing an 
application.  Larger RAM size is better since it enables processing of applications 
that are more complex and sophisticated.  Atmega644PV has a 4KB RAM for 
application development.  Flash storage is used to store the application program.  
Larger program would need a larger flash.  Up to date, flash storage is not the 
limiting factor in developing WMSN applications.  Atmega644PV provides flash 
storage of 64KB which is adequate for most embedded applications. 
  Atmega644PV in particular provides two serial UART interface.  Atmel family 
microcontrollers have several programming methods to choose from in order to 
program its flash.  TelG mote is designed to be programmed using in-circuit 
programming (ISP) mode which uses the standard SPI port for ease of use. 
 
=
PKQ `çããìåáÅ~íáçå=råáí 
 
One of the components that needs to be carefully selected when designing a WSN 
is the radio part.  Communication in WSN is reckoned to be one of the most 
power consuming activities.  When dealing with multimedia data, even though 
visual processing power consumption is more pronounced, radio communication 
still proven to be one of the main cause of rapid energy depletion.  TelG mote is 
developed to conform to the typical WMSN platform specification, which is low 
power and cost.   
  The most suitable radio for typical WMSN platform is low rate and low power.  
Since it is foreseeable that TelG mote might need to communicate with other 
devices from different vendor, it is desirable to choose a well known standard for 
communication.  Based on this assumption, IEEE802.15.4 compliant radio has 
been selected.  Any devices sharing the same physical layer that conform to this 
standard will be able to communicate with each other. 



   tfobibpp=jriqfjbaf^=pbkplo=kbqtloh=mi^qcloj=             OQN=

The wireless device for TelG mote is XBee module from MaxStream Inc.  XBee 
module is an IEEE 802.15.4 compliant radio based on carrier sense multiple 
accesses (CSMA) which can provide point to point, point to multipoint and also 
peer to peer communication.  It is designed for low-latency and predictable 
communication timing applications.  Figure 8 shows the photograph of XBee 
module. 
 

 
 

cáÖìêÉ=U XBee modules photograph from MaxStream 
 

  XBee module RF data rates can go up to 250Kbps that operates at 2.4GHz 
Industrial Scientific and Medical (ISM) frequency band.  XBee module has a 
small form factor (2.438cm x 3.294cm).  It has the power output of 1mW (+0dB) 
capable of transmitting up to 30m indoor and 100m outdoor with the receiver 
sensitivity of -92dBm [34]. 
  With sixteen 5MHz channels ranging from 2.405 to 2.480 GHz, it has 65,000 
addressable network addresses for each channel.  Since it employs IEEE 802.15.4 
standards, the data transmitted is in packets where the maximum transmission unit 
(MTU) for a packet is 127 Bytes.  Each packet is acknowledged at the link layer in 
unicast mode providing best-effort-delivery except for broadcast mode.  It is 
interesting to note that, the link layer standard requires a coordinator in the 
network but XBee is designed to work even without coordinator. 
  XBee used serial UART for its interface. The host can be interfaced with 
XBee module at the speed up to 115.4Kbps. Since the UART interface operates 
at 3V and ATmega644PV (host) also operates at the same voltage level, XBee 
module can be connected directly without any voltage leveler. One of the most 
appealing features of XBee module for application developers is its API mode of 
operation.  The API provides an easy way for developers to issue a command to 
the module.   
 
 
 
 
 



OQO       olwbe^=^K=o^pefaI=klopebfi^=cfp^i=C=^_ari=e^af=^_ari=e^jfa=

PKR qÉäd=jçíÉ=aÉëáÖå=
 
To increase the mote robustness, TelG mote is designed to be integrated with 
programming, computation and communication onto a single device.  Sensing unit 
is designed to be a separate pluggable module. 
  TelG mote is programmable using ISP type programmer.  The robustness of 
the mote is that it can be reprogrammed on the board.  Every integrated 
development environment (IDE) for Atmel MCU such as AVRstudio and 
Programmer Notepad support ISP programming.  ISP is chosen as it is one of the 
most popular programmers for Atmel microcontroller and also due to its 
simplicity.   
  Both the sensing unit and communication unit use serial UART interface to 
communicate with the host.  Atmega644PV has two serial UART interface for this 
purpose.  TelG mote is designed to support independent applications from the 
sensing unit.  For this reason, sensing module is to be a separate entity from the 
mote.  UART communication port is very precious and limited while there is a 
wide range of sensors that can use it.  By designing it to be pluggable, various 
sensors can be attached to the mote without compromising its input/output (I/O) 
pins.  
  TelG mote provides four light emitting diodes (LEDs) for the application to 
use.  LEDs are indispensable to application developer because of the lack of visual 
information in embedded system to determine the system status.  The LEDs are 
useful indicators to monitor the hardware and software state during program 
debugging and deployment.  Two push buttons are provided by TelG mote; one 
for reset button and the other one for user button.  The user and reset button 
provide means for the user to issue an interrupt to the mote to execute any user 
defined instructions and to reset the system respectively.   
  TelG mote design does not include any voltage regulator since it is battery 
powered.  The voltage and current is assumed to be at a certain maximum value 
initially and gradually decreasing.  The maximum value must not exceed the safe 
operating region of any devices on the mote.  Although this looks like a serious 
drawback, the advantages of this design is to fully utilize the battery lifetime.  
ATmega644PV has an operating voltage as low as 1.8V while a single AA battery 
cutoff voltage is 0.9V.  TelG mote is expected to operate using two AA batteries in 
series.  While a single AA battery has the cut off voltage of 0.9V, two AA batteries 
in series will result in a cutoff voltage of 1.8V.  1.8V cutoff voltage is ideal for TelG 
mote given the operating voltage is the same value as the battery cutoff voltage.  If 
a voltage regulator of 3.3V is placed in the design, the cutoff voltage would depend 
on the voltage regulator cutoff voltage which is approximately 2.7 V, wasting 
almost 50% of the battery lifetime 
 



   tfobibpp=jriqfjbaf^=pbkplo=kbqtloh=mi^qcloj=             OQP=

QKM= tfpblp=lmbo^qfkd=pvpqbj  
 
Almost every mote available to date has its own lightweight operating system either 
it is being ported from other mote or specifically designed for it.  TelG mote is 
developed to be a complete platform with its own operating system.  For this 
purpose, WiseOS is developed base on the popular operating system for sensor 
mote, TinyOS which is written in nesC language.  It supports modularity and 
concurrency based on event driven approach. 
  There are several factors that must be considered when designing an operating 
system for embedded system such as resource constraint (in term of memory, 
processor and power), modularity and concurrency.  WiseOS design goals are to 
implement TinyOS basic kernel structure fully written in C language and have a 
small footprint for TelG mote.  Additionally, it must also enable a flexible and 
rapid prototyping of WSN applications.  This chapter provides the descriptions of 
the WiseOS architecture, its API and the design implementation of WiseOS. 
 
 
QKN= táëÉlp=pçÑíï~êÉ=^êÅÜáíÉÅíìêÉ 
 
The architecture of an operating system intended for WSN is inherently different 
with the legacy operating system.  The constraints imposed on WSN proved that 
legacy operating system is impractical to be used.  The intended software is 
required to be efficient in term of power, memory and processing capabilities 
while it must support multiple applications to be run simultaneously using the 
same system resources.  In event-driven systems, it is conceivable that multiple 
event might occur simultaneously and must be handled concurrently.  Based on 
these observations, concurrency and modularity plays a major role in determining 
the architectural design of the operating system. The software architecture must 
also enable an efficient integration of sensors, processing and communication. 
  While the bottlenecks of TelG mote capabilities are limited by its hardware 
design, to fully utilize the resources, efficient system software is of utmost 
important.  To tackle the concurrency and modularity problem, WiseOS use the 
same technique employed by TinyOS which is two level scheduling structures 
where hardware interrupt can be processed almost immediately by interrupting 
long running tasks.  This type of scheduling is also known as cooperative 
scheduling as oppose to preemptive scheduling.   
 
 
 
 
 



OQQ       olwbe^=^K=o^pefaI=klopebfi^=cfp^i=C=^_ari=e^af=^_ari=e^jfa=

QKNKN =táëÉlp=aÉëáÖå=
 
WiseOS architecture is based on state machine programming model where the 
system is composed of state machines.  In this model, the transitions of one state 
to another must be quick, have a low overhead and non-blocking.  The non-
blocking element is very important in designing an event-driven operating system 
such as WiseOS. Figure 9 shows an example of WiseOS operation in capturing 
and transmitting JPEG images.   
 
 

 
 

cáÖìêÉ=V State transition diagram for capturing and transmitting JPEG images 
 

  The initial state is invoked when the central processing unit (CPU) detects 
power-on-reset, brown out reset or watchdog reset.  In this state, the CPU executes 
the initial process in order to get the system up and running.  The CPU can save 
up power consumption by turning on only the necessary peripherals such as 
UART and timer which is necessary in order to configure radio and sensing 
module.  CPU enters idle mode once the camera and radio has been initialized 
and transit to the receiving state waiting for the UART interrupt. 
  If the radio module receives a message to acquire the image, the state will 
transit from receive state to the image acquisition state.  In other scenario, the state 
transition can be triggered by other interrupt such as time out or from other 
sensors such as motion detection sensor.  In this state, the sensor will start 
acquiring images to be processed.  As mention before, C328R camera is capable 



of p
ima
  T
tran
not
app
will
pac
tran
cap
rece
stra
  I
laye
har
(AL
 

 
  R
the 
the 
AD
hav
to a
part
byte
into

   tfobib

processing the
age processing
The compre
nsmitted.  In t
t based on th
plication.  If th
l be invoked. 
ckage format 
nsmitted by th
pable of routin
eive and tran

ategized in suc
In general, W
ers such as t
dware presen

L).  Figure 10 

Resource con
 same memor
 HL compone

DC, deals with 
ve to be rewritt
abstracting the
ticular HL co
e basis data tr
o serial transm

bpp=jriqfjba

e images on b
g unit available
ession state w
this state, a de
he network co
he image has
 Transmit stat
in order to 

he Xbee modu
ng other node
nsmit state.  
ch a way that th
WiseOS archi
the hardware

ntation layer 
depict the Wi

c

nstraint mote s
ry space as th
ents such as U
 the setting an
ten when port
e HL by provi
omponent.  F
ransmission on
mission by pro

af^=pbkplo=k

board or passi
e before transi
will produced
ecision can be
ondition or a
 been decided
te is responsib
 transmit it 
ule to other no
s messages, th
The switchin

he power usag
tecture comp

e layer (HL),
(HPL), netwo
iseOS design. 

 
cáÖìêÉ=NM Wise

such as TelG
he application 
USART, TIME
nd initializing t
ting WiseOS t
iding a set of 
or example, U
n the HL.  H
oviding sendin

kbqtloh=mi^

ing the image
iting to the tran
d a single J
e made wheth
any other con
d to be transm
ble to pack th
over the net
odes.  Since ea
he system only
ng between t
ge can be optim
ponents can b
, hardware a
ork layer (NL
 

eOS design  

 require the o
 (monolithic).
ER, SPI, two w
the hardware 
to another pla
standard API
USART drive

HPL elaborate
ng and receiv

^qcloj=      

 data to the C
nsmit state.  
JPEG file re
her to transmi
nstrains impo
mitted, the tra

he data into th
twork.  The 
ach nodes in W
y need to swit
these two sta
mized.   

be described 
abstraction lay
L) and applic

operating syste
  As shown in
wire interface
and this sectio

atform.  The H
I commonly u
er only provid
s this primitiv

ving API for i

      OQR=

CPU or any 

eady to be 
it the file or 
osed by the 
ansmit state 

he necessary 
package is 

WMSN are 
tch between 
ates can be 

into several 
yer (HAL), 
cation layer 

 

em to share 
n Figure 10, 
 (TWI) and 
on normally 
HPL is used 
used for that 
des byte per 
ve operation 
it in a bytes 



OQS       olwbe^=^K=o^pefaI=klopebfi^=cfp^i=C=^_ari=e^af=^_ari=e^jfa=

stream.  The HAL is used to represent the actual piece of hardware such as 
button, sensors and LEDs in an abstract manner by using the layers of abstraction 
provided by WiseOS which in turn making it independent from the hardware.   
 
 
QKO= bîÉåíJ_~ëÉÇ=mêçÖê~ããáåÖ=
 
WSN application is expected to operate for a long time without human 
intervention.  To prolong wireless sensor network life-time expectancy, the node 
must be put into sleep state to reduce power consumption when there are no 
events.  Since WSN only active when there are events, event based programming 
is very useful in order to achieve power usage efficiency.  Event based 
programming is efficient in handling high level of concurrency using a very small 
amount of memory space.  Thread based software architecture on the other hand 
requires a separate stack space for each execution context.  For radio 
communication with a baseband processing of 19.2Kbps, the context switch rates 
of thread based software architecture require about 40000 switches per second 
[30].  This switch rates is significantly higher than event based architecture where 
only single stack is required and each context execution run until completion.  
Event based programming is expected to have a more stable performance 
compared to threaded program under heavy load [31].   
  WiseOS respond to event immediately by instructing the system to execute its 
context.  The context is returned to the system only when the event processing is 
completed.  Each event signaled by lower layer may have a task associated with it.  
The tasks will be handled after event is signaled.  After all events and tasks are 
fully processed, the CPU is idle and thus can be put into low power state.  Polling 
and blocking code which constantly looking for interesting events which waste 
CPU cycles are eliminated when using event based approach.  Figure 11 illustrate 
the events and tasks processing in event-based programming. 
 

 
 

cáÖìêÉ=NN Events and tasks processing 



   tfobibpp=jriqfjbaf^=pbkplo=kbqtloh=mi^qcloj=             OQT=

Figure 11 illustrate the two level scheduling mechanisms in WiseOS.  In this 
scheduling scheme, the event has the higher priority than the task.  Event can be 
generated by hardware or software interrupt.  Task T1 in Figure 11 is being 
executed by the scheduler but preempted at t1 by event E1.  E1 would be run till 
completion before resuming task T1 at t2.  As illustrated, T1, T2 and T3 are 
being executed in order and can only be preempted by an event.  When there are 
no tasks or events to be processed, the mote can be put to sleep mode to conserve 
power consumption.  Task operation is explained in details in the next section. 
 
 
QKP= q~ëâë=
 
If an event handler executes long running codes, other events may not be 
processed in time (overload).  To overcome this limitation, WiseOS provides a 
mechanism called tasks.  A task basically is a deferred procedure call.  Task 
execution runs in the background without interfering with the system events.  A 
task can be scheduled arbitrarily anywhere in the program as shown in Figure 12 
but only get CPU time when all hardware interrupt has been processed. 
 

 
cáÖìêÉ=NO Emulating concurrency using tasks 

 
This mechanism allows low-level events handler to have a minimal code which is 
time critical to be executed immediately while the rest of the code which are more 
computational intensive to be scheduled and processed later.  Tasks may be 
preempted by the hardware interrupt but may not be preempted by another tasks 
and each tasks run to completion as shown previously in Figure 11. 
  WiseOS scheduler is being implemented using FIFO technique to schedule 
tasks.  This technique is efficient in WSN environment and furthermore it is easy 
to implement.  Tasks with priority may be implemented, however it is not a major 
problem in WSN where event is expected to be detected sporadically and most of 
the time the node is inactive.   
 



OQU       olwbe^=^K=o^pefaI=klopebfi^=cfp^i=C=^_ari=e^af=^_ari=e^jfa=

QKQ= táëÉlp=jçÇìäÉë=
=
Modules in WiseOS have been designed to be modular to provide easy 
component integration for application developer.  Event driven operating system 
requires each module to have a set of event/command interfaces.  Application 
developer only needs to interconnect the modules using the interfaces to produce 
a complete system.   
  WiseOS modules have four main components, a set of commands, a set of 
event handlers, private data and tasks/functions associated with that particular 
module.  When these modules are being interconnected to each other, a layered 
system composition can be easily derived as shown in Figure 13.  
  A Command illustrated by arrow pointing inside the block in Figure 13 may 
provide a feedback (arrow pointing out) to its caller to indicate the status of the 
command e.g. failed, success or buffer overrun and etc.  The feedback gives 
important information to the caller about the lower layer current state for error 
handling in case it is needed.  Each blocks on each layer in WiseOS are 
independent of each other which translated to each commands on each blocks are 
independent with each other.  This non-blocking scheme is realized using task, 
where every command are a deferred procedure called which enable the 
developer to call arbitrary commands from arbitrary blocks successively without 
having to wait the previous command to finish first.  Commands and events 
provide a seamlessly instantaneous state transition for each module and tasks 
simulate concurrency for event-driven model to provide an arbitrary computation.   
 
 
QKR= táëÉlp=bî~äì~íáçå=
=
To evaluate WiseOS, the key criteria are small footprint and have an efficient 
modularity.  Small footprint is desirable in TelG mote given the size of the RAM 
is only 4 KB.  Efficient modularity plays a major role in application development 
that would enable rapid prototyping of WSN applications. 
  Figure 14 shows WiseOS compilation output of its kernel (scheduler and 
timer) that display the usage of the read only memory (ROM) and RAM. 
 
 
 
 
 
 
 
 



   tfobibpp=jriqfjbaf^=pbkplo=kbqtloh=mi^qcloj=             OQV=

=
 
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

cáÖìêÉ=NP Functional block diagram of WiseOS call graph 

APPLICATION

C328R_START_DONE(X) 
        C328R_READY(X,Y) 
    C328R_RX(X) 
    C328R_COMPLETE(X) 

C328R

C328R_INIT() 
C328R_RESET() 
C328R_REG(X,Y,Z) 
C328R_START() 
C328R_SNAP(X) 
C328R_PREVIEW(X) 

XBEE

RADIO_START_DONE(X) 
  RADIO_SEND_DONE(X) 
              RADIO_RX(X,Y,Z) 

RADIO_REG(X,Y,Z) 
RADIO_START () 
RADIO_SEND (X,Y,Z) 
RADIO_PACKET_SETUP(W,X,Y,Z) 
RADIO_GET_RSSI(X) 
RADIO_GET_SRC_ADDR(X) 
RADIO_GET_OPTION(X) 

     TX0_BYTE_DONE(X) 
TX0_STREAM_DONE(X) 
          SERIAL0_RX(X,Y) 

SERIAL 

SERIAL0_INIT(X,Y) 
SERIAL0_REG(X,Y,Z) 
SERIAL0_TX_BYTE(X) 
SERIAL0_TX_STREAM(X,Y) 

SERIAL     TX1_BYTE_DONE(X) 
TX1_STREAM_DONE(X) 
          SERIAL1_RX(X,Y) 

SERIAL1_INIT(X,Y) 
SERIAL1_REG(X,Y,Z) 
SERIAL1_TX_BYTE(X) 
SERIAL1_TX_STREAM(X,Y) 

HAL 

HPL 

HL 

 
DRIVER_USART1_INIT() 
DRIVER_USART1_REG(X,Y) 
DRIVER USART1 SEND(X) 

DRIVER USART1 RX (X)

USART1 
USART0

DRIVER USART0 RX (X)

DRIVER_USART0_INIT() 
DRIVER_USART0_REG(X,Y) 
DRIVER USART0 SEND(X) 

HARDWARE

C328R Camera XBEE

TX RX TX RX 



ORM       olwbe^=^K=o^pefaI=klopebfi^=cfp^i=C=^_ari=e^af=^_ari=e^jfa=

=

=
=

cáÖìêÉ=NQ WiseOS kernel compilation report 
=
=

  As shown in Figure 14, WiseOS kernel only occupies 2.5% of the Flash 
memory (Program) and 0.5% of the RAM (Data).  The ROM usage most of the 
time is not a major concern compared to the usage of RAM.  As reported, 0.5% of 
RAM usage is indeed small which leave 95.5% of the RAM to be used by the 
application developer.   
  WiseOS has been developed in modular manner where a modules from 
several layer can be snapped together easily to compose a complete system.  
When porting WiseOS to another platform that conform to American national 
standards institute (ANSI) C language, only hardware layer of the WiseOS need to 
be rewritten and the application program can be used with little or no 
modification. 
  Figure 15 shows a sample of image captured by TelG mote and transferred to 
sink node (PC) and Table 3 summarizes the performance for single hop 
communication at different image resolutions. 
=

=
=

cáÖìêÉ=NR JPEG images at 320x240 resolution for single hop communication 
=



   tfobibpp=jriqfjbaf^=pbkplo=kbqtloh=mi^qcloj=             ORN=

q~ÄäÉ=P Image transfer performance for single hop communication at different image resolutions 

oÉëçäìíáçå= UM=ñ=SQ NSM=ñ=NOU POM=ñ=OQM SQM=ñ=QUM=
Delay (s) 0.61 1.46 6.66 17.22 
PRR (%) 100 100 100 100 
Throughput (kbps) 18.51 15.44 17.15 16.98 
Corrupted packets (%) 0.003 1.25 1.02 1.00 
Frame rates (fps) 1.63 0.68 0.15 0.06 
=
  From Table 3, it is clear that the delay to transfer a single frame of image would 
increase as the resolution of the image increases given that the maximum speed of 
the communication is fixed at 115.2kbit/s.  For a single source, single hop 
communication where the source and the sink node are placed together at a close 
proximity to each other, packet collision does not occur which resulted in a 100% 
PRR.  The throughputs attainable from the experiments are statistically consistent 
for each image resolution with the variance only valued at 1.58.  The attainable 
throughput is only 15% of the maximum throughput provided by the 
communication devices mainly due to the processing delay of the CMOS camera 
and communication delay.   
=
=
RKM= `lk`irpflk=
=
A typical WSN applications requirements are low rate, low power and only 
accommodate scalar data.  To accommodate multimedia data into the 
conventional WSN many challenges need to be overcome.  This presents the 
development of WMSN motes namely TelG mote equipped with operating 
system called WiseOS and multimedia sensor consisting of a CMOS camera.  
TelG mote is built using Atmel’s microcontroller as its CPU, XBEE radio module 
as the transceiver and CMOS camera from CoMedia as its visual sensor.  Atmel’s 
ATmega644PV is chosen mainly because of its low power profile, rich in 
peripherals and have sufficient size of RAM (4KB) and ROM (64KB) for WSN 
applications.  XBee radio module is based on the famous IEEE802.15.4 standard 
and provides a user friendly API for application developer and also using USART 
interface.  C328R CMOS camera provides an easy to use API to access the 
camera with built in JPEG image compression, automatic packet fragmentation 
and using the same USART interface as radio module.  TelG mote is design for 
the development of WMSN testbed. 
  Embedded operating system for wireless sensor network platform often comes 
in package such as TelosB and MicaZ uses TinyOS and Contiki for Sensinode.  
WiseOS has been developed for TelG mote.  Operating system is very important 
and crucial in managing mote resources such as power and memory.  The 



ORO       olwbe^=^K=o^pefaI=klopebfi^=cfp^i=C=^_ari=e^af=^_ari=e^jfa=

proposed facilitate mote operation such as communication and reading sensors 
data.  WiseOS has been developed using TinyOS as the framework and guideline.  
WiseOS implements an event-driven type operating system, which is very suitable 
for WSN environment where the motes only respond to events instead of polling 
and sleep during idle time.  
  In general, the work has successfully achieved the target objective that to 
develop and design a platform for WMSN.  The development of the hardware, 
which includes TelG mote and the operating system which is the WiseOS and the 
experimental WMSN test bed has proven the practicality of the proposed WMSN 
system for surveillance, monitoring and detection.  The WMSN can be tailored 
for application including environmental monitoring, human and device 
surveillance system and many other applications that require visual information. 
=
 
SKM= crqrob=tlohp=
 
The proposed WMSN using TelG mote, WiseOS and low rate image or video 
streaming application demonstrate that many other applications can be deployed 
for various surveillance and monitoring purposes.  However, the proposed 
WMSN can be further improved by using enhanced devices for TelG mote, 
efficient algorithm on the embedded operating system and efficient routing 
protocol for multimedia data transfer.  Below are the recommendations for future 
works; 

• The processing unit of TelG mote can be improved by using a digital 
signal processing (DSP) coprocessors to process the multimedia data. 

• TelG mote may be further improved by using high-end microcontrollers 
such as the 32-bit Intel/Marvell PXA255 processor that provides a high 
speed processing as well as a higher degree of parallelism.  

• Using multiple processor approach dedicated to process multimedia data 
on the same platform connected to a multipurpose low-end processor for 
interfacing with the transceiver and the imaging unit. The trade-off between 
power consumption and processing capabilities must be considered in 
such system. 

• System software can be developed to provide a basic set of interface that 
can be accessed easily using APIs. WiseOS is highly efficient for WSN 
environment but its flexibility and interoperability can be further 
improved. 

• Sensing WMSN needs further improvement to avoid redundancy in 
sending the same information by multiple sources.  Signal processing 



   tfobibpp=jriqfjbaf^=pbkplo=kbqtloh=mi^qcloj=             ORP=

technique like edge detection to avoid sending raw data over the wireless 
link can be included. 

• Using CMOS camera with varying resolution can make use of the wireless 
link condition by adaptively switching its resolution. 

 
 

obcbobk`bp=
 

[1] Ian, F. A., T. Melodia, K. R. Chowdhury. 2007. A Survey on Wireless Multimedia Sensor Networks. 
`çãéìíÉê=kÉíïçêâë=EpÅáÉåÅÉaáêÉÅíFK 51(4): 921-960. 

[2] Jennifer, Y., B. Mukherjee, Dipak, Ghosal. 2008. Wireless Sensor Network Survey. `çãéìíÉê=
kÉíïçêâëK=52(12): 2292-2330. 

[3] G. Simon, M. Maroti, A. Ledeczi, G. Balogh, B. Kusy, A. Nadas, G. Pap, J. Sallai, K. Frampton. 
2004. Sensor Network-Based Counter Sniper System. Proceedings of the Second International 
Conference on Embedded Networked Sensor Systems (Sensys). November 03-05, 2004. Baltimore, 
MD, USA: ACM Press. 1-12. 

[4] Ian, F. A., T. Melodia, K. R. Chowdhury. 2008. Wireless Multimedia Sensor Networks: Applications 
and TestBeds. mêçÅK=çÑ=íÜÉ=fbbb. 96(10):1588-1605. 

[5] M. Rahimi, R. Baer, O. Iroezi, J. Garcia, J. Warrior, D. Estrin, M. Srivastava. Cyclops: In Situ Image 
Sensing and Interpretation in Wireless Sensor Networks. mêçÅK= lÑ= íÜÉ= ^`j= `çåÑK= çå=
bãÄÉÇÇÉÇ= kÉíïçêâÉÇ= pÉåëçê= póëíÉãë= EpÉåpóëFK November 02 - 04, 2005. San Diego, CA: 
ACM. 2005. 192-204. 

[6] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, D. Culler. The NesC Language: A Holistic 
Approach to Network Embedded System. 2003. Proc. Of the ACM SIGPLAN 2003 Conf. on 
Programming Language Design and Implementation (PLDI). June 09 - 11, 2003. San Diego, CA, 
USA: ACM. 1-11. 

[7] A. Rowe, A. Goode, D. Goel, I. Nourbaksh. 2007. `jrÅ~ãPW=^å=léÉå=mêçÖê~ãã~ÄäÉ=bãÄÉÇÇÉÇ=
sáëáçå=pÉåëçêK=Pittsburgh, PA: Technical Report.  

[8] J.Bruce, T. Balch and M. Veloso. 2000. Fast and Inexpensive Color Segmentation for Interactive 
Robots. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. 2000 
(IROS 2000).Oct 31-Nov. 5, 2000. Takamatsu , Japan: IEEE. 2061-2066. 

[9] G.D. Hager and K. Toyama. 1998. The Xvision System: A General Purpose Substrate for Real-Time 
Vision Applications. `çãéìíÉê=sáëáçå=~åÇ=fã~ÖÉ=råÇÉêëí~åÇáåÖ. 69(1): 23-37. 

[10] I. Horswill. Polly: A Vision-based Artificial Agent. 1993. The Proceeding of Eleventh National 
Conference on Artificial Intelligence. July 11–15, 1993. Washington DC: AAAI Press.. 824-829. 

[11] R. Sargent, B. Bailey, C. Witty and A. Wright. 1997. Dynamic Object Capture Using Fast Vision 
Tracking. ^f=j~Ö~òáåÉ. 18(1). 65-72. 

[12] I. Ulrich,and I. Nourbakhsh. 2000. Appearance-Based obstacle Detection with Monocular Color 
Vision. Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth 
Conference on Innovative Applications of Artificial Intelligence. July 30 - August 03, 2000. Austin, 
Texas, USA: MIT Press.. 866-871. 

[13] Crossbow Technology Inc. 2004. pí~êÖ~íÉë=aÉîÉäçéÉê∞ë=dìáÇÉ= EoÉîK=^FK San Jose California. User 
Manual.  

[14] C. Lynch and F. O. Reilly. 2005. Processor Choice for Wireless Sensor Networks. June 20-21, 2005. 
Workshop on Real-World Wireless Sensor Networks (REALWSN’05), Stockholm, Sweden: 
Sensornets. Session 5. 

[15] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler and K. S. J. Pister. 2000. System Architecture 
Directions for Networked Sensors. ^`j=pfdmi^k=kçíáÅÉëK 35(11): 93-104. 

[16] I. Downes, L. B. Rad and H. Aghajan. 2006. Development of a Mote for Wireless Image Sensor 
Networks. Proc. Cogn. Syst. Interact. Sensors (COGIS). March 16, 2006. Paris, France: SEE.  



ORQ       olwbe^=^K=o^pefaI=klopebfi^=cfp^i=C=^_ari=e^af=^_ari=e^jfa=

[17] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker, C. Gruenwald, A. Torgerson and 
R. Han. Mantis OS: An Embedded Multithreaded Operating System for Wireless Micro Sensor 
Platforms. jçÄáäÉ=kÉíïçêâë=~åÇ=^ééäáÅ~íáçåëK 2005. 10(4):563-579. 

[18] C. L. Liu and J. W. Layland. Scheduling Algorithm for Multiprogramming in a Hard-Real-Time 
Environment. gçìêå~ä=çÑ=íÜÉ=^`jK 1973. 20(1): 46-61. 

[19] J. P. Lehoczky, L. Sha and Y. 1989. Ding. The Rate Monolithic Scheduling Algorithm: Exact 
Characterization and Average Case Behavior. Proceedings Real Time Systems Symposium. Dec. 05-
07, 1989. Santa Monica, CA , USA: IEEE Xplore. 166-171. 

[20] L. Sha, R.Rajkumar and J. Lehoczky. 1990. Priority Inheritance Protocols: An Approach to Real 
Time Synchronization. IEEE transactions on Computers. 39(9): 1175-1185. 

[21] R. Barr, J. C. Bicket, D. S. Dantas, B. Du, T. W. D. Kim, B. Zhou and E. G. Sirer. 2002. On The 
Need for System-Level Support Ad-Hoc and Sensor Networks. ^`j=pfdlmp=léÉê~íáåÖ=póëíÉãë=
oÉîáÉïK=36(2):1-5. 

[22] A. Dunkels, B. Gronvall and T. Voigt. 2004. Contiki – A Lightweight and Flexible Operating System 
for Tiny Networked Sensors. Proceedings of the 29th Annual IEEE International Conference on 
Local Computer Networks. November 16 - 18, 2004. Washington DC, USA: IEEE Xplore. 594-601 

[23] C. C. Han, R. Kumar, R. Shea, E. Kohler and M. Srivastava. 2005. A Dynamic Operating System for 
Sensor Nodes. Proceedings of The 3rd International Conference on Mobile Systems, Applications, 
And Services. June 06 - 08, 2005. Seattle, Washington: ACM portal. 163-167. 

[24] J. Lifton, D. Seetharam, M. Broxton and J. A. Paradiso. 2002. Pushpin Computing System Overview: 
A Platform for Distributed, Embedded, Ubiquitous Sensor Networks. In: Mattern, Friedemann and 
Naghshineh, Mahmoud. mÉêî~ëáîÉ=`çãéìíáåÖ. Berlin / Heidelberg: Springer. 605-614.  

[25] J. Yannakopoulus and A. Bilas. 2005. Cormos: A communication-Oriented Runtime System for 
Sensor Networks. Proceeding of The Second European Workshop on Wireless Sensor Networks 
(ESWN 2005). 31 Jan.-2 Feb. 2005. Istanbul, Turkey: IEEE Xplore. 342-353. 

[26] P. Levis and D. Culler. 2002. Mate: A Tiny Virtual Machine for Sensor Networks. Proceedings of the 
10th International Conference on Architectural Support for Programming Languages and Operating 
Systems. October 05 - 09, 2002. San Jose, CA, USA: ACM Portal. 85-95. 

[27] S. Dulman and P. Havinga. 2002. Operating System Fundamentals for The EYES Distributed Sensor 
Network. Proceeding of Progress 2002, Utrecht. Netherlands, October. 

[28] J. Ousterhout. 1996. Why Threads are a Bad Idea (For Most Purposes). Invited Talk at 1996 
USENIX Technical Conference. Real-Time Computing and Communications Lab., Hanyang 
University. 

[29] R. von Behren Jeremy Condit and E. Brewer. 2003. Why Events are a Bad Idea (For High-
Concurrency Servers). Proceedings of HotOS IX: The 9th Workshop on Hot Topics in Operating 
Systems, May 18–21, 2003, Lihue, Hawaii, USA: ACM Portal. 4-4. 

[30] S. Hong and T. Kim. 2003. SenOS: State-Driven Operating System Architecture for Dynamic Sensor 
Node Reconfigurability. In International Conference on Ubiquitous Computing, October 12-15, 2003. 
Seattle, Washington: Springer. 56-60 

[31] Dabek, F., Zeldovich, N., Kaashoek, F., Mazières, D., and Morris, R. 2002. Event-Driven 
Programming For Robust Software. In Proceedings of the 10th Workshop on ACM SIGOPS 
European Workshop. July 01, 2002. Saint-Emilion, France: ACM. 186-189.  

[32] J. Lifton, D. Seetharam, M. Broxton and J. A. 2002. Paradiso. Pushpin Computing System Overview: 
A Platform for Distributed, Embedded, Ubiquitous Sensor Networks. In: Mattern, Friedemann and 
Naghshineh, Mahmoud. mÉêî~ëáîÉ=`çãéìíáåÖ. Berlin / Heidelberg: Springer. 605-614.  

[33] Atmel Corp. 2009. 8-bit Microcontroller with 16/32/64K Bytes in-System Programmable Flash. San 
Jose California: Datasheet.  

[34] MaxStream Inc. 2005. XBee™/XBee-PRO™ OEM RF Modules. Lindon UT. Product Manual.  


